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Abstract. – Historical biogeography seeks to understand the distribution of biodiversity in 24 

space and time. The dispersal-extinction-cladogenesis (DEC) model, a likelihood-based 25 

model of geographic range evolution, is widely used in assessing the biogeography of 26 

clades. Robust inference of dispersal and local extinction parameters is crucial for 27 

biogeographic inference, and yet a major caveat to its use is that the DEC model severely 28 

underestimates local extinction. We suggest that this is mainly due to the way in which 29 

the model is constructed to allow observed species to transition into being present in no 30 

areas (i.e., null range). By prohibiting transitions into the null range in the transition rate 31 

matrix, we were able to better infer local extinction and support this with simulations. 32 

This modified model, DEC*, has higher model fit and model adequacy than DEC, 33 

suggesting this modification should be considered for DEC and other models of 34 

geographic range evolution.  35 
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INTRODUCTION 47 

Historical biogeography has developed from simply observing the general 48 

patterns of species, to incorporating events that explain biogeographic processes (such as 49 

vicariance and dispersal), to developing explicit probabilistic approaches. With the 50 

advent of parametric methods based on maximum likelihood and Bayesian frameworks, 51 

researchers have been able to incorporate important information, such as branch lengths 52 

and fossils (e.g., allowing for better tree dating estimates) (Smith and Donoghue 2010; 53 

Wood et al. 2012; Beaulieu et al. 2013a; Pyron 2014). 54 

A popular method (cited 499 times since its publication) to assess the historical 55 

biogeography of taxa is the dispersal-extinction-cladogenesis (DEC) model (Ree and 56 

Smith 2008), which estimates geographic range evolution for anagenetic (i.e., along 57 

branches) and cladogenetic (i.e., at nodes) change on a phylogeny. In the case of 58 

anagenetic change, range expansion and range contraction [modeled as parameters by 59 

way of the rate of dispersal from area i to area j (Dij) and local extinction in area i (Ei)] 60 

are modeled as stochastic processes along branches. Published analyses with DEC 61 

assume the simplest model involving only a single dispersal rate and a single local 62 

extinction event, although it is possible to have more complex models (i.e., allowing 63 

different dispersal rates among each area pair by having n2-n free parameters for the 64 

dispersal rates, and n free parameters for local extinction). A rate matrix can be 65 

assembled for a given number of geographic ranges and rate parameters (Fig. 1).  66 

Ree and Smith (2008) carried out simulations to test the accuracy of the DEC 67 

model on parameter estimation. They found that although the model worked reasonably 68 

well, dispersal was underestimated and local extinction was severely underestimated, 69 
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often estimated as being effectively zero. Note that while there has been a robust 70 

discussion of whether extinction rates can be estimated on molecular phylogenies (Nee et 71 

al. 1994; Rabosky 2010; Beaulieu and O'Meara 2015), the extinction rate in that case 72 

relates to speciation and extinction of entire species and its signal on a phylogeny’s 73 

topology and branch lengths. The extinction rate relevant for our purposes is the rate of 74 

having a population no longer occurring in a particular area, using a fixed tree. In terms 75 

of its role in a model, it is more like the rate of reduction in a meristic character than a 76 

rate at which a species goes extinct, even though biologically it appears more similar to 77 

the latter. Thus, its difficulty in being estimated is surprising. 78 

One feature of the DEC model that has received little comment is that it includes 79 

a null range (a geographic range of 0 areas) in the anagenesis transition matrix (Fig. 1). In 80 

one sense, inclusion of the null range is a natural modeling decision, since the assumption 81 

that local extirpation is a process directly implies that the same process can reduce a 82 

single area geographic range to a range of size 0. However, the inclusion of a null range 83 

in the state space has some peculiar properties. For instance, no sampled species will ever 84 

occupy the null range state; even extinct species, if included in an analysis, are included 85 

because they occurred in some area. We suspect that the only way to fit any data pattern 86 

that does not observe null ranges is by driving down the rate of range contraction to the 87 

point where the probability of such an event is effectively zero. Unfortunately, given that 88 

all transitions to other extinction scenarios are linked through a global extinction 89 

parameter it seems unavoidable that when null ranges are allowed in the model extinction 90 

would generally be underestimated. 91 
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Of course, in some ways, the extinction rate is a nuisance parameter – that is, the 92 

hundreds of studies using the DEC model primarily focus on ancestral state estimates 93 

rather than on rates. However, given that this rate represents one of the two free 94 

parameters that are then used for inferring ancestral states on the tree, we expect that 95 

biased extinction estimates may result in errors in the ancestral state estimation. In other 96 

words, given low extinction rate estimates, areas can only be lost at speciation events, so 97 

we predict a greater number of areas as we move rootward on the tree and few area losses 98 

along longer branches. This study attempts to modify the DEC model to improve 99 

estimation of extinction rate and then tests using simulated and empirical data to see if 100 

this results in a better model overall. 101 

 102 

METHODS 103 

We modified the DEC model (which we refer to DEC* hereafter) to omit 104 

transitions into the null state in the anagenesis transition rate matrix between ancestor and 105 

descendent pairs (Fig. 1). It has the same number of parameters as DEC (dispersal and 106 

local extinction, d and e respectively), with the only change being fixing the transition 107 

rate to 0 for transitions from ranges of size 1 to the null range. DEC* is distinct from the 108 

three-parameter DEC+J model which allows for founder-event speciation associated with 109 

lineage-splitting with the addition of the free j parameter (Matzke 2014b). DEC+J retains 110 

the DEC assumption that a null geographic range is a valid state. To implement the DEC* 111 

model, we modified the original lagrange DEC C++ code 112 

(https://github.com/rhr/lagrange-cpp) to omit the transition into the null range in the 113 

anagenesis transition rate matrix. The DEC* model is implemented as a modification to 114 
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the DEC C++ version, and is also allowed in the BioGeoBEARS R package (Matzke 115 

2013) by changing the include_null_range setting from TRUE to FALSE in the 116 

BioGeoBEARS model setup. 117 

We implemented our own DEC simulator in R that follows the procedures 118 

described by Ree and Smith (2008). The simulator produces birth-death phylogenetic 119 

trees with concurrent range evolution, combining the DEC model and stochastic 120 

cladogenesis. The simulator also does the same for the DEC* model. Trees were 121 

produced with the same known dispersal and local extinction parameter, constrained to 122 

vary between 0.01 and 0.2, while speciation was constrained to be 0.4 events per million 123 

years. Geography consisted of three possible hard-coded geographic areas, meaning that 124 

there were 8 possible geographic ranges in the state space of the DEC simulation (A, B, 125 

C, AB, AC, BC, ABC, and null), and 7 possible ranges in the DEC* simulation (as the 126 

null range state is excluded). At cladogenesis, when the lineage had a widespread range, 127 

equal probabilities were assigned to each allowed range-inheritance scenario (vicariance 128 

or subset sympatry). For both DEC and DEC*, we performed 2,000 simulation-inference 129 

runs and compared dispersal and local extinction parameter estimates as well as the 130 

number of correctly inferred number of areas at internal nodes for all simulations. The 131 

simulations began by assigning the root node a range of a random single geographic area. 132 

The phylogeny was allowed to grow according to the DEC or the DEC* model until it 133 

reached 100 taxa (extant plus extinct). To match empirical datasets, the simulated 134 

phylogenies were pruned of branches that went extinct. 135 

Our main objective was to understand DEC* versus DEC analyses on empirical 136 

datasets. Therefore, we searched the literature for published studies that used the DEC 137 
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model. Then we compiled the phylogenies and geography presence/absence data 138 

available, which resulted in 15 empirical datasets. Most of these datasets were used in 139 

Matzke (2014b), and followed any modifications made therein (Kambysellis et al. 1995; 140 

Baldwin and Sanderson 1998; Hormiga et al. 2003; Jordan et al. 2003; Clark et al. 2008; 141 

Dunbar-Co 2008; Ree and Smith 2008; Benavides et al. 2009; Clark et al. 2009; Gillespie 142 

and Baldwin 2010; Smith and Donoghue 2010; Lerner et al. 2011; Nicholson et al. 2012; 143 

Bennett et al. 2013; Lapoint et al. 2013; Matzke 2014a). However, we also assessed the 144 

caecilian and salamander datasets from a recent published study using DEC+J (Pyron 145 

2014), and a palpimanoid spider dataset (Wood et al. 2012). We performed unconstrained 146 

analyses with C++ DEC and DEC* on each dataset. We compared analyses between 147 

DEC, DEC*, and DEC+J for all 15 datasets. If the values were not available, we used the 148 

package BioGeoBEARS (Matzke 2013) to run all DEC+J analyses. We also assessed 149 

model adequacy for each dataset by comparing the number of areas estimated per node 150 

between DEC and DEC* to the observed modern geographic range sizes. 151 

 152 

RESULTS 153 

Simulations 154 

Figure 2 shows the observed parameter estimates of local extinction and dispersal 155 

for DEC and DEC* compared to the true estimates under a DEC simulation. Overall, the 156 

point estimate for local extinction was closer to the true value under DEC* than with 157 

DEC (Fig. 2), although with higher variance. With simulations under the DEC model we 158 

found that the median for local extinction under a DEC* inference (e=0.0957) was closer 159 

to the true local extinction median estimate (e=0.0989), while the median for local 160 
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extinction under DEC inference was close to zero (e=1.287e-06). Similarly, with 161 

simulations under the DEC* model we found that the median local extinction estimated 162 

under DEC* inference (e=0.1028) is almost identical to the true local extinction 163 

parameter (e=0.1030), whereas, again, local extinction is grossly underestimated under 164 

the DEC inference (e=1.200e-6).  165 

Median estimates of dispersal under DEC simulations were closer to the median 166 

of the true dispersal parameter (d=0.0989) under DEC* than under DEC inference 167 

(d=0.0766) (Fig. 2). When simulating under DEC* (Supplemental Fig. 1), the median 168 

dispersal under DEC* inference (d=0.1053) was again closer to the median dispersal rate 169 

used in the simulation (d=0.1030) than dispersal inferred under DEC (d=0.0789). 170 

We calculated the root mean square error (RMSE) of the estimated parameter 171 

values for DEC and DEC*. The root mean square error gives the standard deviation 172 

associated with the differences between the true parameter and the inferred parameter 173 

estimates, and here a smaller value indicates less error in the parameter inference. Results 174 

indicated that on the logarithmic scale the error for e was far better for DEC* than DEC 175 

and nearly the same for d (RMSE of e was 10.9120 for DEC and 3.8363 for DEC*; 176 

RMSE of d was 0.3784 for DEC and 0.3886 for DEC*). However, on a linear scale, error 177 

is far better for both parameters for DEC than DEC*, due to some tremendously high 178 

values of e. (RMSE of e was 0.1135 for DEC and 2.2345 for DEC*; RMSE of d was 179 

0.0363 for DEC and 0.7816 for DEC*). 180 

Finally, we assessed the accuracy of DEC against DEC* in estimating the 181 

geographic area range at the root. Under DEC simulation, the root state was correctly 182 

estimated 49.05% of the time, whereas under DEC*, 58.30% of root states were 183 
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accurately estimated.   184 

 185 

Empirical Datasets 186 

In comparisons of DEC and DEC* on empirical datasets, likelihood was always 187 

better under DEC*. Thus, AIC always selected DEC* as the better model over DEC (as 188 

the two models have the same number of parameters). In 10 out of 15 empirical datasets, 189 

AIC selected DEC* over DEC+J (Supplementary Table 1). DEC+J has an extra 190 

parameter relative to DEC*, so if likelihoods were equal between DEC+J and DEC*, 191 

DEC* would be preferred by AIC. However, in all but one of the cases where AIC 192 

preferred DEC* over DEC+J, the likelihood was itself better with DEC* (which is 193 

possible, as the two models are not nested). The exception was Psychotria, where AIC 194 

gives DEC* 50.2% of the model weight despite slightly higher likelihood for DEC+J 195 

(model weight 20.4%).  196 

Unlike the simulated data, for over half the empirical datasets the extinction rate 197 

inferred by DEC was substantially higher than zero, ranging from 16% to 546% of the 198 

estimated value of the dispersal rate. For DEC*, the extinction rates were even higher 199 

relative to dispersal: only for one empirical dataset was the extinction rate 200 

indistinguishable from zero, for the rest the extinction rate was between 3.2 and 1389-201 

fold higher than dispersal rate (median 104-fold higher). In some cases, the estimated 202 

extinction rate was at the maximum allowed by the program; modifying it to increase the 203 

bound by tenfold improved the likelihood by a median of 0.061 log likelihood units and 204 

increased the extinction estimate up to the new maximum in most cases. The small 205 

magnitude of improvement, with the large magnitude of change in the estimate, suggests 206 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 16, 2015. ; https://doi.org/10.1101/026914doi: bioRxiv preprint 

https://doi.org/10.1101/026914


 10

that the likelihood surface is very flat but that the unconstrained maximum likelihood 207 

estimate would be even higher. More simply put, for these datasets, the best estimate of 208 

extinction is extremely high, which would mean that after a species expands its range it 209 

nearly instantly contracts it (into either the new region or back to the old region). In only 210 

three of nine of these datasets was DEC+J chosen over DEC*, despite the apparent 211 

evidence for a jump-like dispersal model. 212 

 213 

Model Adequacy 214 

In addition to model choice, a key question to examine with new models is model 215 

adequacy: how well does the model fit overall? Even the best-fitting model may not do a 216 

good job predicting the data, which would point to the need for new models to better 217 

match reality. This has been increasingly emphasized in phylogenetics (Goldman 1993; 218 

Bollback 2002; O'Meara 2012; Beaulieu et al. 2013b; Pennell et al. 2015). To see if the 219 

DEC* model adequately describes the data, we counted the number of occupied areas 220 

estimated for each node and compared this between DEC and DEC* for each empirical 221 

dataset. We work under the assumption that the present should look like the past: a clade 222 

of island endemics is more likely to have been island endemics for much of their history, 223 

rather than being composed of very widespread species that only at the present suddenly 224 

became endemic to single islands. Of course, there are processes that could make the 225 

present not resemble the past (i.e., a sudden change in climate causing suitable habitat to 226 

be divided into isolated patches), but this assumption should hold in most groups. For all 227 

but two empirical datasets, the DEC* model was the more adequate model, with 228 

estimated range sizes at ancestral nodes more closely matching the estimated the mean 229 
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range sizes observed at the tips of the phylogeny (Fig. 3). Inference under DEC usually 230 

yields ancestral distributions that are very widespread, which is not the case under DEC* 231 

(Fig. 3 and Fig. 4). 232 

 233 

DISCUSSION 234 

Given the results, we argue that DEC* should be considered for use in 235 

biogeographic models. Testing models should be an intrinsic part of the research process, 236 

so most users should try DEC, DEC*, DEC+J, and future models, but if one were limited 237 

to just one model, in most cases DEC* would be preferred, based on the empirical results 238 

presented here. DEC* does a more adequate job at estimating ancestral ranges than does 239 

the canonical DEC model. However, while the median extinction and dispersal 240 

parameters were better estimated under DEC* than with DEC, the RMSE of the estimates 241 

on a linear scale was better under DEC, and DEC* often returns very high estimates for 242 

extinction rate. For estimating ancestral areas, DEC* is probably the better model, but we 243 

urge extreme caution when treating its rate parameters as parameters of interest rather 244 

than nuisance parameters. Of course, ancestral states are known to be difficult to estimate 245 

well (Cunningham 1999; Oakley and Cunningham 2000), so biologists should expect a 246 

great deal of uncertainty with estimates. We also note that the estimates of uncertainty in 247 

this model are always underestimates, due to other uncertainty (topology, branch lengths, 248 

states) that is typically not accounted for. 249 

Another caveat to the use of DEC* is its treatment of the phylogeny: it assumes 250 

range evolves on a tree but that biogeography does not directly influence speciation or 251 

extinction. Speciation often seems influenced by geographic context (Mayr 1963), such 252 
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as through the divergence of two isolated populations. While DEC, DEC*, and DEC+J 253 

allow subdivision of ranges at speciation events, these models do not, for example, fit a 254 

higher speciation rate to species with larger ranges. There are models that jointly fit the 255 

diversification process and process of biogeographic evolution, such as GeoSSE 256 

(Goldberg et al. 2011) and ClaSSE (Goldberg and Igić 2012). However, even though 257 

these models are more realistic, they can require rather large data sets (Davis et al. 2013) 258 

and are feasible only for very few areas. The empirical datasets used in biogeographic 259 

models are typically small in comparison; the ones used in this study had an average of 260 

75 taxa and 5.53 areas from all datasets, and a range of 4 to 10 areas and 9 to 469 taxa. 261 

Recent work (Matzke 2014b) showed that DEC vs. DEC+J model choice appears robust 262 

to some commonly-postulated SSE processes (speciation and extinction depending on 263 

range size), and that ancestral range estimation is reasonably accurate if model choice is 264 

performed and if the dispersal rate is low, suggesting that for datasets that limit the power 265 

of SSE models, the DEC* model can still be used, with caution.  266 

It is important to emphasize that the DEC* model is still relatively simple. 267 

Though some complexity can be incorporated with different dispersal rates between areas 268 

or at different time points, all species are treated as having the same rates of dispersal and 269 

extinction at a given time. We know, however, that species in a clade may vary in traits 270 

affecting successful dispersal (ability to inbreed, resting stages, wind versus animal 271 

dispersal, tolerance of saltwater, and so forth) or extinction (body size, trophic level, 272 

thermal tolerance, and so forth) and this variation is not yet incorporated in any of these 273 

models. There are additional sources of heterogeneity that also may result in misleading 274 

results if not incorporated. 275 
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The very high extinction estimates by DEC*, especially in empirical datasets, was 276 

unexpected. One partial explanation may come from the empirical distribution of range 277 

sizes in the empirical studies presented here, where the vast majority of species were 278 

found in just one area. Under DEC* (or DEC) the only way for a species to change its 279 

area is through expansion to a new area (i.e., dispersal), followed by other events. Given 280 

that all the studies have species in different areas (there is little point to inferring 281 

biogeographic history for a clade that only ever occupies one area), there must be a 282 

nonzero dispersal rate. Lineages can reduce range size in two ways: at cladogenesis, or 283 

through range contraction along branches. However, when e is high with respect to d and 284 

the speciation rate, lineages will spend almost no time in widespread ranges. Therefore, 285 

widespread ranges are essentially never available at cladogenesis, and all speciation will 286 

be sympatric. Moreover, on terminal branches, which represent over half the branches on 287 

the tree, any necessary dispersals cannot be “undone” by contraction at cladogenesis, and 288 

so the only way to have some dispersals along terminal branches, but have observed 289 

species in just one area each, is to have a substantial extinction rate. DEC* with high e is 290 

a model with all range-change effectively occurring in anagenetic “jumps” along the 291 

branches: any expansion is followed almost immediately by a contraction. The fact that 292 

DEC* often outperforms DEC+J probably indicates that in these cases, the probability of 293 

sister taxa living in different areas correlates better with the branch length between the 294 

taxa than with the number of speciation events recorded in the observed tree. We expect a 295 

DEC*+J model may incorporate the best of both of these models, and that adding “*” to 296 

other models may also be beneficial.  297 
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The major use of parametric models in historical biogeography is for ancestral 298 

state estimation. For model adequacy, we expect that the present tends to resemble the 299 

past, so a model where past distributions are similar to present ones is probably a better 300 

fit to the data. For empirical datasets used in biogeography, tip taxa are most often in one 301 

area. But, DEC often estimates ancestors as being in many areas, because the DEC model 302 

allows a transition into the null range, and since null ranges are not observed, the 303 

inference is pushed towards a low extinction rate. In contrast, the DEC* model returns 304 

estimates at internal nodes that usually resemble the number of areas present in the tips 305 

(see Fig. 4). DEC* may return nearly equally likely single areas rather than a more 306 

confident estimation of the ancestral state being a union of areas. In many cases, 307 

especially given observed species that occupy individually few areas, this uncertainty 308 

about which single area an ancestor occupied represents reality. However, even though 309 

uncertainty exists in ancestral range estimates, statistical model choice is a fruitful way to 310 

assess models against the data.  311 

 312 
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FIGURE LEGENDS 432 

 433 

Figure 1. Diagram showing (a) the allowed cladogenetic events for DEC and DEC*, (b) 434 

the anagenesis transition rate matrix for DEC, and (c) the DEC* anagenesis transition rate 435 

matrix, assuming three geographic states (A, B, C). At a cladogenetic event, if a species 436 

is in one area, the descendant species inherits that area. If the species is in multiple areas, 437 

one species inherits one area, while the other species inherits all areas (peripatric 438 

speciation; within area widespread) or it is allowed to inherit all areas but the area 439 

occupied by the first species (vicariant allopatric speciation; between area widespread). 440 

Note that extinction is not allowed in DEC* from one state to zero states. D = dispersal, E 441 

= local extinction. 442 

 443 

Figure 2. Plots showing parameter inference under the 2,000 DEC simulations. DEC 444 

inference of dispersal (A) was not as effective as dispersal inferred under DEC* (B). 445 

Local extinction under DEC inference (C) was highly underestimated. Local extinction 446 

under DEC* (D) was better estimated in comparison to DEC inference, although with 447 

more variance. Purple lines represent 95% confidence intervals; blue line shows the 448 

median; orange line shows the 1:1 line. 449 

 450 

Figure 3. Model adequacy plots based on the number of areas occupied at nodes for the 451 

empirical datasets of the Galapagan Microlophus (A), Hawaiian Plantago (B), Pacific 452 

Cyrtandra (C) reconstructed with DEC or DEC* versus the tips which represent the 453 

current number of areas for each group. In each empirical case (A, B, C), DEC* was able 454 
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to ancestrally infer the same number of areas as the tips in the current range. DEC 455 

inferred ranges that were more widespread. The last plot depicts the mean number of 456 

current areas at tips versus the mean number of areas estimated at nodes through DEC or 457 

DEC* for each group (D). In each case except for two, DEC* was able to estimated the 458 

ancestors to occupy the same number of areas as the tips. 459 

 460 

Figure 4. Most probable number of biogeographic areas estimated in the Plantago clade 461 

under the DEC (A) versus the DEC* model (B). The number of areas at tips is also 462 

shown. The estimated ancestral range probabilities under DEC versus DEC* for node 8 463 

(C) and node 10 (D) are shown. Ancestral state estimates under the DEC model are more 464 

widespread than under DEC*, therefore providing a different biogeographic history (C 465 

and D). Nodes closer to the root provide more variance in the probable ranges estimated 466 

(D). 467 
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