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Abstract 
 
Sirtuin enzymes are NAD+-dependent protein deacylases that play a central role in the regulation of 
healthspan and lifespan in organisms ranging from yeast to mammals. There is intense interest in the 
activation of the seven mammalian sirtuins (SIRT1-7) in order to extend mammalian healthspan and 
lifespan. However, there is currently no understanding of how to design sirtuin-activating compounds 
beyond allosteric activators of SIRT1-catalyzed reactions that are limited to particular substrates. 
Moreover, across all families of enzymes, only a dozen or so distinct classes of non-natural small 
molecule activators have been characterized, with only four known modes of activation among them. 
None of these modes of activation are based on the unique catalytic reaction mechanisms of the target 
enzymes. Here, we report a general mode of sirtuin activation that is distinct from the known modes of 
enzyme activation. Based on the conserved mechanism of sirtuin-catalyzed deacylation reactions, we 
establish biophysical properties of small molecule modulators that can in principle result in enzyme 
activation for diverse sirtuins and substrates. Building upon this framework, we propose strategies for the 
identification, characterization and evolution of hits for mechanism-based enzyme activating compounds. 
We characterize several small molecules reported in the literature to activate sirtuins besides SIRT1, using 
a variety of biochemical and biophysical techniques including label-free and labeled kinetic and 
thermodynamic assays with multiple substrates and protocols for the identification of false positives. We 
provide evidence indicating that several of these small molecules reported in the published literature are 
false positives, and identify others as hit compounds for the design of compounds that can activate 
sirtuins through the proposed mechanism-based mode of action.  
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Introduction 
  
Sirtuin (silent information regulator) enzymes, which catalyze NAD+-dependent protein post-translational 
modifications, have emerged as critical regulators of many cellular pathways. In particular, these enzymes 
protect against age-related diseases and serve as key mediators of longevity in evolutionarily distant 
organismic models [1]. Sirtuins are NAD+-dependent lysine deacylases, requiring the cofactor NAD+ to 
cleave acyl groups from lysine side chains of their substrate proteins, and producing nicotinamide (NAM) 
as a by-product. A thorough understanding of sirtuin chemistry is not only of fundamental importance, but 
also of considerable medicinal importance, since there is enormous current interest in the development of 
new mechanism-based sirtuin modulators [2, 3]. The mechanism of sirtuin-catalyzed, NAD+-dependent 
protein deacylation is depicted in Fig. 1 [4-6].  

 
Recently, in order to extend mammalian healthspan and lifespan, intense interest has developed in the 
activation of the seven mammalian sirtuin enzymes (SIRT1-7). Prior work on sirtuin activation has relied 
exclusively on experimental screening, with an emphasis on allosteric activation of the SIRT1 enzyme. 
Indeed, small molecule allosteric activators of SIRT1 have been demonstrated to induce lifespan 
extension in model organisms such as mice [7, 8]. Allosteric activation is one of four known modes by 
which small molecules can activate enzymes [9].  Allosteric activators most commonly function by 
decreasing the dissociation constant for the substrate (the acylated protein dissociation constant , Prd AcK −  
in the case of sirtuins).  
 
Nearly all known sirtuin activators allosterically target SIRT1 and bind outside of the active site to an 
allosteric domain in SIRT1 that is not shared by SIRT2-7 [10].  Moreover, allosteric activators only work 
with a limited set of SIRT1 substrates [11,12].  It is now known that other sirtuins -- including SIRT2, 
SIRT3 and SIRT6 -- and multiple protein substrates play significant roles in regulating mammalian 
longevity [13-15]. General strategies for the activation of any mammalian sirtuin (including activation of 
SIRT1 for other substrates) are hence of central importance, but not understood.   
 
Aside from allosteric activation, enhancement of enzymatic activity via “derepression of inhibition” has 
been explored theoretically and experimentally. Theoretical models proposed  have been limited to 
inhibitors that are exogenous to the reaction, and experimental studies have considered alleviation of 
product inhibition through competition with product binding [4]. These approaches can only enhance 
enzyme activity in the presence of inhibitor or product accumulation and hence are not included among 
the four known modes of enzyme activation.  
 
Foundations for the rational design of mechanism-based sirtuin activators have been lacking, partly due to 
the absence of a clear understanding of the kinetics of sirtuin-catalyzed deacylation.  Several types of 
mechanism-based sirtuin inhibitors have been reported recently in the literature, including Ex-527 and 
Sir-Real2 [16, 17]. However, mechanism-based activation has proven far more elusive, due to the 
difficulty in screening for the balance of properties needed for a modulator to have the net effect of 
accelerating catalytic turnover. While there are many ways to inhibit an enzyme’s mechanism, there are 
far fewer ways to activate it. These efforts have been hindered by the lack of a complete steady state 
kinetic model of sirtuin catalysis that accounts for the effects of both NAD+ and NAM on activity. 
 
Small molecules that can activate sirtuins through modes of action other than the reduction of substrate Kd 
are of particular interest, because sirtuin activity often declines during aging for reasons other than 
substrate depletion. In the so-called “NAD+ world” picture of global metabolic regulation, the 
intracellular concentrations of the sirtuin cofactor NAD+, which can decrease with age, play a central role 
in regulating mammalian metabolism and health through sirtuin-dependent pathways [18]. Due to the 
comparatively high Michaelis constants for NAD+ (Km,NAD+’s) of mammalian sirtuins, their activities are 
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sensitive to intracellular NAD+ levels [18]. The systemic decrease in NAD+ levels that accompanies 
organismic aging downregulates sirtuin activity and has been identified as a central factor leading to 
various types of age-related health decline [18], whereas increases in NAD+ levels can upregulate sirtuin 
activity and as a result mitigate or even reverse several aspects of this decline  [18]. In addition to  NAD+ 
cofactor concentration, the concentration of NAM is also believed to regulate sirtuin activity in vivo. 
 

 
Figure 1. Chemical mechanism of sirtuin-catalyzed deacylation and modes of sirtuin activation. 
Following sequential binding of acylated peptide substrate and NAD+ cofactor, the reaction proceeds in 
two consecutive stages: i) cleavage of the nicotinamide moiety of NAD+ (ADP-ribosyl transfer) through the 
nucleophilic attack of the acetyl-Lys side chain of the protein substrate to form a positively charged O-
alkylimidate intermediate, and ii) subsequent formation of deacylated peptide. For simplicity, all steps of 
stage ii as well as  AADPR + Pr dissociation are depicted to occur together with rate limiting constant k4.  
Red: Allosteric activation increases the affinity of a limited set of peptide substrates for the SIRT1 enzyme 
only and requires an allosteric binding site. Green: Mechanism-based activation is a new mode of 
enzyme activation that relies on the conserved sirtuin reaction mechanism that are not limited to 
enhancement of affinity for selected peptide substrates. The schematic highlights mechanism-based 
activation through NAD+ Km reduction rather than the Kd peptide reduction that known allosteric sirtuin 
activators elicit. 
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As such, NAD+ supplementation has emerged as a promising alternative to allosteric activation of sirtuins 
[18]. Unlike allosteric activators like resveratrol, which are SIRT1-specific and have not been 
successfully applied to other sirtuins [10], NAD+ supplementation can activate most mammalian sirtuins 
in a substrate-independent fashion. Moreover, allosteric activators cannot fully compensate for the 
reduction in sirtuin activity that occurs through NAD+ decline during aging. On the other hand, the effects 
of NAD+ supplementation are not specific to sirtuins and prohibitively high concentrations of NAD+, 
along with associated undesirable side effects, may be required to elicit the increases in sirtuin activity 
required to combat age-related diseases.  
 
A preferred general strategy for activation of sirtuins (Fig. 1) would be to increase their sensitivity to 
NAD+ through a reduction of ,m NADK + . ,m NADK + reduction would have a similar activating effect to NAD+ 
supplementation, but would be selective for sirtuins and could potentially even provide isoform specific 
sirtuin activation. Importantly, due to the sirtuin nicotinamide cleavage reaction that involves the NAD+ 
cofactor, modulation of ,m NADK + may in principle be achievable by means other than altering the binding 

affinity of NAD+.  Unlike allosteric activation that reduces , Prd AcK − , this approach could be applicable to 
multiplesirtuins and substrates.  
 
Several compounds have been reported in the literature as being activators of sirtuins other than SIRT1 
[19-22]. Concurrently, sirtuins whose preferred substrates are long chain acylated peptides were reported 
to have their activities on shorter chain acyl groups enhanced in the presence of certain fatty acids, further 
corroborating the feasibility of substrate-specific sirtuin activation [23]. However, some of the 
aforementioned compounds have not been characterized using initial rate assays [20,21] and others have 
been studied using only labeled activity assays that may be susceptible to false positives [21]. Moreover, 
studies that have employed label-free initial rate assays [22] have nonetheless not shed light on the 
underlying mechanism by which activation may occur. The theory presented in this paper, which is 
applied to one such compound as an example, may provide a unifying framework under which such 
compounds may be characterized and hits may be evolved into leads. Moreover, the experimental 
methods presented may help in uncovering false positive hits which may lead to inefficient usage of 
discovery research resources.  
 
In this paper, we present a general framework for activation of sirtuin enzymes that is distinct from any of 
the known modes of enzyme activation, based on the fundamental mechanism of the sirtuin deacylation 
reaction.  We first introduce a steady-state model of sirtuin-catalyzed deacylation reactions in the presence 
of NAD+ cofactor and endogenous inhibitor NAM, and then establish quantitatively how kcat/Km,NAD+ can 
be modified by small molecules, identifying the biophysical properties that small molecules must have to 
function as such mechanism-based activators .The principles introduced can also be generalized to the 
reduction of peptide substrate Km. through non-allosteric mechanisms. We propose strategies suitable for 
mechanism-based design of sirtuin activating compounds and characterize several small molecules that 
have been reported to be activators of sirtuins other than SIRT1 in order to determine whether these 
compounds possess the proposed characteristics  of mechanism-based sirtuin activating compounds (MB-
STACs)  presented.  
 
 
Results 
 
Steady-state sirtuin kinetic modeling 
 
To a greater extent than inhibitor design, rational activator design requires the use of a mechanistic model 
in the workflow. In this section we develop a steady state model for sirtuin-catalyzed deacylation that is 
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suitable for a) investigation of the mode of action of mechanism-based sirtuin modulators, including 
activators; b) design of mechanism-based sirtuin activating compounds.  We first summarize the state of 
knowledge regarding the sirtuin-catalyzed deacylation mechanism.  
 
The sirtuin catalytic cycle (Fig. 1) is believed to proceed in two consecutive stages [4]. The initial stage 
(ADP-ribosylation) involves the cleavage of the nicotinamide moiety of NAD+ and the nucleophilic attack 
of the acyl-Lys side chain of the protein substrate to form a positively charged O-alkylimidate 
intermediate [4, 24]. Nicotinamide-induced reversal of the intermediate (the so-called base exchange 
reaction) causes reformation of NAD+ and acyl-Lys protein. The energetics of this reversible reaction 
affects both the potency of NAM inhibition of sirtuins and the Michaelis constant for NAD+ (Km,NAD+).  
The second stage of sirtuin catalysis, which includes the rate-determining step, involves four successive 
steps that culminate in deacylation of the Lys side chain of the protein substrate and the formation of O-
acetyl ADP ribose coproduct [4, 6, 25]. 

 
A tractable steady state model suitable for the purpose of mechanism-based sirtuin activator design must 
account for the following important features: 
 

-  The calculated free energy of activation for nicotinamide cleavage (ADP -ribosylation of the acyl-
Lys substrate) in the bacterial sirtuin enzyme Sir2Tm as computed through mixed 
quantum/molecular mechanics (QM/MM) methods is  15.7 kcal mol-1  [5, 26].  An experimental 
value of 16.4 kcal mol-1 for the activation barrier in the yeast sirtuin homolog Hst2 was estimated 
from the reaction rate 6.7 s-1 of nicotinamide formation. The nicotinamide cleavage reaction is 
endothermic, with a computed G∆  of 4.98 kcal mol-1  in Sir2Tm [26]. 
 
 

       
 
Figure 2. General model for sirtuin-catalyzed deacylation in the presence of NAD+ and NAM.  This 
model, based on the reaction mechanism depicted in Fig. 1, provides a minimal kinetic model that 
captures the essential features of sirtuin deacylation kinetics suitable for predicting the effects of 
mechanism-based modulators on sirtuin activity.   In the presence of saturating Ac-Pr, E is rapidly 
converted into E.Ac-Pr  and NAM binding to E can be neglected, resulting in a simplified reaction network 
with 5 species. Ac-Pr, acetylated peptide; ADPR, adenosine diphosphate ribose; AADPR, O-acetyl 
adenosine diphosphate ribose. 
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- The calculated free energy of activation for the rate limiting chemistry step (collapse of the 
bicyclic intermediate) from QM/MM simulations is 19.2 kcal mol-1 for Sir2Tm [27], in good 
agreement with the experimental value of 18.6 kcal/mol-1 estimated from the kcat value of 0.170 ± 
0.006 s-1 [28] (0.2 +/- 0.03 s-1 for Hst2 [24]).   We note that the relative magnitudes of the rate 
constants for the two slowest chemistry steps may vary for other sirtuins, like mammalian 
sirtuins. For some sirtuins, product release may be rate limitng. 

-  
 

- The remaining steps in the catalytic cycle are significantly faster than the above steps. The other 
chemistry steps in stage 2 of the reaction are effectively irreversible [27], as is product release in 
the presence of saturating peptide concentrations.  

 
We hence include in our kinetic model representations of all steps in stage 1 of the reaction, including the 
nicotinamide cleavage/base exchange and nicotinamide binding steps.  However, for simplicity, we do not 
include in the present model a representation of each of the individual chemistry steps in stage 2 of the 
reaction or final product release, instead subsuming these steps under the smallest rate constant, which we 
call kcat. Since all these steps are effectively irreversible, the full steady state model including these steps 
can be immediately derived from the basic model through simple modifications, to be described in a 
subsequent revision, that are not essential to the analysis of mechanism-based activation. The above 
observations motivate the kinetic model represented in Fig. 2 [29]. This Figure shows a general reaction 
scheme for sirtuin deacylation including base exchange inhibition. 
 
Because of the physiological benefits of improving catalytic efficiency under NAD depletion rather than 
peptide depletion conditions, we assume saturating peptide conditions in our kinetic modeling in this 
paper. However, precisely analogous equations could be derived for saturating NAD, in the event that 
activation under peptide depletion conditions is desired.  
 
The reaction mechanism of sirtuins precludes the use of rapid equilibrium methods for the derivation of 
even an approximate initial rate model; steady-state modeling is essential. The rate equations for the 
reaction network in Fig. 2 enable the derivation of steady-state conditions for the reaction. Solving the 
linear system of algebraic steady-state equations and mass balance constraints for the concentrations  
 

  
 
in terms of the rate constants and [NAD+],[NAM], which are assumed to be in significant excess and 
hence approximately equal to their initial concentrations [NAD+]0,[NAM]0 respectively, we obtain 
expressions of the form (1): 
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where the term c54 that is second order in [NAM] will be omitted from the analysis below. Expressions for 
the cij’sare provided in the Appendix. The initial rate of deacylation can be then expressed 
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where Kex ≡	k-2/k2	and	the approximations refer to the case where  
4 , 4jk k j ≠= . The quality of this approximation can be assessed for the chemistry steps based on 

QM/MM simulation data, which was cited above for yeast and bacterial sirtuins, or from experimental 
methods for the estimation of all rate constants in the model (see below).  Expression (2) can be used to 
calculate the initial rate of sirtuin-catalyzed deacylation for specified intracellular concentrations of 
NAD+ and NAM, assuming the rate constants are known.   
 
Equation (2) is typically represented graphically in terms of either double reciprocal plots at constant 
[NAM] or Dixon plots at constant [NAD+]. In the former case, the slope of the plot (1/v vs 1/[NAD+]) at 
[NAM]=0 is max,

/
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K v+ , for which the expression is: 
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whereas for the Dixon plot,  the expression for the slope at 1/[NAD+]=0 is approximately [29]: 
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We note that equation (4) for catalytic efficiency applies irrespective of the small k4 approximation. 
 
The steady state parameter α  in equation (3e), which is a measure of the extent of competitive inhibition 
by the endogeneous inhibitor NAM against the cofactor NAD+, can be expressed in terms of the ratio of 
Kd,NAD+ and Km,NAD+ [29]:
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K
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K K
K K
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which, together with expression (3b) for m,NAD+K , demonstrates how the kinetics of inhibition of 
deacylation by NAM can reveal differences in NAD+ binding affinity and nicotinamide cleavage rates 
among sirtuins.  The origins of different NAD+ binding affinities among sirtuins were studied structurally 
and computationally in [29]. Given that Kex is generally >> 1 for sirtuins, it is apparent from eqn (6) that 
the difference in magnitudes of Kd,NAD+ and Km,NAD+ for sirtuins is captured byα for sirtuins satisfying the 
above approximations.  Km,NAD+, not Kd,NAD+ alone , determines the sensitivity of sirtuin activity to NAD+, 
and can vary across this family of enzymes.  
 
In addition to the approximation 4 , 4jk k j ≠= , several experimental observations can further simplify 

the form of the expressions (4) for the sirtuin steady state constants. First, we assume 3 , 2jk k j− >> ≠ −  
based on viscosity measurements that suggest NAM dissociates rapidly following cleavage [30]. Under 
this approximation, the expression for Km,NAD+ becomes: 
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Such approximations will be studied in greater detail in a subsequent work. 
 
As can be seen from eqn (3b), the kinetics of the nicotinamide cleavage reaction and the rate limiting step 
of deacylation both play essential roles in determining the value of Km,NAD+ . Note that in rapid 
equilibrium models of enzyme kinetics, which are not applicable to sirtuins, mK Kd≈ . The difference 
between Kd,NAD+ and Km,NAD+  has important implications for mechanism-based activation of sirtuins by 
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small molecules [29]. In particular, as we will show in this work, decrease of Km,NAD+ independently of 
Kd,NAD+ can increase the activity of sirtuins at [NAM]=0. The kinetic model above establishes foundations 
for how this can be done.  
 
 
Mechanism-based sirtuin activation 
 
A prerequisite for enzyme activation is that the modulator must co-bind with substrates – NAD+ and 
acylated peptide in the case of sirtuins. Within the context of enzyme inhibition, two modes of action 
display this property: noncompetitive and uncompetitive inhibition. Noncompetitive inhibitors bind with 
similar affinities to the apoenzyme and enzyme-substrate, enzyme-intermediate or enzyme-product 
complexes whereas uncompetitive inhibitors bind with significantly lower affinity to the apoenzyme. 
Traditional noncompetitive inhibitors reduce vmax and increase Km to a much smaller extent. On the other 
hand, uncompetitive inhibitors decrease substrate Km  as a result of their preferential binding, but decrease 
vmax by at most the same amount, thus leading to no net increase (generally, a decrease) in catalytic 
efficiency. Both are specific examples of the more general notion of a mixed noncompetitive modulator 
that co-binds with substrates.   In the case of sirtuins, examples of noncompetitive inhibitors include 
SirReal2 [18], whereas examples of uncompetitive inhibitors include Ex-527 [17]. Though some known 
sirtuin inhibitors may satisfy the requirement of cobinding with substrates, they  do not possess other 
critical attributes necessary for mechanism-based enzyme activation.  While such compounds may have 
promising properties as potential hits for the development of mechanism-based activators, prior studies 
have only characterized their kinetic effects in terms of traditional rapid equilibrium formulations of 
enzyme inhibition, rather than a steady-state formulation for mechanism-based enzyme modulation. 
Moreover, as noted above, several compounds have recently been reported to activate sirtuins other than 
SIRT1, but none of these have their mechanisms characterized within an appropriate theoretical 
framework.   
 
 
Previous attempts to develop a general approach to sirtuin activation [30, 31] only considered competitive 
inhibitors of base exchange, which cannot activate in the absence of NAM. This is not actually a form of 
enzyme activation, but rather derepression of inhibition. Such derepression modalities based on 
competitive inhibition of product binding cannot be hits for activator design, since these compounds or 
their relatives cannot cobind with substrates. By contrast, here we present paradigms and design criteria 
for activation of sirtuins in either the absence or presence of NAM. Based on expression (3b) for Km,NAD+, 
it is in principle possible to activate sirtuins (not just SIRT1) for any substrate by alteration of rate 
constants in the reaction mechanism other than k1,k-1 and kcat, so as to reduce Km,NAD+, not only Kd,Ac-Pr as 
with allosteric activators, which increase the peptide binding affinity of SIRT1 in a substrate-dependent 
fashion. We now explore how this may be achieved by augmenting the kinetic model to include putative 
mechanism-based activators (A) that can bind simultaneously with NAD+ and NAM. Fig. 3 depicts the 
reaction diagram for mechanism-based activation of sirtuins. Note that only the top and 
 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/027243doi: bioRxiv preprint 

https://doi.org/10.1101/027243


10 
 

 
 
 
Figure 3.  General model for mechanism-based sirtuin enzyme activation. (A) The front face of the 
cube (blue) depicts the salient steps of the sirtuin reaction network in the absence of bound modulator. 
The back face of the cube (red) depicts the reaction network in the presence of bound modulator 
(denoted by “A”).  Each rate constant depicted on the front face has an associated modulated value on 
the back face, designated with a prime, that is a consequence of modulator binding. (B) The purple face 
is the apparent reaction network in the presence of a un-saturating concentration of modulator.   
 

 

front faces of this cube are relevant to the mechanism of action of the previously proposed competitive 
inhibitors of base exchange [30, 31]. 

At any [A] there exist apparent values of each of the rate constants in the sirtuin reaction mechanism. 
These are denoted by “app” in the Figure. There are also corresponding “app” values of the steady state, 
Michaelis, and dissociation constants in equation (3). Moreover, at saturating [A] of a known activator, 
the modulated equilibrium and dissociation constants (which do not depend on determination of steady 
state species concentrations) can be estimated with only deacylation experiments according to the theory 
presented above. The exchange equilibrium constant 'exK  and NAD+,NAM  dissociation constants 

, 'd NADK + , 'd NAMK in the presence of A are related to their original values as follows: 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/027243doi: bioRxiv preprint 

https://doi.org/10.1101/027243


11 
 

                      
2, 3, 3,

d,NAD+ , , ,
1, 2, 4,

K ' ; ' ; ' (8)d A d A d A
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where the  ,d AK ’s are the dissociation constants for A depicted in Fig. 3.  
 
In order to predict the effect on , ,m NAD appK +  of a modulator with specified relative binding affinities for 

the complexes in the sirtuin reaction mechanism, it is important to develop a model that is capable of 
quantifying, under suitable approximations, the effect of such a modulator on the apparent steady state 
parameters of the enzyme. Since the full steady state expression relating the original to the apparent rate 
constants has many terms containing products of additional side and back face rate constants, we use a 
rapid equilibrium segments approach to arrive at simple definitions of the apparent Michaelis constant 
and other steady state constants for the reaction in terms of the original expressions for these constants 
and the dissociation constants for binding of A to the various complexes in the sirtuin reaction 
mechanism. This provides a minimal model with the least number of additional parameters required to 
model sirtuin activation mechanisms. In our treatment, we will assume that rapid equilibrium applies on 
both the side faces and the back face. Under this approximation, at low [A] the expressions for the 
induced changes in each of the rate constant products appearing in the coefficients cij and ci’j’, i’=i of 
equation (1) (see Appendix for expressions for these products) are the same and linear in [A]. For 
example, in the case of . PrE Ac − , the steady state species concentrations become: 
 

( )

0 11 12

0 11 12
1,

[ . Pr] / [ . Pr] [NAM]

[ ][ . Pr .A] / [ . Pr] [NAM]
d A

E Ac E Ac c c

AE Ac E Ac c c
K

− − ≈ +

− − ≈ +
     (9) 

 
The rapid equilibrium segments expressions for all species concentrations in equation (1) in the presence 
of A are provided in the Appendix.  

 
Expressions for apparent values of all steady state parameters introduced in equation (3) (i.e., modulated 
versions of constants max, , , 1 2, 3, ,m NADv K K K K+ ) in the presence of a given [A] can now be derived. In the 
following, several types of approximations will be invoked:  

 
 i: rapid equilibrium segments approximation 
 ii: 4 , ,(1 ) (1 ), 4, 1,..., 5dl A j dl Ak K k K j l′+ + ≠ ==  

iii:  3 , ,(1 ) (1 ), 3, 1,...,5dl A j dl Ak K k K j l′− + + ≠ − =?  

(rapid NAM   dissociation) 
  
In particular, we emphasize that assumption (ii) may not hold for several mammalian sirtuins, but we 
apply this approximation to simplify the equations and provide physical insight. The general equations 
without this approximation can readily be derived using the principles introduced. 
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• Under approximation (ii), 3K  isolates nicotinamide cleavage / base exchange-specific effects. 
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Regarding the quality of the approximations in this case, note from (15) and (A1) that unlike any 

of the other steady-state parameters, the modulation 
2, 2

1 1

appK K
−  induced by [A] is proportional 

to catk  under the rapid equilibrium segments approximation (first approximation above). Hence, 

if one is interested in estimating the sign of this modulation, the small catk  approximation 
(second approximation above) should not be applied.  Also, under the rapid equilibrium segments 
approximation, 2,appK  is the only constant that relies on a ratio of two 'ijc s with ' , 'i i j j= ≠ , 
and   hence the ratio of the same factor in [A]. 
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Conditions for mechanism-based activation 
 
We now consider thermodynamic conditions on the binding of a modulator A for mechanism-based sirtuin 
activation under the rapid equilibrium segments approximation, along with the expected changes in the 
steady state, equilibrium and dissociation constants in the sirtuin reaction mechanism.  
 
First, according to equation (10), max 0/ [ ]v E  is roughly unchanged within this family of mechanisms as 
long as the ,d AK ’s for [A] binding to the various represented complexes in the reaction mechanism satisfy 
condition (iii). This is reasonable as long as the modulator does not lead to a significant increase in 
coproduct binding affinity and reduction in coproduct dissociation rate (for example, the stabilization of a 
closed loop conformation). As in the case of Ex-527 [17], the latter can render product dissociation rate 
limiting and reduce kcat,. If kcat is reduced by the modulator, the net extent of activation will be reduced. 
However,  even if this is the case, reduction in kcat,app will not affect catalytic efficiency kcat,app/Km,app. 
Hence it is justified to omit binding of A to the coproduct complex from the mechanism-based activation 
model.  Moreover, binding of A will not substantially reduce kcat,app if the rate limiting chemistry step is 
much slower than product release.  
 
The goal of mechanism-based activation is to increase kcat,app/Km,app. . According to equation (11),

, ,m NAD appK + will be smaller than ,m NADK +  if   

1, 4, 1, 2, 2, 3, 3, 4,/ ( / )( / )( / ) 1d A d A d A d A d A d A d A d AK K K K K K K K≥ > . To identify mechanisms by which this 
can occur in terms of the steps in the sirtuin-catalyzed reaction, we consider in turn each of these three 
respective ratios of ,d AK ’s (or equivalently, the G∆∆ ’s of the NAD+ binding, exchange, and NAM 
binding reactions as implied by equation (8)) induced by A binding.  
 
 
According to equation (13), d1,A d 2,A/ 1K K < would imply that A binding increases the binding affinity of 
NAD+ to the E.Ac-Pr complex. This is  the primary means by which allosteric activators enhance activity, 
but  not the only possibility for mechanism-based activation. . In principle, it is possible for a mechanism-
based activator to reduce Km,NAD+even if d1,A d 2,AK K≥ . In this case, in order to have 

, , ,m NAD app m NADK K+ +< , we require 2, 3, 3, 4, 1, 2,( / )( / ) /d A d A d A d A d A d AK K K K K K>   or equivalently,   

according to (8), , , , ,( '/ ')( / ) '/d NAM ex ex d NAM d NAD d NADK K K K K K+ +>
.   

. The decrease in ,m NADK +  can 

then be due to modulation of the exchange rate constants that induces a decrease in exK , an increase in 

,d NAMK , or both.  If ,d NAMK  changes in the presence of modulator, this corresponds to mixed 
noncompetitive inhibition [29] of base exchange (Fig. 3). 
 
As we have previously shown [29], the nicotinamide moiety of NAD+ engages in nearly identical 
interactions with the enzyme before and after bond cleavage. The salient difference is a conformational 
change in a conserved phenylalanine side chain (e.g., Phe33 in Sir2Tm, Phe157 in SIRT3) that 
destabilizes NAM binding after bond cleavage [32, 33]. Since NAM binding is already destabilized by the 
native protein conformation in this way, and since under rapid NAM dissociation (approximation iii 
above, which is believed to hold for sirtuins [23])  k2 and k-2 do not appear in the expression for Km, ,  

2,

3,

d A

d A

K
K

 is likely to make the dominant contribution to 2,

4,

d A

d A

K
K

 for activators Note that there is ample scope 
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for modulation of exG∆ by the modulator due to the coupling of the endothermic nicotinamide cleavage / 
ADP ribosylation reaction (exothermic base exchange reaction)  to a conformational change in the sirtuin 
cofactor binding loop. For example,  exG∆ for Sir2Tm has been calculated to be -4.98 kcal/mol [26]. For 
comparison, ,bind NAMG∆ for Sir2Af2 was estimated to be -4.1 kcal/mol [30] and ,bind NAMG∆ for SIRT3 was 

estimated to be <= -3.2 kcal/mol [29]. Although the value of 2 4/d dK K required for activation is likely to 
be achieved primarily by altering the free energy change of the nicotinamide cleavage reaction, our model 
accommodates the possibility of arbitrary combinations of exG∆∆ and ,bind NAMG∆∆ .     
 
In our original model for sirtuin kinetics in Fig. 3, we assumed that both ,d NAMK ’s– namely, those for 
dissociation of NAM from E.Ac-Pr.NAM and E.ADPR-Pr-Im.NAM – are roughly equal. We maintain 
this condition in the presence of A binding, which is reasonable given that A is assumed to not interact 
directly with the peptide or ADPR moiety. Hence, we have: 
 

1, 3,
5,

4,

[ . Pr Im][NAM] [ . Pr][NAM] (17)
[ . Pr Im. ] [ . Pr. ]

d A d A
d A

d A

K KE ADPR E Ac K
E ADPR NAM E Ac NAM K

− − −
≈ ⇔ ≈

− − −
 

 
Returning to equation (11) for , ,m NAD appK + and substituting 2, 1,(1 [ ] / ) / (1 [ ] / ) 1d A d AA K A K+ + ≥ , the 

rapid equilibrium assumptions applied to the present system imply that in order to activate the enzyme at 
[NAM]=0,  if A does not improve cofactor binding affinity it must increase k1 (k1,app>k1), k2 (k2,app>k2) or 
both. The rapid equilibrium segments model is not able to distinguish between these scenarios.   If A 
increases , ,d NAD appK + , it is unlikely that an increase k1 will achieve activation. An increase in k2 implies 

acceleration of the rate of nicotinamide cleavage. In the rapid equilibrium segments framework, this 
occurs through preferential stabilization of the E.ADPR-Pr-Im complex. Note that across all sirtuins 
studied, nicotinamide cleavage induces structural changes (for example, unwinding of a helical segment 
in the flexible cofactor binding loop [34, 35] ) and such changes might enable preferential stabilization of 
the  E.ADPR-Pr-Im complex, in a manner similar to the stabilization of specific loop conformations by 
mechanism-based inhibitors [17]. Indeed, stabilization of alternative, non-native conformations of this 
loop have been observed crystallographically by reported activators of sirtuins other than SIRT3, 
including both long-chain fatty acids [23] and recently reported activators of SIRT5 and SIRT6 [22]. We 
discuss below the biophysical underpinnings whereby an increase in a forward rate constant could be 
achieved through preferential stabilization of the intermediate complex.  
 
Given that an open loop conformation favors NAD+ binding, if a closed loop conformation is stabilized 
by the modulator, we expect the following thermodynamic conditions on the binding of A to the various 
complexes in the sirtuin reaction mechanism: 
 

1, 2, , ,

2, 3, ex ex

K K ' K (18)
K K ' K ,

d A d A d NAD d NAD

d A d A

K
K

+ +≤ ⇔ ≥

>> ⇔ =

 
 
where the >> sign signifies that 2, 3, 1, 2,K / /d A d A d A d AK K K>

 . We also require the necessary but not 

sufficient condition that 2, 4, 1, 2,K / /d A d A d A d AK K K> . As noted above, increasing 3, 4,/d A d AK K (which 
would destabilize NAM binding) is not considered as a mode of activation since NAM is believed to 
already dissociate quickly from the native active sites of sirtuins. Within conventional nomenclature, 
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decrease in Kex corresponds to hyperbolic (or partial) noncompetitive inhibition [29] of base 
exchange/activation of nicotinamide cleavage (as opposed to complete quenching of the base exchange 
reaction; see Fig. 3).  
 
We now consider the effects of binding of such a modulator A that favors a closed cofactor loop 
conformation on the remaining steady state constants. 
 
- appα : According to equation (12), the aforementioned condition that  2, 4, 1, 2,/ /d A d A d A d AK K K K≥  
implies an increase in α  . 
 
- 2,appK : With conditions (18), equation (14) predicts a limited change in 2K .  
 
- 3,appK : According to equation (14), in the presence of such a mechanism-based activator, 3K  is 

expected to increase by a factor more than that for 2K  under the rapid equilibrium segments 
approximation.  This can occur due to an increase in ,d NAMK , a decrease in Kex, or both.  
 
- 1,appK : Reduction in 1K  through a reduction in 3, 4,/d A d AK K  (eqn 16) can increase Km,NAD+. A 

modulator has more favorable properties if 1K  does not decrease significantly, but as discussed above, an 

increase in 1K   will generally not be sufficiently for activation. Moreover, if 3K  increases in the presence 

of modulator, a decrease in 1K  may not be consequential.  
 
 
Fig. 4 depicts the model-predicted changes to the various steady state, Michaelis and dissociation 
constants in the sirtuin reaction mechanism in the presence of such a modulator. 
 

 

The conditions for activation described above do not need to hold for a hit compound for mechanism-
based activation. A hit compound may be defined as one that satisfies a subset of the conditions 
enumerated above, and may also display comparatively little inhibition in the pre-steady state burst phase. 
Such compounds may be capable of undergoing further improvement for substrate-specific activation of 
sirtuins like SIRT3, under physiologically relevant NAD+ depletion conditions. For example, it is possible 
that catalytic efficiency does not increase in the absence of NAM, but does so in its presence (for 
example, due to increase in the K3 parameter above). Note that due to nonzero physiological 
concentration of NAM in the cell, reduction of NAM inhibition can also contribute to activation under 
physiologically relevant conditions.  Alternatively, the relative rates of deacylation in the presence and 
absence of modulator could converge under certain combinations of [NAD+] and [NAM]. 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/027243doi: bioRxiv preprint 

https://doi.org/10.1101/027243


17 
 

 
 
Figure 4.  Mechanism-based activation of sirtuin enzymes: predicted steady-state properties and 
dose-response behavior.   (a) Double reciprocal plots for deacylation initial rate measurements in the 
presence of activator. The blue box on the y-axis highlights the data that is used to construct the Dixon 
plot at saturating [NAD+] depicted in (b). (b) Dixon plots for deacylation initial rate measurements in the 
presence of activator. The arrows point to predicted plateaus in these curves. (c) Comparison of double 
reciprocal plots at [NAM] = 0 uM in the presence and absence of activator. (d) Comparison of Dixon plots 
at 1/[NAD+] = 0 in the presence and absence of activator. “A” denotes a mechanism-based sirtuin 
activating compound. Note that the model depicted omits the term quadratic in [NAM] in eqn (1) and the 
plateaus/dotted lines shown in the Dixon plots are the asymptotic values to which the model-predicted 
rates converge in the absence of this term. 

 

 

 

 

 

Potential means of increasing k2 
 
From the standpoint of chemical mechanisms of activation, the theory presented raises the important 
question of how the nicotinamide cleavage rate k2 of sirtuins can be accelerated by a ligand that binds to 
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the various complexes in the deacylation reaction with the specified relative affinities, as predicted by 
equation (11).  It is important to note in this regard that the nicotinamide cleavage reaction in sirtuins is 
generally believed to be endothermic, which enables effective NAM inhibition of the reaction [26, 36]. 
Unlike exothermic reactions, stabilization of products in endothermic reactions can decrease the 
activation barrier for the forward reaction, due to the fact that the transition state resembles the products 
more than the reactants. The energetics of this reaction, including the role of protein conformational 
changes, are being studied computationally in our group for mammalian sirtuins.  
 
 
 
Experimental characterization of proposed hit compounds for mechanism-based sirtuin activation 
 
In this Section we characterize proposed sirtuin-activating compounds within the context of the 
mechanistic model above, evaluating their characteristics within the context of the ideal features of 
mechanism-based activators described above. Both thermodynamic and kinetic measurements are made in 
order to characterize equilibrium and steady state constants entering the model presented above.  
 
Because such mechanism-based modulators operate according to new modes of action, as depicted in Fig. 
3, the traditional approach of characterizing a compound as uncompetitive, noncompetitive or competitive 
with respect to substrates is not sufficient, even if the modulator has a net inhibitory effect. The models 
presented above provide general principles for kinetic characterization of mechanism-based enzyme 
activating compounds, which we apply here. 
 
The aim of steady state characterization of hit compounds for mechanism-based activation  
is to estimate the parameters in equation (2) in the absence of modulator and at a saturating concentration 
of modulator, varying both [NAD+] and [NAM] in each case. This provides estimates of both the front 
and back face steady state parameters in Fig. 3a. By contrast, a mixed inhibition model with respect to the 
modulator concentration (as, e.g., done for certain mechanism-based inhibitors [17]) would not have an 
interpretation for the steady state constants in terms of fundamental rate constants in the sirtuin 
mechanism, whereas characterizing unsaturating modulator concentrations at each of multiple product 
(NAM) concentrations, while providing more information, would similarly estimate only apparent steady 
state parameters in Fig. 3b. 
 
Along with SIRT1, SIRT3 is one of the most important sirtuins enzymes involved in the regulation of 
healthspan [15]; hence we chose it as a subject of study.  Honokiol (HKL) has been reported as a SIRT3 
activator for the MnSOD protein substrate [19]. Because SIRT3 does not share the allosteric activation 
site of SIRT1, we studied HKL as a potential hit compound for mechanism-based activation of SIRT3. 
Following dose response scans at both unsaturating NAD+ and peptide (Fig. 6), we carried out steady 
state rate measurements at multiple values of [NAD+] and [NAM] in order to estimate the parameters in 
model (2). The results are presented in Figs 7,8 and Table 1. Note that at very high values of [NAM], the 
effect of differences in Kd,NAM induced by the modulator becomes negligible, allowing isolation of 
differences in the NAD+ binding and ADP ribosylation / base exchange kinetics. Below, we compare the 
observed changes in the steady state parameters max , 1 2 3, , , ,m NADv K K K K+ at  200 µM concentration 
(approximately saturating ) to the changes conducive to activation that were delineated above.    
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Figure 5. Structure of honokiol (HKL), 5, 3’-Diallyl-2, 4’-dihydroxybiphenyl (Honokiol). 
 

 
                

 
 
Figure 6. Effect of Honokiol on Sirt3 deacetylation activity using a label-free assay:  dose-
response.  (A) The superposition of the un-saturating NAD+ and saturating MnSOD K122 peptide in the 
three formats of (blue) 10 mins, 100uM NAD+ (N=2); (red) 10 mins, 100uM NAD+/100uM NAM (N=2), and 
(green) 30 min, 50uM NAD+ (N=3). (B) 2.5 mM NAD+ and 6.25uM un-saturating MnSOD K122 peptide 
(N=5).    
 
 
 
The insets in Fig. 7 show examples of the time series data collected. These insets demonstrate that 
deacylation of this substrate displays a two phase behavior (pre-steady state phase/steady state phase) 
with a relatively slow first phase. Due to this behavior, we used a two-phase rather than one-phase 
exponential time series fitting.  Irrespective of the first phase time constant the rate in second phase is 
almost identical. Hence the uncertainty in steady state rates is very low.  The rate is generally almost 
constant over the measured times in the second phase. Further discussion of time series fitting for the 
MnSOD substrate are provided in the Methods section. 
 
Because of the apparent two phase time series dynamics of catalysis for MnSOD, the relative amounts of 
product formation in the presence vs absence of HKL depends on the choice of measurement time, with a 
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closer correspondence at lower times. In particular, in the presence of 100uM NAM, which is on the same 
order of the magnitude as the physiological concentration of NAM, the amounts of product formed at 0 
and 200uM HKL after 10 mins are quite close (Fig 6A).  Compared to the steady state rates, the first 
phase rates are generally closer in magnitude.  
 
 

 

 
 
Figure 7. Steady-state kinetic characterization of deacetylation in the presence and absence of the 
mechanism-based modulator honokiol. Double reciprocal plots for deacetylation initial rate 
measurements of saturating substrate peptide (MnSOD K122) in the presence of different concentrations 
of NAM with (A) 0 μM HKL; (B) 200 µM HKL. Enlargements of the intersection points are provided as 
insets (a) and (c). The time series plots of mM product formed vs. time are provided as insets (b) and (d). 
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Figure 8. Mechanism-based modulation of Sirt3 (118-399) deacetylation of MnSOD substrate: 
effect of NAD+ and NAM.   (A) Double reciprocal plots for deacetylation initial rate measurements in the 
presence and absence of Honokiol at [NAM]=0 µM. The enlargement of intersection point was provided 
as inset. (B) Comparison of Dixon plots at [NAD+]=15000 µM in the presence and absence of HKL. (C) 
Double reciprocal plots for deacetylation initial rate measurements in the presence of Honokiol at 
[NAM]=200µM. The enlargement of intersection point was provided as inset. (D) Comparison of Dixon 
plots at [NAD+]=3000 µM in the presence and absence of HKL.  Note that the model omits the term 
quadratic in [NAM] in eqn (1) and the dotted lines shown in the Dixon plots are the asymptotic values to 
which the model-predicted rates converge in the absence of this term. 
 
 
Measurement of binding affinities  
 
The binding affinities of ligands to complexes in the catalytic mechanism of SIRT3 / MnSOD peptide 
substrate were measured using microscale thermophoresis (MST; Figs. 9-14). In order to carry out 
binding affinity measurements on the reactive complex of enzyme, acylated peptide substrate and NAD+, 
we synthesized the catalytically inert molecule carba-NAD+  and used this NAD+ analog for those MST 
studies.  
 
In addition to measuring the effect of HKL on NAD+  binding affinity, we measured its effect on acylated 
peptide binding affinity, NAM binding affinity in the presence of acetylated peptide, deacylated peptide 
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binding affinity, O-acetylated ADP ribose binding affinity in the presence of deacylated peptide (i.e., the 
product complex), and NAD binding affinity in the presence of deacylated peptide. The latter 
measurements in the presence of deacylated peptide were made in order to determine whether product 
inhibition plays any role in the observed kinetics. For binding affinity studies on complexes that appear in 
Fig. 3, the relevant faces of the cube are also displayed in the respective figures. Note that measuring the 
binding affinities for any of the 3 sides of such faces determines the fourth binding affinity. In particular, 
the binding affinities of HKL or carba-NAD+ were measured in the ternary complex and product 
complex. Cooperative binding between HKL and the relevant ligand were studied in each case.  It was 
observed that HKL can have synergistic binding interactions with several ligands. 
 
 
     

 
 
 

                        
Figure 9. Binding affinity measurements of carba-NAD+ binding in the ternary complex: effect of 
mechanism-based modulator honokiol. Panel A - Pathways in the sirtuin reaction network in the 
presence and absence of bound modulator and inhibitor. E, enzyme; Ac-Pr, acetylated peptide substrate; 
NAD, nicotinamide adenine dinucleotide; A, modulator (Honokiol). Panel B - Binding of carba NAD (c-
NAD) to Sirt3.Ac-MnSOD complex, in presence and absence of 6.25 micromolar Honokiol measured 
using MST.  
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Figure 10. Binding affinity measurements of honokiol binding: effect of NAM 
Panel A - Pathways in the sirtuin reaction network in the presence and absence of bound modulator and 
inhibitor. E, enzyme; Ac-Pr, acetylated peptide substrate; NAM, nicotinamide (inhibitor); A, modulator 
(Honokiol). Panel B - Binding of Honokiol to the Sirt3-Ac-MnSOD complex , in presence and absence of 
NAM, measured using MST.  
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Figure 11. Binding affinity measurements of honokiol binding in the product complex: effect of 2’-
O-acetylated ADP ribose coproduct.   
 
 
 

 
 
 
Figure 12. Binding affinity measurements of honokiol binding in the coproduct complex: effect of 
NAM   
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Figure 13. Binding affinity measurements of honokiol binding in the product complex: effect of 
NAD+ 
 
 
Characterization of honokiol modulation of SIRT3 using kinetic and thermodynamic data 
 
 
The above data indicate that HKL cobinds with the peptide substrate and cofactor of SIRT3. Under the 
conditions tested, the net effect of SIRT3 on MnSOD peptide substrate was inhibition, but the mechanistic 
model above is required to interpret the data and evaluate the compound’s viability as a hit compound for 
activator development. 
 
We begin our analysis by considering the effects of HKL on SIRT3 activity in the context of traditional 
enzyme inhibition models. According to Fig.9 , Kd,NAD+ remains roughly unchanged for this substrate, 
implying that Kd1,A ≈   Kd2,A. In the traditional picture, HKL binding is noncompetitive with respect to 
NAD+. According to Fig 10, the increase in HKL binding affinity in the presence of NAM suggests that 
Kd,NAM decreases for this substrate, implying that Kd3,A > Kd4,A . In the traditional picture of enzyme 
inhibition, HKL binding is uncompetitive with respect to NAM.  
 
However, the effect of HKL on activity can only be understood by application of the full kinetic and 
thermodynamic model presented above, which involves simultaneous effects of the modulator on both the 
forward and reverse reactions in the context of a steady-state model of the reaction. Note that in the 
presence of HKL, Km,NAD+  increases and catalytic efficiency decreases by a somewhat larger margin. The 
parameter estimates in Table 1 together with the full set of MST data can be interpreted within the context 
of the model above to shed light on the mechanism of HKL modulation and to evaluate its properties as a 
hit compound. 
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First, note that K1 decreases several fold in the presence of HKL, consistent with the increase in NAM 
binding affinity. As discussed above, a decrease in K1 may be inconsequential in terms of a molecule’s 
propensity to activate the enzyme as long as the fast k-3 approximation is not violated. If k-3  can no longer 
be omitted from the model, this can contribute to a decrease in catalytic efficiency (see equation 4).  
 
Second, K3 decreases several fold in the presence of  HKL, whereas an increase in K3 is desirable. 
However, K1/K3 remains roughly unchanged, as can be observed graphically in Fig 8b,d where the effect 
of K1 becomes diminished at high [NAM]. This suggests that the reduction in Kd,NAM may be playing a 
role in the observed reduction of K3(eqn 3e) Under the approximations (ii) discussed above, Kex‘ may be 
relatively close to Kex. This is a favorable property of a hit compound since it suggests 3, 2,d A d AK K≈  ; 
hit evolution could be carried out to reduce Kd3,A  . Since Kd,NAD+  remains roughly unchanged by the 
modulator, if Kex is also roughly unchanged, any reduction in k2 that affects Km (see eqn 7) is associated 
with a similar reduction in k-2 . 
 
Third, α decreases several fold in the presence of HKL. This shifts the intersection point of the lines in 
Fig. 7A to the right in Fig. 7B. Under the above hypotheses that  2, 1,d A d AK K≈ 3, 2,d A d AK K≈  , and 

3, 4,d A d AK K> , this is expected according to equation (12). Under approximation (ii) above, this decrease 
in α  is due to the fact that Km increases in the presence of HKL while Kd does not increase (see eqn 6). 
We can observe by comparing Fig 8 c,d to a,b that in the presence of NAM, the extent of inhibition by 
HKL diminishes, and that this effect is most pronounced at low [NAD+], which is the condition under 
which activation is therapeutically most useful.  Under the above hypotheses, through further hit to lead 
evolution, this property might be exploited to activate the enzyme at low [NAD+] in the presence of 
physiological NAM or,  going further, to allow a Km decrease in the absence of product.  
 
Next, the moderate increase in 2K (smaller than the changes in the above parameters) is consistent with 

equation (15) and is a direct consequence of the aforementioned changes in 3K and  α .  Finally, the 
observed increase  in HKL binding affinity in the presence of O-acetylated ADP ribose (Fig. 11) may be 
consistent with the decrease in kcat , if product release is rate limiting for this substrate. Also, stabilization 
of coproduct binding may be consistent with HKL favoring a closed over an open loop conformation; for 
example, Ex-527, which is known to preferentially bind to a closed loop conformation, reduces coproduct 
dissociation rate and improves its binding affinity [17]. 
 
We can also understand the properties of conventional inhibition plots with respect to modulator 
concentration based on the mechanistic information gleaned from our studies. Note from Fig. 8a, the 
intersection point of the lines with and without modulator lies to the left of the y axis and above the x 
axis. In the traditional mixed inhibition picture of enzyme modulation (which does not distinguish 
between Km and Kd), this is due to the modulator both increasing Km and decreasing vmax ,  but this 
traditional picture does not distinguish between Km and Kd, and also does not account for the relation 
between Km and vmax (see eqn 4).  By contrast, the equations for the lines in the presence and absence of 
modulator can be understood in terms of the fundamental dissociation constants and rate constants of the 
reaction based on our mechanistic analysis above.    
  
Note also from Fig 8c, the intersection point of the lines with and without modulator moves closer to the 
x axis in the presence of NAM. For sufficiently high [NAM], the intersection point of these lines falls 
below the x axis and will eventually move to the right of the y axis.  The fact that HKL does not increase 
Kd,NAD+  gives it higher relative activity at low [NAD+] in presence of NAM (this is especially pronounced 
in the pre-steady state phase; see inset in Fig. 7d). If this could be achieved in the absence of NAM, it 
would signify an activator that increases catalytic efficiency while reducing vmax. 
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The demonstrated ability to relate the modulated steady state kinetics of the enzyme to the manner in 
which a hit compound interacts with the various species in the reaction mechanism is a feature of 
mechanism-based activator discovery, in contrast to hit validation in traditional drug discovery, where the 
focus is on binding affinities [9].  By contrast, mechanism-based activation is a molecular engineering 
problem more akin to enzyme design. 
 
Pre-steady state kinetics can provide additional information about the mechanism of modulation. For 
enzymes where product dissociation is the rate-limiting step, initial rates may not be similar to steady 
state rates.  Hence, using initial rates in inhibition model fittings can be used for qualitative model 
selection (see, e.g., reference [17]), not quantitative parameter estimation.   
In the present work, we applied double exponential time series fits, which accounted for the pre-steady 
state phase, for quantitative work (see Appendix). Had we fit a single exponential, the estimated vmax 
would be similar but the estimated Kms would decrease, increasing the estimated catalytic efficiency. This 
is related to the fact that for such systems, the pre-steady state  turnover rate exceeds kcat/Km * [substrate].  
However, the quality of the model fit would be reduced due to the use of initial rates rather than steady 
state rates.  A  nonlinearity in the amount of product formation at low times  (<= 10 min) is observed with 
MnSOD substrate, perhaps because higher [NAD+] leads to the steady state being reached more quickly.  
 
Note that in the case of SIRT3 with MnSOD substrate, kcat is approximately 2 min-1, which is on the same 
order of magnitude as the duration of the first phase in our time series experiments.  
Importantly, if slow product dissociation results in the significantly slower turnover rate in the second 
phase, then HKL may not reduce the rate of the slowest deacylation chemistry step in stage 2 of the 
reaction.  
 
Having identified a hit compound for mechanism-based activation that displays at least some of the 
qualitative features identified above under the rapid equilibrium segments approximation, we can now use 
the kinetic and thermodynamic data above -- which together constitute a complete set of measurements -- 
to simultaneously estimate all the rate constants k1

’,k-1
’,k2

’,k-2
’,k3

’,k-3
’,k4

’ and associated free energy 
changes.  This will elucidate the mechanism of HKL-induced modulation in more detail than would be 
possible in a rapid equilibrium framework (i.e., in terms of the 7 rate constants instead of 5 ,d AK ’s) and 
will be carried out in future work, along with additional structural and biophysical characterization. The 
ability to identify system parameters in this manner will allow rapid characterization of mutated hit 
compounds during hit-to-lead evolution to identify those with a favorable balance of properties suitable 
for further development.  
 
Since we did not use a full-length MnSOD protein substrate as did reference [19] in our studies, we 
cannot rule out the possibility of enhancement of SIRT3-catalyzed deacylation of this substrate by HKL 
in the absence of any NAM. Moreover, the dependence on time of the relative rates of MnSOD peptide 
deacylation with and without  HKL  warrants further study to understand the physiological effects of HKL 
on SIRT3 deacylation in vivo. These rates are more comparable at short times (pointing to the possible 
importance of non-steady state effects) and in the presence of NAM, which is present within intracellular 
compartments in vivo. Note that reference [19] observed an increase in SIRT3 expression levels in the 
presence of HKL, which may offset the effect of product inhibition especially in the limit of low [NAD+]. 
Also, we did not carry out characterization at nonsaturating peptide concentrations – as noted, analogous 
methods could be applied to that problem; the dose response curve in Fig. 6B shows slightly different 
characteristics that could be investigated further. Finally, it is also possible to carry out analogous 
characterization experiments at nonsaturating [HKL] in the dose response curves above, in order to obtain 
the apparent steady state constants defined above. The use of unsaturating modulator concentrations can 
allow the modulator to dissociate from the product complex, thus enabling product release. Note that the 
first-order rapid equilibrium segments approximations above to the steady state constants in the presence 
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of modulator account for this and do allow for the possibility of an activity maximum at subsaturating 
concentrations. Dose response behavior of mechanism-based enzyme activators will be examined further 
in a future work.  
 
 
 
 
 
Table 1. Model parameter estimates from global nonlinear fitting of equation (2) for SIRT3 in the 
presence and absence of 200uM (saturating) HKL.  [E0] = 1.85 µM  
 
 

 0µM Honokiol 200µM Honokiol 

Vmax 0.8681 0.566 
K1 18064 3758 
Km 238.9 756.6 
K2 20.19 33.23 
K3 528 108.1 

Std. Error 
Vmax 0.01216 0.05319 

K1 8279 1572 
Km 12.92 138.8 
K2 1.612 6.886 
K3 105 28.98 

95% CI (profile likelihood) 
Vmax 0.8417 to 0.8954 0.4658 to 0.7421 

K1 8497 to 288496 1826 to 19458 
Km 212.2 to 268.7 501.3 to 1231 
K2 16.91 to 24.25 20.81 to 55.33 
K3 357.7 to 946.8 60.92 to 243.2 

Goodness of Fit 
Degrees of Freedom 11 10 

R square 0.9988 0.9947 
Absolute Sum of Squares 0.001052 0.0006615 

Sy.x 0.009782 0.008133 
 
 
 
 
 
 
\ 
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Substrate dependence of mechanism-based modulation 
 
 
The p53-AMC substrate was studied in order to explore the substrate selectivity of modulation by HKL 
(Appendix). In enzyme design, the analogous problem of substrate specificity of an engineered protein is 
often considered. Due to the differing effects of the modulator on these two substrates, which can be 
identified and characterized within the present framework, substrate selectivity of mechanism-based 
activation can in principle be engineered. 
 
For this substrate as well, we have verified HKL binding to catalytically active complexes (Fig. 14) and a 
slight cat efficiency decrease in the presence of modulator. In this case, we do not know the catalytic 
efficiency at higher [NAM] because we have not estimated the K1 parameter.  
 
 
 
 

 
 
Figure 14. Binding affinity measurements of carba-NAD+ binding in the ternary complex of an 
alternate substrate: effect of honokiol. Panel A - Pathways in the sirtuin reaction network in the 
presence and absence of bound modulator and inhibitor. E, enzyme; Ac-Pr, acetylated peptide substrate; 
NAD, nicotinamide adenine dinucleotide; A, modulator (Honokiol). Panel B - Binding of carba NAD (c-
NAD) to Sirt3.Ac-p53-AMC complex, in presence and absence of 6.25 micromolar Honokiol measured 
using MST.  
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In Fig. A3, which compares the initial rates of catalysis with the p53-AMC substrate in the presence and 
absence of saturating HKL, we observe a significant change in the y intercept (vmax) but not Km -- which 
would be characterized as noncompetitive inhibition in the traditional picture. However, as discussed 
above for the MnSOD substrate, the traditional picture is not sufficiently informative and the mixed 
inhibition plots with respect to NAM provide the important mechanistic information.  In the absence of 
NAM, there is a 3-4 fold decrease in catalytic efficiency for this substrate. However, whereas α decreased 
in the presence of HKL for the MnSOD substrate, it increases for the p53-AMC substrate (Table A1). 
MST measurements on carba-NAD+ indicate a decrease in NAD+ binding affinity (Fig. 14). Since for 
MnSOD substrate, there was no change in Kd,NAD

+ and a reduction in α*Km,NAD+  induced by HKL, the 
greater change in α*Km,NAD+ induced by HKL for p53-AMC substrate observed in is consistent with the 
increase in Kd,NAD

+ as measured by MST. 
 
The differences between the pre-steady state kinetics of SIRT3 for the MnSOD versus p53-AMC 
substrates are discussed in the Appendix.  
 
We note that the approximations (i-iii) above, in particular (ii), may not apply to particular sirtuins and/or 
substrates like MnSOD peptide or p53-AMC. Their use in the analyses above were for the purpose of 
simplicity of illustration. The applicability of such approximations can be assessed upon full system 
identification – that is, simultaneous estimation of all rate constants in the model above – using a 
complete set of measurements. For example, without system identification, we cannot ascertain the 
relative magnitudes of rate constants such as those for the ADP ribosylation step (k2) and the rate limiting 
step of stage 2 (k4).This will be studied in a subsequent work.  
 
In summary, HKL binds to all complexes in the sirtuin reaction mechanism, not just the product as in the 
case of mechanism-based sirtuin inhibitors like Ex-527. The tight binding of HKL to the coproduct  does 
not reduce catalytic efficiency. Compounds like Ex-527 are not hits for mechanism-based activation 
because they do not bind to any other catalytically relevant complexes and because they reduce product 
dissociation rate very much, thus extinguishing the reaction under saturating conditions. Ex-527 does this 
for many substrates and sirtuins including AceCS2 and p53-AMC [steegborn pnas].  
HKL is a hit for either substrate for reasons above.  
 
In order to characterize the mode of action of the mechanism-based inhibitor Ex-527 [17], standard 
inhibition models were not sufficient and the authors had to refer to crystal structures. We have presented 
quantitative methods for the characterization of mechanism-based activator hits that are suitable for high-
throughput studies.  
 
 
 
 
False positive testing of hit compounds 
 
 
Finally, another class of reported sirtuin activators – dihydropyridines, or DHPs – were previously studied 
with only labeled assays [20,21]  that may be prone to false positives. We studied the effects of these 
compounds on SIRT3 activity using the p53-AMC substrate and two assays – both a fluorescence-based 
and an HPLC assay. The results, presented in the Appendix, suggest that DHPs are false positive 
compounds and not sirtuin activators. The same labeled substrate was used by both reference [20] and us. 
Careful scrutiny should be applied to DHPs reported as activators, due to this finding and the 
autofluorescence of DHPs (see Appendix). Ideally, similar protocols for the identification of false 
positives will be applied to other reported activators for sirtuins other than SIRT1 studied using only 
labeled assays. Some previous reports of SIRT1 activation for labeled substrates did not properly identify 
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false positives due to the lack of appropriate controls [36]. Labeled assays can be used for high 
throughput screening as long as appropriate controls and protocols for hit validation are regularly applied.  
 
Application of the rigorous methods for false positive identification and characterization of mechanism-
based sirtuin modulators reported herein should facilitate the elimination of false positives in high-
throughput screens. 
 
 
 
 
 
 
Discussion 
 
 
We have presented a model for activation of sirtuin enzymes that may be applied for the design and 
characterization of mechanism-based sirtuin activating compounds (MB-STACs) that can in principle 
activate any of the mammalian sirtuins SIRT1-7. Also, the activation model presented herein could in 
principle be applicable to diverse substrates, unlike previously reported allosteric activation of SIRT1 that 
was found to accelerate deacylation for only a small fraction of over 6000 physiologically relevant 
peptide substrates studied, due to the need for “substrate-assistance” in the allosteric mechanism [13].    
This framework comprises a new mode of enzyme activation that is distinct from the four modes of 
activation previously known. 
 
Using this modeling framework, we have shown how modulation of ,m NAD

K + independently of ,d NAD
K +

can increase the activity of sirtuins at [NAM]=0 in a manner that mimics the effects of NAD+ 
supplementation [37] but in a selective fashion.  This activation also applies at nonzero [NAM], 
decreasing the sensitivity of the sirtuin to physiological NAM inhibition in addition to increasing its 
sensitivity to physiological NAD+. Such mechanism-based sirtuin activation has advantages over a) 
allosteric activation, which is only possible for SIRT1, is substrate-dependent, and cannot fully 
compensate for the reduction in NAD+ levels that is responsible for many aspects of health decline during 
organismic aging [18, 38]; b) activation of the NAD+ biosynthetic enzyme Nampt, which regenerates 
NAD+ from NAM and hence has nonselective effects on all enzymes that use an NAD+ cofactor; and c) 
inhibition of NAD+-dependent PARP enzymes, which consume NAD+ but are required to repair DNA 
damage. Moreover, it has the potential to enable isoform-specific sirtuin enzyme activation. 
 
The example of honokiol was studied with various biochemical and biophysical methods. While further 
characterization is warranted, this example highlighted several important properties of hit compounds for 
mechanism-based activation, such as tight binding to the catalytically active complex, minimal reduction 
of the binding affinities of both substrates, higher relative activity in the presence of [NAM], higher 
relative activity under [NAD+] depletion conditions, and comparable pre-steady state activities in the 
absence of presence of modulator.  The experimental evidence suggests that for MnSOD substrate 
(previously reported to mediate certain physiological effects of honokiol [19]), O-AADPR and NAM 
coproduct release are contributing to kcat and catalytic efficiency reduction, respectively, with the latter 
being more relevant to potential therapeutic applications. Analogous methods could be directly applied to 
other compounds recently reported to activate sirtuins other than SIRT1, such as SIRT5 and SIRT6 [22]. 
The experimental characterization methods introduced were also used to identify several false positive 
hits reported in the literature. 
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The rapid equilibrium segments approximation (Appendix, equation A3) was applied in order to illustrate 
how a ligand that binds outside the NAD+ binding site can in principle increase sirtuin activity through 
only modulation of the relative free energies of the various species in the reaction mechanism. More 
detailed analysis of the mechanism of action of hit compounds for mechanism-based enzyme activation 
like honokiol can be achieved by complete kinetic characterization in presence/absence of the activator 
(e.g., by coupling base exchange with deacylation experiments). Such analyses will shed light, for 
example, on whether these compounds can be evolved into mechanism-based sirtuin activators that 
exploit the free energy profile of the sirtuin nicotinamide cleavage and base exchange reactions – and if 
so, how.  
 
Structurally, binding outside of the NAD+ binding site (the so-called A and C pockets [25, 39]) appears to 
be essential for mechanism-based activation. For example, consider the binding sites of long-chain fatty 
acids and Ex-527[17]. We are currently exploring prospective binding sites for MB-STACs. Moreover, 
rational design will require analysis of the relative free energies of complexes depicted in Fig. 3. We have 
recently initiated computational studies [29] that assess such free energy differences for some of the front 
face (apo) complexes in this Figure, and further studies are in progress. 
 
The enzyme activation theory presented herein motivates experimental workflows for the hit 
identification, hit-to-lead evolution, and lead optimization of mechanism-based activators. In particular, 
the theory enables the identification and evolution of important hits that may be inhibitors, not activators, 
by decomposing the observed kinetic effects of a modulator into components and identifying those 
molecules that display favorable values of a subset of these components as hits even if the net effect on 
catalytic turnover is inhibition. Compared to standard library screening for hit identification and hit-to-
lead evolution, this approach allows application of multiobjective optimization techniques (through 
iterative mutations to functional groups) to sirtuin activator design. Hit to lead evolution could be applied, 
for example, to honokiol modulation of the deacylation rate of specified substrates. Such workflows 
would be fundamentally different from traditional drug discovery workflows and would bear more 
similarity to the directed evolution of enzymes.  The theory presented also establishes foundations for the 
rational design of sirtuin-activating compounds, enabling the application of state-of-the-art computational 
methods to activator design in a manner analogous to computational enzyme design [40].  Once crystal 
structures solved, enzyme engineering methods can be used for hit to lead evolution based on above 
theory.  For MnSOD substrate and HKL, for example, the reduction in NAM and OAADPR coproduct 
binding affinities could be targeted in such efforts. Finally, it raises the important question as to which 
enzyme families may be activatable through such a mechanism-based mode of action. 
 
 
 
 
 
 
 
 
 
 
Materials and Methods  
 
 
Chemicals and Reagents 
 
AceCS2, MnSOD and p53 derived, acetylated peptides were synthesized from GenScript, USA. FdL 
peptide and DHP1 were purchased from Enzo Life Sciences (Farmingdale, NY, USA). DHP2 and carba-
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NAD were synthesized from KareBay Biochem, Monmouth Junction, NJ, USA and Dalton Pharma, 
Toronto, Ontario, Canada respectively. Honokiol was purchased from Sigma (St. Louis, MO, USA). All 
other chemicals, solvents used were of the highest purity commercially available and were purchased 
from either Sigma (St. Louis, MO, USA) or Fisher Scientific (Pittsburgh, PA, USA) or from VWR 
International, USA. Plasmid pEX-His-hSIRT3102-399 was purchased from OriGene, USA, whereas 
truncated version, pET21b-hSIRT3118-399 (also T-Sirt3) was procured from Genscript USA. Following 
acetylated peptides were used in this study- AceCS2- NH2-TRSG-(KAc)-VMRRLLR-COOH; p53-
KKGQSTSRHK-(KAc)-LMFKTEG; MnSOD-KGELLEAI-(KAc)-RDFGSFDKF; Fluoro-peptide-
(QPKKAC-AMC, also called p53-AMC), label free p53 peptide-QPKKAC.  
  
 
 
Solubility Measurements  
 
Solubility of DHP-1, DHP-2, and Honokiol were measured using HPLC (Agilent 1100 series). In brief, 
calibration curves were established, for each compound, using concentration range covering the estimated 
solubility’s. The samples were prepared by adding known amount of the compounds in HDAC buffer 
containing a range of DMSO. The samples were allowed to equilibrate at 25OC for 48 hours before 
analyzing on calibrated HPLC. Over-saturated samples were prepared by adding excess compounds into 
the solvent mixtures of interest. The linearity was measured by R-values at least >0.99 and the estimated 
detection limit was around 0.002 mg/mL (2 μg/mL) based on acceptable N/S ratio.  
 
 
Carba-NAD synthesis 
 
Carba-NAD [1((1R,2S,3R,4R)-4-((((((((2R,3S,4R,5R)-5-(6-Amino-9H-purin-6-yl)-3,4 
dihydroxytetrahydrofuran-2-yl) methody)hydroxphosphoryl)oxy)oxidophosphoryl)oxy)methyl)-2,3-
dihydroxycyclopentyl)-3-carbamodylpryridin-1-ium.] was synthesized according to the method described 
previously (Szczepankiewicz et al., 2012).  
Briefly, the commercially available (1R,4S)-2-azabicyclo[2.2.1]hept-5-en-3-one  (R(-)-Vince lactam), 
was asymmetrically dihydroxylated to provide the corresponding dihydroxy lactam after removal of the 
all-cis stereoisomer. Acid catalyzed methanolysis of the lactam was then carried out to give the amino 
ester hydrochloride. This was followed by ester reduction using lithium triethylborohydride for reduction 
of the ester to the alcohol. Next, the nicotinamide carba-riboside was prepared from the alcohol and 3-
carbamoyl-1-(2,4-dinitrophenyl)pyridine-1-ium chloride using sodium acetate in methanol (Zincke 
reaction).  Phosphorylation of the nicotinamide carba-riboside with POCl3 according to Lee’s procedure 
provided the carba-nicotinamide mononucleotide.  This was coupled with adenosine 5’-
monophosphomorpholidate using pyridinium to sylate and MnCl2 as a divalent cation source to create the 
final pyrophosphate bond. 
 
 
 
 
 
General method for DHP2 synthesis 
 
The synthesis of DHP2 was carried out by a method described previously (Mai et al., 2009). Briefly, in 
step 1, we first synthesized the core compound, 3,5-dicarbethoxy-4-phenyl-1,4-dihydropyridines, by 
cyclocondensation between benzaldehyde (9.81µM), ethyl propiolate (9.92 µM) and the 
cyclopropylamine (14.49 µM). All three compounds were mixed together and heated at 80OC for 30 
minutes in 0.5 ml glacial acetic acid.  The reaction mix was allowed to cool to room temperature then 
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mixed with 20 ml ddH2O for 60 minutes. The resulting solid product was filtered and washed with ethyl 
alcohol (DHP1). To obtain 3,5-dicarboxy derivatives of DHP1, we performed alkaline hydrolysis of the 
compound overnight at 80OC in presence of 100% ethanol. After the completion of hydrolysis, the solvent 
was evaporated, the residue was eluted with water (30 mL), and the resulting solution was acidified with 
2N HCl. The precipitate was filtered, washed with 30 ml ddH2O three times then dried to obtain pure 
DHP2. The compound was then recrystallized by acetonitrile/methanol. The purity and integrity of the 
intermediate and final compounds were assessed by NMR.  
 
 
 
Expression and purification of hSirt3102-399 

 
The hSirt3102-399 was expressed in E.coli Arctic Express (DE3) cells (Agilent Technologies). The cells 
were transformed and a single bacterial colony was inoculated in LB media containing 100 µg/ml 
ampicillin and 20 µg/ml gentamycin at 37OC as recommended by supplier. The cells were grown 
overnight with continuous shaking at rpm. For large scale protein purification, we inoculated 1.5% 
overnight grown culture into 200 ml LB medium (total 4X 200 mL) and grown at 30OC, 250 rpm for 4 
hours. The protein expression was induced by adding 1 mM Isopropyl 1-thio-D-galactopyranoside (IPTG) 
at 15OC. After 24 hours of induction, cells were harvested by centrifugation, and the pellet was re-
suspended in A1 buffer containing 50 mM NaH2P04, 300 mM NaCl, 10 mM imidazole, pH 8.0). The cell 
suspension was sonicated to lyse the cells. A clear supernatant was separated from cell debris by 
centrifugation at 14000 x g for 25 min at 4OC and loaded onto a 5 ml HisTrap HP column (GE 
Healthcare), pre-equilibrated with A1 buffer, attached to an AKTA pure FPLC system (GE Healthcare). 
The column was then washed with 50 ml buffer A1, followed by 50 ml buffer A2 (50 mM NaH2P04, 300 
mM NaCl, 75 mM imidazole, pH 8.0), followed by 50 ml buffer A3 (20 mM Tris-HCl, 2M urea, pH 6.8), 
followed by 75 ml buffer A2. The protein was eluted with buffer B1 containing 50 mM NaH2P04, 300 
mM NaCl, 300 mM imidazole, pH 8.0). The eluted protein fractions were pooled and dialyzed against 
dialysis buffer (25 mM Tris, 100 mM NaCl, 5 mM DTT, 10% glycerol, pH 7.5). The purity and the 
concentration of final preparation were determined by SDS-PAGE and Bradford’s reagent respectively. 
The purity of final protein was >85% as assessed by SDS-PAGE. 
 
 
 
 
 
 
 
Expression and purification of truncated hSirt3118-399 

 
The T-Sirt3 plasmid was transformed, and the protein was expressed in E. coli Rosetta 2 (DE3) cells 
(Novagen) following supplier’s recommendations. For large scale purification, a single bacterial colony 
was inoculated in LB media with ampicillin, and grown overnight at 37OC. We inoculated 1% of 
overnight culture in 200 mL LB media with ampicillin and grown at 37OC, 250 rpm until the OD600 nm of 
0.3. Then the temperature was reduced to 30OC until the OD600 nm to 0.6. The Sirt3 expression was 
induced by adding 0.3 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) at 18OC and the cell were 
harvested 24 hours post-induction by centrifugation. Cell pellet were re-suspended in lysis buffer 
containing 25 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 5 mM 2-mercaptoethanol, 5 mM imidazole, 5 
mM MgCl2, 5 mM adenosine triphosphate, and 5% glycerol. The cell pellet was homogenized, followed 
by addition of freshly prepared 0.1 mM Phenylmethylsulfonyl fluoride (PMSF) and 1 mg/ml lysozyme. 
The homogenized cells were lysed at 4OC for 30 min followed by sonication. The cell lysate was 
centrifuged at 14,000 × g at 4OC for 25 min and the supernatant was loaded on to a 5 ml His-trap column 
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(GE Healthcare), attached to an AKTA pure FPLC system (GE Healthcare), pre-equilibrated with lysis 
buffer with 20 mM imidazole, pH 7.5. The column was washed with 10 column volumes of wash buffer 
(lysis buffer with 75 mM imidazole, pH 7.5) and the protein was eluted using a linear gradient of wash 
buffer and elution buffer (lysis buffer with 500 mM imidazole, pH 7.5). The eluted protein fractions were 
pooled and dialyzed into lysis buffer, overnight, at 4OC. The dialyzed sample was re-loaded on to the His-
trap column and subjected to a second round of purification as above. Final eluted fractions were 
subjected to SDS-PAGE; pure fractions were pooled together then dialyzed overnight at 4OC into dialysis 
buffer (25 mM Tris-HCl, 100 mM NaCl, 5 mM dithiothreitol (DTT), 10% glycerol, pH 7.5). The purity of 
final protein was >90% as assessed by SDS-PAGE. The concentration was determined using Bradford’s 
method. 
 
 
 
 
Dynamic light scattering (DLS) analysis 
 
hSirt3102-399 DLS data were collected using a Dynapro Nanostar (model WDPN-08, Wyatt Technology) in 
collaboration with Alliance Protein Laboratories, Inc., USA) using a 1 µl quartz scattering cell at 25OC. 
Prior to data acquisition, the samples were centrifuged at 10,000 × g for 10 minutes. Typically 25 ten-
second data accumulations were recorded and averaged to improve signal/noise. The resulting data were 
analyzed with the Dynamics ver 7.1.8.93 software. Mean sizes (z-average) are calculated based on the 
Cumulants method. Size distributions were calculated using the Dynals analysis method, with the 
resolution set at the default value. Weight fractions were estimated using the Rayleigh spheres model. The 
instrument calibration was absolute, based on units of time and distance (with distance measured by the 
wavelength of the light source). Since the sample was in buffer containing 10% glycerol, the viscosity and 
refractive index of the buffer were assumed to be equivalent to those for 10% glycerol within the 1-2% 
precision of this technique. 
 
 
Size exclusion chromatography (SEC) analysis 
 
For SEC analysis, a superdex-200 column (1 × 30 cm, GE Healthcare, Alliance Protein Laboratories, Inc., 
USA) was equilibrated with 0.1 M Na phosphate, 0.2 M arginine, pH 6.8 at a flow rate of 0.5 ml/min or 
with 0.1 M Na phosphate, 0.5 M NaCl, pH 7.2 at a flow rate of 0.2 ml/min. Total 400 µg T-Sirt3 protein 
was loaded onto the column. The protein was eluted with the same buffer. The protein concentration in 
each fraction was monitored at 280 nm. 
 
 
hSirt3-ligand binding assay by Microscale Thermophoresis (MST): 
 
The hSirt3 protein was conjugated with Alexa 647 fluorophore (ThermoFisher Scientific) by NHS ester 
chemistry using manufacturer’s recommendations. Briefly, the conjugation reaction was performed in 20 
mM HEPES, 200 mM NaCl, 0.5 mM TCEP at pH 7.5 buffer. In order to label at-least one lysine per 
protein molecule, a 2:1 molar excess of reactive dye was used over protein. Unconjugated dye was 
removed using a size exclusion chromatography and the labeled protein (Sirt3 NT647) was buffer 
exchanged into 50 mM Tris-HCl pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 5% DMSO, 0.05% 
Pluronic F-127. A final concentration of 2 nM hSirt3 NT647 was titrated with varying concentrations of 
the modulator. The thermophoresis was measured (excitation wavelength 650 nm, emission wavelength 
670 nm, LED-power 15%, laser-power 80%) using a Monolith NT. 115 Pico (NanoTemper Technologies) 
at 25OC in the absence and presence of various concentrations of NAD+, acetylated and de-acetylated 
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peptide (as described in respective figure legends). Dissociation constants (KD were determined with 
GraFit7 (Erithacus Software) by nonlinear fitting using a 1:1 binding model.  
 
 
Effect of Honokiol on hSirt3102-399 deacetylation activity 
 
Reactions were performed in triplicate which included either 2.5 mM NAD+ and 6.25 µM MnSOD 
derived synthetic peptide or 50 µM NAD+ and 600 µM peptide substrate in presence of different 
concentrations of Honokiol (Catalogue # H4914, Sigma), ranging from 0-200 µM, in a buffer containing 
50mM TRIS-HCl, 137mM NaCl, 2.7mM KCl, and 1mM MgCl2, pH 8.0 and 5% DMSO. The reactions 
were started by addition of 5U (1.85 µM) of hSirt3102-399 and incubated at 37OC for 30 minutes. The 
reactions were terminated by adding 2% TFA. The peptide product and substrate were resolved using 
HPLC. 
 
 
General HPLC method for peptide product separation 
 
Separation of MnSOD peptide: We used an Agilent 1260 infinity HPLC system and a ZORBAX C18 
(4.6x250 mm) column were used throughout the study. Deacetylated product was formed from the 
enzymatic reactions were separated using gradient comprising 10% acetonitrile in water with 0.005% 
trifluoroacetic acid  (solvent A) and acetonitrile containing 0.02% TFA (solvent B) using a constant flow 
rate of 1 ml/min. After injection of the sample, HPLC was run isocratically in solvent A for 1 min 
followed by a linear gradient of 0-51% solvent B over 20 minutes.  
 
Separation of other peptides: 
A Beckman System Gold HPLC and a ZORBAX C18 (4.6x250 mm) column were used for other 
peptides. Deacetylated product and substrate were separated using gradient system comprising 0.05% 
aqueous trifluoroacetic acid (solvent A) and acetonitrile containing 0.02% trifluoroacetic acid (solvent B) 
using a constant flow rate of 1ml/min. Upon injection of the sample the HPLC was run isocratically in 
solvent A for 1 min followed by a linear gradient of 0-51 %B over 20 min. 
In both the cases, after completion of the gradient, column was washed with 100% solvent B and then 
equilibrated with 100% solvent A. The detector was set at 214 nm to detect the deacetylated peptide 
product, and the substrate. The amount of product produced was derived from the percent of product 
generated during the reaction. The percent of product produced was calculated by dividing the product 
peak area over the total area. We used GraphPad Prism software (GraphPad Software, Inc, CA) to fit the 
data. 
 
 
Effect of DHP1 on hSirt3102-399 deacetylation activity 
  
To assess the effect of DHP1on hSirt3102-399 deacetylase activity, we incubated 5U hSirt3 with 500 µM 
NAD+, 250 µM fluorolabeled peptide (FdL2 peptide, Enzo Life Sciences Farmingdale, NY, USA) with 
varying concentrations of DHP1 (0-100 µM) in a buffer containing 50 mM Tris/Cl, pH 8.0, 137 mM 
NaCl, 2.7 mM KCl, 1 mM MgCl2, and 1 mg/mL BSA. The reactions were carried out for 60 minutes at 
37OC and terminated by adding 1X Developer (Enzo Life Sciences). The fluorescence produced was 
measured (Excitation/Emission: 355/455 nm) using TECAN plate reader (TECAN Infinite M200 PRO, 
Switzerland, Tecan Group Ltd). For measuring the hSirt3102-399 deacetylase activity in presence of both 
NAM (50 µM) and DHP1 (0-50 µM), the reactions were carried out as described above but the FdL2 
peptide concentration was changed to 100 µM. 
  
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/027243doi: bioRxiv preprint 

https://doi.org/10.1101/027243


37 
 

hSirt3102-399 kinetic analysis using  Fluorolabeled Peptide 
 
We determined the steady state kinetic parameters of hSirt3102-399 deacetylation using fluorolabeled FdL2 
peptide. The enzymatic reactions were carried out similar to as described above. For initial velocity 
determination, we performed the reaction at different NAD+, and 100 µM FdL2 peptide. We terminated 
the reactions at specified time by adding the 1X developer. After the completion of the reaction, the 
fluorescence intensity was measured on TECAN microplate reader.  The raw data were fitted to the model 
equations equation using GraphPad Prism (GraphPad Software, Inc, CA) to obtain the kinetic constants.  
 
 
Effect of DHP1 and 2 on hSirt3102-399 deacetylation activity 
 
Sirt3 enzyme reactions were performed to assess the effect of DHP1 and 2 using p53 derived peptide. We 
incubated different concentrations of DHP2 with either 3 mM NAD+ and 10 µM p53 derived unlabeled 
peptide or 3 µM NAD+ and 250 µM peptide substrates in presence of different concentrations of DHP2, 
ranging from 0-400 µM. The reaction buffer contained 50 mM TRIS-HCl, 137 mM NaCl, 2.7 mM KCl, 
and 1 mM MgCl2, pH 8.0. The reactions were started by addition of 5U hSirt3102-399 and incubated at 
37OC for 30 minutes. The reactions were terminated by adding 2% TFA final then were resolved on C18 
column as described above. For reaction with DHP1, 50 µM of DHP1 was used.  
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Appendix 
 
 

 
 
Figure A1. Nicotinamide adenine dinucleotide chemical structures. (A) c-NAD+ ; (B) NAD+  
 
 
 
 
Time series fitting  
 
 
For the MnSOD substrate, a single exponential model fit poorly at times between 0 and 40 mins. The time 
series data displayed a two phase behavior, one phase between 0 and up to 10 mins, the latter being the 
measurement time of the first data point. For this system, a single exponential fit would average 
properties of the first and second phase s, which would not provide an accurate steady state rate estimate. 
Ultimately the sampling frequency is too low for more accuracy than a double exponential fit and for 
accurate estimation of the time constant of convergence to the steady state. Example double exponential 
fittings are shown in the insets of Fig. 7. 
In this regard, further analysis is needed to determine whether there is dynamic pre-steady state activation 
in the presence of HKL, for example through carrying out non-steady state experiments at high [E]0 and 
low [NAD+]. 
 
Also, in order to assess the accuracy of steady state rate calculations for this system, we  tested for 
product inhibition by adding exogenous O-acetylated ADP ribose to the system and evaluating the effect 
on the time series curve. The results are presented in Fig. A2.  
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Figure A2. Investigation of OAADPr product inhibition. The deaceylation reactions were performed at 
[NAD

+
]=100µM, [MnSOD K122]=600µM in the presence of 2.5 µM OAADPr (A) 0µM NAM and 0µM HKL 

(B) 100µM NAM and 200µM HKL. The product formation was monitored by HPLC at desired time points 
(0, 10, 30, 40, 80, 120min). The time series were fitted in single exponential function in Prism. 
 
 
 
Comparing the effects of saturating HKL and saturating Ex-527 [17] on SIRT3 activity, due to the 
substantial reduction in coproduct dissociation rate (steady state  kcat close to 0), saturating Ex-527 
effectively constitutes "single hit" conditions wherein each enzyme can only turnover products once. This 
is not the case for saturating HKL, where activity remains. 
 
Following system identification of all rate parameters in the steady state model, the rate constant for the 
limiting chemistry step in stage 1 can be identified based on non-steady state experiments and the 
analytical solution for the time series dynamics. The time series data and model fittings suggest that at 
low [NAD+], the pre-steady state turnover rates are faster than the turnover rates at steady state and 
implied by kcat/Km. This results in the initial deacetylation rates under these conditions being much closer 
in the absence vs presence of HKL compared to the estimated steady-state rates. Note that kcat/Km is only 
applicable under steady state conditions and not at pre-steady conditions such as those at small times or 
very low [NAD+]. Although we cannot conclusively state the causes of the closer rates of MnSOD 
deacetylation in the pre-steady state phase without further analysis,  
, the fact that SIRT3/MnSOD has a fast pre-steady state phase would mean product release rate 
improvement is a goal of hit to lead evolution.  
 
Note that the pre-steady state phase is not detectable from time series data for the p53-AMC substrate. 
It is possible that product release is not rate limiting for this substrate. In that case we would expect the 
reduction in vmax to be caused by reduction in the rate constant for the slowest chemistry step in stage 2; 
but as noted in the text, evidence was to the contrary for MnSOD substrate.. Alternatively, if product 
release is rate limiting, the latter chemistry step rate may be closer in magnitude to that of product release 
than in the case of MnSOD.  
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Substrate dependence of HKL modulation of  SIRT3 
 
 
 
 
Table A1.  Model parameter estimates from global nonlinear fitting of mixed inhibition for SIRT3-FdL in 
the presence and absence of HKL. [E0] = 3.05 µM  
 
 
 
 
 

 0µM HKL 200µM HKL 
Vmax 0.3923 0.08347 
Alpha 4.007 ~ 3.727e+107 

Ki 24.52 18.14 
Km 1214 846 

Std. Error 
Vmax 0.01506 0.002208 
Alpha 2.111 ~ 

Ki 4.154 3.388 
Km 107.5 61.85 

95% CI (profile likelihood) 
Vmax 0.3597 to 0.4311 ??? 
Alpha 1.373 to 32.9 (Very wide) 

Ki 17.05 to 38.51 ??? 
Km 986.7 to 1500 ??? 

Goodness of Fit 
Degrees of Freedom 8 8 

R square 0.9961 0.996 
Absolute Sum of 

Squares 0.0002103 0.00001222 

Sy.x 0.005127 0.001236 
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Figure A3. Double reciprocal plots for deacylation initial rate measurements of saturating substrate 
peptide (FdL) in the presence of different concentrations of NAM with (A) 0 μM HKL; (B) 200 µM HKL. 
The enlargement of the intersection points were provided as insets (a) and (c). The time series plot of mM 
product formed vs. time were provided as insets (b) and (d). 
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Figure A4. Double reciprocal plots for deacylation initial rate measurements of saturating substrate 
peptide (FdL) in the absence and presence of Honokiol with (A) 0 uM NAM; (B) 25uM NAM. The zoom in 
of insect point with x,y values were provided as insets. 
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False positive testing of labeled assays 
 
 

 
 
Figure A5. Chemical structures of the sirtuin test compounds.  (A) N-Benzyl-3, 5-dicar-bethoxy-4-
phenyl-1, 4-dihydropyridine (DHP-1). (B) N-Benzyl-3, 5-dicarboxy-4-phenyl-1, 4-di-hydropyridine (DHP-2). 
 
 

 
DHP-1 (Fig A5A) can be dissolved in reaction buffer at 50uM, but only in the form of a metastable 
solution. Measurement of DHP-1’s solubility using the above protocol revealed that it is 
thermodynamically insoluble. By mutating the ester groups in DHP-1 to carboxylic acid groups, we 
obtain the mutated compound DHP-2 (Fig. A5B). In contrast to DHP-1, DHP-2 is thermodynamically 
soluble (Table A2):  
 

 
Table A2. Solubility of DHP-2 in different % DMSO/HDAC solution. 
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The solubility of Honokiol was also assessed with this protocol (Table A3): 

 

Table A3. Solubility of Honokiol in different % DMSO/HDAC solution. 

 
 
Autofluorescence contributes to what is apparently false-positive activation of Sirt3 by the DHP-1 and 
DHP-2 compounds. A recent study [20,21] suggested that DHP-1 and 2 were a potent Sirt3 activator 
using FdL drug discovery kit. However, our results showed that DHP-1 and 2 emit light at wavelengths of 
440- 460nm, same as the fluorophore (AMC) used in the FdL drug discovery kit (Fig. A8).  The strong 
autofluorescence signal interferes with the readout from the real deacetylation reaction. Standard curves 
in the presence of different concentrations of DHP-1 (not shown) revealed that (1) the slope changes with 
varying concentration of [DHP-1]; (2) poor linear correlation was observed at higher [DHP-1]s. Those all 
indicated that the subtracting baseline fluorescence background did not clear out the autofluorescence 
effect. Similar effects were observed for DHP-2, where reference [20,21] reported activation under the 
conditions tested here (presumably using a single standard curve), whereas we observed apparent 
inhibition using the FdL assay at these and higher concentrations using a concentration-dependent 
standard curve.   Fig. A7 shows the divergence between dose response curves collected for DHP-2 using a 
label-free HPLC assay vs the labeled FdL assay. The HPLC assay showed no significant activity 
modulation at any of the tested concentrations. This divergence was not observed for HKL, which does 
not display autofluorescence at the detection wavelength of the FdL assay (Fig. A6).  
 
 

 
Figure A6. Comparison of dose response of HKL for FdL peptide using label-free HPLC assay and 
labeled FdL assay. (A) Saturating FdL peptide (250uM) and un-saturating NAD+(25uM) (N=2); (B) high 
NAD+ (3000uM) and un-saturating FdL peptide (30uM) (N=2) in the presence of different concentrations 
of HKL range from 0-350uM using label-free HPLC (red) and labeled FdL assay (blue).  
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Figure A7. Comparison of dose response of DHP2 for FdL peptide using label-free HPLC assay 
and labeled FdL assay. (A) Saturating FdL peptide (250uM) and un-saturating NAD+ (10uM) (N=2); (B) 
high NAD+ (3000uM) and un-saturating FdL peptide (3uM) (N=2) in the presence of different 
concentrations of DHP2 range from 0-400uM using label-free HPLC (red) and labeled FdL assay (blue). 
 
 
 
 
 
 

 
 
Figure A8. Auto-fluorescence scan for (A) DHPs and (B) HKL were performed on a multifunctional 
microplate reader (TECAN Infinite M200 PRO, Switzerland, Tecan Group Ltd.) with setting of Ex=355nm, 
Em=330-600nm, and Gain = 45. The 100uM of modulator sample solutions were prepared in either 
DMSO (DHP1/HKL) or HDAC (DHP2) based on their solubility (Table 3 and 4).   
 
 
 
Note that the Sirtainty assay used in [21] also displays autofluorescence in the target wavelength range.   
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Expressions for cij’s in equation (1): 
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With these, the expressions for the steady state constants in equation (3) follow from 
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The rapid equilibrium segments expressions for the steady-state concentrations of the species in the 
sirtuin reaction mechanism depicted in Fig. 3 are: 
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