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Abstract

Understanding the structure and dynamics of cortical connectivity is vital
to understanding cortical function. Experimental data strongly suggest
that local recurrent connectivity in the cortex is significantly non-random,
exhibiting, for example, above-chance bidirectionality and an overrepresenta-
tion of certain triangular motifs. Additional evidence suggests a significant
distance dependency to connectivity over a local scale of a few hundred
microns, and particular patterns of synaptic turnover dynamics, including
a heavy-tailed distribution of synaptic efficacies, a power law distribution
of synaptic lifetimes, and a tendency for stronger synapses to be more
stable over time. Understanding how many of these non-random features
simultaneously arise would provide valuable insights into the development
and function of the cortex. While previous work has modeled some of the
individual features of local cortical wiring, there is no model that begins
to comprehensively account for all of them. We present a spiking network
model of a rodent Layer 5 cortical slice which, via the interactions of a
few simple biologically motivated intrinsic, synaptic, and structural plastic-
ity mechanisms, qualitatively reproduces these non-random effects when
combined with simple topological constraints. Our model suggests that
mechanisms of self-organization arising from a small number of plastic-
ity rules provide a parsimonious explanation for numerous experimentally
observed non-random features of recurrent cortical wiring. Interestingly,
similar mechanisms have been shown to endow recurrent networks with
powerful learning abilities, suggesting that these mechanism are central to
understanding both structure and function of cortical synaptic wiring.

Author Summary

The problem of how the brain wires itself up has important implications
for the understanding of both brain development and cognition. The
microscopic structure of the circuits of the adult neocortex, often considered
the seat of our highest cognitive abilities, is still poorly understood. Recent
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experiments have provided a first set of findings on the structural features
of these circuits, but it is unknown how these features come about and
how they are maintained. Here we present a neural network model that
shows how these features might come about. It gives rise to numerous
connectivity features, which have been observed in experiments, but never
before simultaneously produced by a single model. Our model explains
the development of these structural features as the result of a process of
self-organization. The results imply that only a few simple mechanisms
and constraints are required to produce, at least to the first approximation,
various characteristic features of a typical fragment of brain microcircuitry.
In the absence of any of these mechanisms, simultaneous production of all
desired features fails, suggesting a minimal set of necessary mechanisms for
their production.

Introduction 1

The patterns of synaptic connectivity in our brains are thought to be the 2

neurophysiological substrate of our memories, and framework upon which 3

our cognitive functions are computed. Understanding the development of 4

micro-structure in the cortex has significant implications for the understand- 5

ing of both developmental and cognitive / computational processes. Such 6

insight would be invaluable in understanding the root causes of cognitive 7

and developmental impairments, as well as understanding better the nature 8

of the computations realized by the cortex. It is believed that a small pop- 9

ulation of strong synapses forms a relatively stable backbone in recurrent 10

cortical networks – perhaps the basis of long-term memories – while a larger 11

population of weaker connections forms a more dynamic pool with a high 12

rate of turnover [1–3]. It has been shown that much of the lateral recurrent 13

connectivity of the layers of the cortex is significantly non-random [4–6], 14

with a focus on layer 5 (L5), as this is more conventionally examined via slice 15

studies. It is an open question which non-random features are developed 16

as a result of direct genetic programming, neural plasticity under struc- 17

tured input, and spontaneous self-organization. We examine here several 18

noted non-random features of recurrent cortical wiring that we believe can 19

be explained as the result of spontaneous self-organization — specifically, 20

self-organization driven by the interaction of multiple neural plasticity mech- 21

anisms. The features we will examine are the heavy-tailed, log-normal-like 22

distribution of synaptic efficacies or dendritic spine sizes [6–10] and their 23

associated synaptic dynamics, and the overrepresentation of bidirectional 24

connectivity and certain triangular graph motifs [6]. 25

The interaction of multiple plasticity mechanisms, such as synaptic 26

scaling and Hebbian plasticity has been studied before [11–14], with results 27

suggesting that the interactions for such mechanisms are useful for the 28

formation and stability of patterns of representation. However, we desire a 29

more detailed look at how such self-organization might take place in the 30

cortex. The predecessor to the model we use to address these issues is 31

the Self-Organizing Recurrent Neural Network, or SORN [11]. The SORN 32

is a recurrent network model of excitatory and inhibitory binary neurons 33

which incorporates both Hebbian and homeostatic plasticity mechanisms. 34

Specifically, it incorporates binarized spike timing dependent plasticity 35

(STDP), synaptic normalization (SN), and intrinsic homeostatic plastic- 36

ity (IP). Certain variants also employ structural plasticity. It has been 37
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demonstrated to be computationally powerful and flexible for unsupervised 38

sequence and pattern learning, presenting apparent approximate Bayesian 39

inference and sampling-like behavior [15–17]. Additionally, it has been used 40

to reproduce synaptic weight distributions and growth dynamics observed 41

in the cortex [18]. 42

In this paper, we introduce the LIF-SORN, a leaky integrate-and-fire 43

based SORN-inspired network model that incorporates a spatial topology 44

with a distance-dependent connection probability, in addition to more 45

biologically plausible variants of and extensions to the plasticity mechanisms 46

of the SORN. The LIF-SORN models a recurrently connected network 47

of excitatory and inhibitory neurons in L5 of the neocortex, or a slice 48

thereof. This new model is the first to reproduce numerous elements of 49

the synaptic phenomena examined in [10], [19], and [18] in combination 50

with the sort of non-random graph connectivity phenomena observed in [6]. 51

The simultaneous reproduction of all these elements with a minimal set of 52

plasticity mechanisms and constraints represents an unprecedented success 53

in explaining noted features of the cortical micro-connectome in terms of 54

self-organization. 55

Materials and Methods 56

Simulation Methods. 57

We randomly populate a 1000 × 1000 µm grid with 400 LIF neurons with 58

intrinsic Ornstein-Uhlenbeck membrane noise as the excitatory pool, and 59

a similar (though faster refracting) population of 80 noisy LIF neurons 60

as the inhibitory pool. All synapses are inserted into the network with 61

a gaussian distance-dependent connection probability profile with a half- 62

width of 200 µm. This particular profile is chosen as a middle ground 63

between the results of [6], which finds no distance dependence up to a scale 64

of 80 - 100 µm, and the results of [5], which finds an exponential distance 65

dependence at a scale of 200 - 300 µm. Recurrent excitatory synapses 66

are not populated, as they will be grown “naturally” with the structural 67

plasticity. Excitatory to inhibitory and inhibitory to excitatory synapses 68

are populated to a connection fraction of 0.1 and inhibitory recurrent 69

synapses to a connection fraction of 0.5, in approximate accordance with L5 70

experimental data [20]. Excitatory to inhibitory, inhibitory to excitatory, 71

and inhibitory to inhibitory connections are given fixed efficacies and 72

connectivities. Recurrent excitatory connectivity is begun empty and is 73

to be grown in the course of the simulation. The relevant parameters are 74

summarized in Tables 1 and 2. 75

Table 1. Basic network parameters.

parameter value
Nexc 400
Ninh 80
sheet size 1000 × 1000 µm
connection probability profile 200 µm half-width Gaussian

We use the Brian spiking neural network simulator [21]. The neuron 76

model is a leaky integrate-and-fire (LIF) neuron, the behavior of which is 77
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Table 2. Basic connectivity parameters. * indicates growth via
plasticity

parameter EE EI IE II
connection fraction target 0.1* 0.1 0.1 0.5
connection strength at insertion 0.0001 mV* 1.5 mV -1.5 mV -1.5 mV
conduction delay 1.5 ms 0.5 ms 1.0 ms 1.0 ms

defined by: 78

dV

dt
= −V − El

τ
+
σξ√
τ

, (1)

where V is the membrane potential, El is the resting membrane potential, τ 79

is the membrane time constant, σ is the standard deviation of the intrinsic 80

membrane noise, and ξ is the Ornstein-Uhlenbeck process which drives 81

the noise. In our model, the variance of the noise is 5 mV. When V 82

reaches a threshold VT , the neuron spikes, and the membrane potential V is 83

returned to Vreset (which may be lower than El in order to provide effective 84

refractoriness). The parameters used are given in Table 3. 85

Table 3. LIF neuron parameters.

parameter value
El -60 mV
τ 20 ms
V exc
reset -70 mV
V inh
reset -60 mV

σ
√

5 mV
VT variable via IP

All parameters are shared between excitatory and inhibitory units unless
otherwise denoted by superscripts “exc” and “inh.”

A simple transmitting synapse model is used, connecting neuron i to 86

neuron j. When neuron i spikes, the synaptic weight Wij is added to 87

the membrane potential V of neuron j following the conduction delay 88

for the type of connection (as in Table 2). To improve network activity 89

stability, this synaptic weight is modulated by a short term plasticity (STP) 90

mechanism [22] implementing a rapid synaptic depression combined with a 91

slightly slower facilitation. The STP mechanism consists of a two variable 92

system: 93

dx

dt
=

1− x
τd

,
du

dt
=
U − u
τf

. (2)

Upon each presynaptic spike, the variables are updated according to the 94

following rules: 95

x→ x(1− u), u→ u+ U(1− u) (3)

The synaptic weight is then modulated as W effective
ij = u × x ×Wij . We 96

select U = 0.04, τd = 500 ms and τf = 2000 ms as the respective depression 97

and facilitation timescales, corresponding to approximate experimentally 98

observed values [22, 23]. The presence of the STP adds a significant degree 99

of stability to network activity and provides a more robust paramter range 100

for other mechanisms, reducing the need for parameter tuning. 101
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As in the original binary SORN, we include multiple plasticity mecha- 102

nisms. The first is exponential spike timing dependent plasticity (STDP), 103

which is executed at a biologically realistic timescale [24–29]. This defines 104

the weight change to a synapse caused by a pair of pre- and post-synaptic 105

spikes as in Equations 4, 5, and 6: 106

∆wj =

Nf∑
f=1

Nn∑
n=1

W
(
tni − t

f
j

)
(4)

107

W (x) = A+ exp (−x/τ+), x > 0 (5)
108

W (x) = A− exp (x/τ−), x < 0. (6)

Here, j indexes the synapse, f indexes presynaptic spikes, and n indexes 109

postsynaptic spikes. A+ and A− are the maximal amplitudes of the weight 110

changes, and τ+ and τ− are the time constants of the decay windows. Values 111

are set to approximate experimental data; in particular, round numbers were 112

chosen that roughly approximate data in [24] and [25], with τ+ = 15 ms, 113

A+ = 15 mV, τ− = 30 ms, and A− = 7.5 mV. We use the “nearest 114

neighbor” approximation in order to efficiently implement this online, in 115

which only the closest pairs of pre- and post-synaptic spikes are used. This 116

is implemented in an event-based fashion, using a spike memory buffer with 117

a timestep equal to that of the simulation itself (0.1 ms) and with the full 118

calculation only evaluated upon a spike. 119

In the brain, several mechanisms appear to regulate the amount of 120

synaptic drive that a neuron is receiving. [30] demonstrated the phenomenon 121

of synaptic normalization during long-term potentiation (LTP). The summed 122

areas of the synaptic active zones per micrometer of dendrite stay roughly 123

constant, but the active zone area increases for some synapses while the total 124

number of synapses per micrometer of dendrite decreases. This suggests 125

that synaptic efficacies are mainly redistributed over the dendritic tree 126

during the typical time course of an LTP experiment, but the sum of these 127

efficacies (roughly corresponding to the sum of the active zone areas) stays 128

approximately constant. Another phenomenon regulating the synaptic drive 129

a neuron is receiving is homeostatic synaptic scaling [31], which is thought 130

to regulate synaptic efficacies in a multiplicative fashion on a very slow time 131

scale (on the order of days) in order to maintain a certain desired level of 132

neural activity. For the sake of simplicity, we use here only a multiplicative 133

form of normalization that drives the sum of synaptic efficacies to a desired 134

target value on a fast time scale: 135

Wi → Wi

(
1 + ηSN

(
Wtotal∑N
j Wij

− 1

))
. (7)

Here, Wi is the vector of incoming weights for any neuron i, Wij are the 136

weights of the individual synapses, Wtotal is the target total input for 137

each neuron, and ηSN is a rate variable which, together with the size of the 138

timestep, determines the timescale of the normalization. Wtotal is calculated 139

before the simulation run for each of the four types of synapse (E to E, E 140

to I, I to E, and I to I) by multiplying the connection fraction for that type 141

of connection by the mean synapse strength and the size of the incoming 142

neuron population. The timescale we use is on the order of seconds and 143

therefore accelerated from biology; corresponding to an application of the 144

process once per second and ηSN = 1.0. We have tested it as well applying 145
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the normalization at every single simulation timestep, and with smaller 146

values for ηSN, which, except for very small values of ηSN, has no significant 147

effect on any of our observables. The accelerated timescale is sufficiently 148

separated from that of the STDP, which operates on the order to tens of 149

milliseconds, to avoid unwanted interactions while decreasing the necessary 150

simulation time. 151

Neuronal excitability is regulated by various mechanisms and over dif- 152

ferent time scales in the brain. On a very fast milliseconds time scale, a 153

neuron’s refractory mechanism prevents it from exhibiting excessive activity 154

in response to very strong inputs [32]. This is inherently included in the neu- 155

ron model we use. At a somewhat slower time scale, spike rate adaptation 156

reduces many types of neurons’ responses to continuous drive [33]. Given 157

that our model lacks any strong external drive, we neglect this. At very 158

slow time scales of hours to days, intrinsic plasticity mechanisms change a 159

neuron’s excitability through the modification of voltage gated ion channels 160

that can modify its firing threshold and the slope of its frequency-current 161

curve in a homeostatic fashion. Additional regulation of neuronal activity 162

has been observed over multiple timescales [34, 35]. In order to capture 163

the essence of such mechanisms in a simple fashion, we adopt a simple 164

regulatory mechanism for the firing threshold, which, in combination with 165

the previously discussed STP mechanism, phenomenologically captures the 166

majority of these adaptive behaviors over short and medium timescales. 167

Though relatively stable network activity can be achieved without this 168

mechanism, it requires hand tuning of thresholds dependent on other net- 169

work parameters, which we wish to avoid. The mechanism is implemented 170

at discrete time steps in the following way: 171

VT → VT + ηIP (Nspikes − hIP) (8)

172

Nspikes → 0. (9)

Here, VT is the threshold for an individual neuron, ηIP is a learning rate, 173

hIP is the target number of spikes per update interval, and Nspikes is the 174

number of times a neuron has spiked since the last time a homeostatic 175

plasticity step was executed. The right arrow indicates that the counter 176

is reset after each evaluation of the window. This operation is performed 177

at a biologically accelerated timescale. The desired target rate is chosen 178

to be 3.0 Hz, so hIP = 3.0 Hz× 0.1 ms = 0.0003 and ηIP is set to 0.1 mV. 179

In our implementation, the operation is performed at every timestep of 180

the simulation (0.1 ms), so Nspikes effectively becomes a binary variable 181

and 9 becomes irrelevant. In this case, the action of the mechanism is that 182

every spike increases the threshold by a small amount, and the absence of a 183

spike decreases it by a small amount. Like the SN process, the accelerated 184

(relative to biology) timescale is sufficiently separated from the timescale of 185

the STDP to avoid unwanted interactions while decreasing the necessary 186

simulation time. 187

We implement structural plasticity for the recurrent excitatory synapses 188

via simultaneous synaptic pruning and synaptic growth. Synaptic pruning 189

is implemented in a direct fashion in which synapses whose strengths 190

has been driven below a near-zero threshold (0.000001 mV) by the other 191

plasticity mechanisms are eliminated. At the same time, new synapses 192

are stochastically added with a strength of 0.0001 mV, according to the 193

distance-dependent per-pair connection probabilities, at a regular rate. This 194

is done at an accelerated timescale by adding a random number of synapses 195
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(drawn from an appropriately scaled normal distribution) once a second. A 196

mean growth rate is hand-tuned to lead to the desired excitatory-excitatory 197

connection fraction. In this case, the mean growth rate is 920 synapses 198

per second (with standard deviation of
√

920) and the target connection 199

fraction is 0.1 [6, 20]. The synapses are added according to pre-calculated 200

connection probabilities determined by the gaussian connectivity profile 201

described in the first paragraph of this section. Like the previous two 202

plasticity mechanisms, the acceleration of the timescale from biology is 203

justified by the principle of separation of timescales. At certain points in 204

the Results and Supplementary Material, the results of the simulation are 205

compared to those of a purely topological network. This is generated simply 206

by performing the batch structural growth operation, as described, a single 207

time, but adding instead a number of connections equal to the total number 208

of connections at the target connection fraction. 209

Results 210

Network growth and abundance of bidirectional connec- 211

tions 212

As the fully simulated network runs, new recurrent excitatory synapses are 213

allowed to grow and, if their strengths are driven close to zero, be pruned. 214

The network first enters a growth phase, which lasts 100-200 seconds of 215

simulation time, and then a stable phase in which the growth rate balances 216

the pruning rate. The network is allowed to run for 500 seconds and the 217

state of the excitatory connectivity and the dynamics of the connection 218

changes during the final epoch are then examined. 219

We first examine, alongside the smooth growth of the network, the preva- 220

lence of bidirectional connections as compared to chance, a phenomenon 221

noted to be significantly above-chance in [4] and [6], as shown in Figure 222

1. We observe for the total connection fraction a reliable value of 0.1, as 223

selected. We observe a stable phase value of 0.018 for the bidirectional 224

connection fraction, translating to a factor of 1.83 above chance. Our 225

control for chance is the expected number of bidirectional connections for 226

an Erdős-Rényi graph containing the same number of nodes and edges as 227

the simulated network. For comparison purposes, a value of approximately 228

4 times chance is observed in [6]. We note that an otherwise equivalent 229

non-topological network, in which the probability of connection between 230

neurons is uniform rather than distance-dependent, produces a slight un- 231

derrepresentation of bidirectional connections, reinforcing the well-known 232

expectation that classical STDP, in the absence of other factors, favors 233

unidirectional connectivity. 234

Regarding the growth of the network and the stabilization of its activity, 235

we note one additional thing. In Figure 2, we observe that the distribution 236

of interspike intervals (ISIs) and their coefficients of variation (CVs) follow 237

the properties of an approximately Poisson-like spiking with an effective 238

refractory period, as is observed in cortical circuits. That is to say, the 239

distribution of ISIs follows an exponential decay with a distortion, induced 240

by the refractory period, at the low end, and that the CVs of the ISIs tend 241

to be close to one. 242

We would like to briefly consider how a model using classical STDP, 243

which is known to drive the formation of unidirectional connections, can still 244
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Figure 1. Evolution of total and bidirectional connection
fraction with simulation time. Connection fraction evolution for
plastic networks with and without topology, as well as flat values for
topology only. (top) Growth and subsequent stabilization of the connection
fraction of the network with simulation time. (middle) Growth of the
bidirectional connection fraction. (bottom) Evolution of the bidirectional
connection fraction with time as it relates to chance level (i.e. compared to
the value for an Erdős-Rényi graph with the same number of nodes and
edges). Data averaged over ten trials; standard deviation is shaded.

produce such an abundance of bidirectional connections. In this model, the 245

existence of clustering topology strongly drives the initial overrepresentation 246

of bidirectional connections (as well as likely seeding higher order clustering 247

effects, which are then selected and tuned via the plasticity mechanisms, 248

and will be examined later). A simple mathematical argument will serve to 249

demonstrate this (and, in fact, that any inhomogeneity in unidirectional 250

connection probability will lead to an overrepresentation of bidirectional 251

connections). Consider a single neuron in the center of a two dimensional 252

sheet (this generalizes to volumes as well) which is populated with additional 253

neurons at a uniform density. Assume that the central neuron has formed 254

distance-dependent but otherwise random connections to the other neurons 255

as follows: There is a local neighborhood containing a fraction f of all 256

the neurons in the sampled area which have been connected with a high 257

probability ph, while the remaining area contains the fraction 1− f of all 258

neurons, which connect with a lower probability pl. We can then treat 259

the connection probability as a random variable P which takes the value 260

ph with probability f and pl with probability 1 − f (this generalizes as 261

well to additional neighborhoods, and, as the number of neighborhoods 262

goes to infinity, to a continuous density of connection probability). The 263

average overall connection probability of the neuron is then given by E[P ] = 264

phf + pl(1− f). We now want to consider the average probability of finding 265

a bidirectional connection. We assume that all neurons share the same 266

distance-dependent connection probability, and therefore, the probability 267

that a neuron within the local neighborhood has formed a connection to the 268

central neuron is the same ph with which the central neuron is likely to form 269

a connection to the neuron in the local neighborhood. Thus, the probability 270

of a bidirectional connection in the local neighborhood is p2h, and by the 271

same reasoning, the probability of forming a bidirectional connection with 272

a neuron outside the local neighborhood is p2l . Then, the average overall 273
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Figure 2. Distributions of ISIs and CVs thereof during
stabilized network activity. (top) Pooled (over all neurons)
distribution of ISIs with exponential fit, suggesting Poisson-like behavior
with a refractory period. Individual neuron distributions have been tested
to be similar. (bottom) Distribution of CVs of ISIs, suggesting Poisson-like
behavior. Single trial data.

bidirectional connection probability of the neuron is given by E[P 2] = 274

p2hf + p2l (1− f). Since the squaring operation is convex, Jensen’s inequality 275

applies, stating that for any convex function g(P ) of a random variable P , 276

g (E[P ]) ≤ E[g(P )]. It then follows that with g(P ) = P 2, E[P 2] ≥ E[P ]2. 277

Thus, bidirectional connections can occur more frequently than would be 278

expected from the average unidirectional connection probability. Equality 279

holds if and only if P is constant. It follows then that any inhomogeneity 280

in unidirectional connection probability will lead to an overrepresentation 281

of bidirectional connections. In the case of our model, the inhomogeneity is 282

the distance-dependent connection probability, though any number of other 283

factors could come into play. 284

For the above argument to apply to a structurally dynamic model 285

such as ours, all that need be true is that bidirectional connections are 286

added at a sufficiently high rate compared to their rate of removal due 287

to STDP and pruning. The high number of bidirectional connections 288

in the purely topological network, the low values for the purely plastic 289

network, and the intermediate number of bidirectional connections for 290

the full network model in Figure 1 serve to demonstrate the competition 291

between the distance-dependent structural plasticity, which tends to boost 292

bidirectional connectivity, and STDP and pruning, which tend to reduce 293

bidirectional connectivity. 294

Markov model of bidirectional overrepresentation 295

Furthermore, this competition can be captured and described by a sim-
ple Markov model in which each bidirectional connection pair develops
independently of all the others.l. The model considers a pair of excitatory
neurons and has three states {U, S,D} representing that the pair of neurons
is either unconnected, singly connected, or doubly connected, respectively.
We define transition probabilities denoting the probability of transitioning
from one state to another during a fixed time interval. For example, pUS
is the probability for transitioning from the unconnected state U to the
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singly connected state S. The transition matrix is the matrix formed by all
transition probabilites and is given by:

T =

 pUU pUS 0
pSU pSS pSD

0 pDS pDD

 ,

given the assumption that transitions from the unconnected state U to
the doubly connected state D and vice versa are sufficiently unlikely to be
considered negligible. Since the sum of the elements in each row of T has
to equal one, T can be rewritten as:

T =

 1− pUS pUS 0
pSU 1− pSU − pSD pSD

0 pDS 1− pDS

 ,

which depends on the four parameters pUS , pSU , pSD, and pDS . If all of
them are greater than zero, then the Markov Chain is regular and we can
find its stationary distribution by finding the left Eigenvector of T :

(u s d)

 1− pUS pUS 0
pSU 1− pSU − pSD pSD

0 pDS 1− pDS

 = (u s d)

with u+ s+ d = 1. The resulting system of linear equations can be written
as:

u = 1− s− d

s =
pUS
pSU

u ≡ αu

d =
pSD
pDS

s ≡ βs = αβu ,

where we have defined α = pUS/pSU and β = pSD/pDS . Thus, the behavior
of the system depends only on the two transition probability ratios α and
β. We can express u as a function of α and β to arrive at the final solution:

u =
1

1 + α(1 + β)

s = αu

d = αβu .

We can now consider the conditions under which the model leads to an
overrepresentation of bidirectional connections. The overall connection
probability in the Markov model is p = s/2 + d. For a random graph, we
then expect:

urandom = (1− p)2

srandom = 2p(1− p)
drandom = p2 .

We consider an overrepresentation of bidirectional connections to be in
comparison to a random graph. Therefore, using the previously defined
transition ratios and a bit of algebra, we arrive the following expression for
the overrepresentation A:

A =
d

drandom
=
β + αβ(1 + β)
α
4 + αβ(1 + β)
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We can then empirically check this Markov model against our simulation. 296

Counting and averaging connections and transitions over the last 100 seconds 297

of a standard 500 second run of our model, we obtain α = 0.194 and 298

β = 0.105. This leads the Markov model to predict an overrepresentation 299

of A = 0.180, which is, in fact, the also measured value for the average 300

overrepresentation over the observed time period. 301

Statistics and fluctuations of synaptic efficacies 302

During the growth phase of the simulation, we note the reproduction of 303

some of the results of [19], specifically that during network growth there 304

is a tendency for larger synaptic weights to be more likely to shrink than 305

smaller synaptic weights, as seen in Figure 3. 306

Figure 3. Synaptic change dynamics during network growth.
Synaptic change dynamics during network growth epochs, before
stabilization. Change is over entire epoch. “Bunching” in earliest epoch is
an artifact of normalization under a small number of synapses. Single trial
data.

Once the stable phase is reached, we observe the distribution of synaptic 307

weights via histogramming, as previously stated, in Figure 4. This is in 308

qualitative agreement with the heavy-tailed, log-normal-like shape typically 309

observed in experimental data [6–10]. Several theoretical explanations for 310

this distribution have been proposed, including a self-scaling rich-get-richer 311

dynamic [18] and a confluence of additive and multiplicative processes 312

[36, 37], both of which are consistent with our model. We note that the 313

topology of the network seems to have a minimal effect on this result, as 314

would be expected from the results of [18]. 315

We observe next the synaptic change dynamics in the stable phase of 316

the network. We follow the format used in [10], comparing initial synaptic 317

weight during a test epoch to both absolute and relative changes in synaptic 318

weight, and demonstrate in Figure 5 that strong synaptic weights exhibit 319

relatively smaller fluctuations over time, as experimentally observed [10]. 320

Additionally, this serves to reinforce the earlier success of [18] in modeling 321

such synaptic dynamics as the result of self-organization, and demonstrates 322

that such results carry over into a biologically more realistic model. 323

We examine, as well, the distribution of synaptic lifetimes. It has been 324

predicted that the lifetimes of fluctuating synapses may follow a power 325

law distribution [18]; our model makes this prediction as well. Recent 326
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Figure 4. Log distribution of synaptic weights. The distribution of
the base ten logarithm of synaptic weights for plastic networks with and
without topology. Data averaged over ten trials; error bars are standard
deviation.

experimental evidence supports this prediction [38]. We expand upon 327

previous predictions with two interesting observations. In its current form, 328

our model produces a slope of approximately 5/3 in the stable phase (for 329

comparison, the experimentally observed slope is approximately 1.38). This 330

decreases slightly in the growth phase. Secondly, we have observed as well 331

that the slope can be modified by adjusting the balance of potentiation 332

and depression in the STDP rule, varying between values between 1 and 333

greater than 2, depending on the chosen parameters. For example, doubling 334

the amplitude of the depression term in the STDP rule leads to a slope 335

of approximately 5/2, while halving it leads to a slope of approximately 336

5/4. This is, in retrospect, an intuitive phenomenon. A preponderance 337

of potentiation will lead to synapses being depressed to a value below the 338

pruning threshold less frequently, thereby decreasing the slope of the power 339

law. Similarly, in a depression-dominated scenario, synapses will be driven 340

below the pruning threshold more frequently, leading to a higher power law 341

slope. Returning to the slight decrease in slope during the growth phase, 342

this makes sense, as a reduction in the effective pruning rate is necessary 343

for the network to continue to grow. We believe that with a more extensive 344

investigation of the effects of other model parameters on the power law, 345

the slope of this distribution could be used as a meaningful measure of the 346

potentiation-depression balance in a recurrent cortical network. 347

Motif properties 348

We subsequently examine the prevalence of triadic motifs in the graph of 349

the simulated network. An overrepresentation of certain motifs was noted 350

in [6]. We used a script written for the NetworkX Python module [39,40] 351

to acquire a motif count for the graph of the simulated network. As 352

the overrepresentation of bidirectional connections will trivially lead to 353

an overrepresentation of graph motifs containing bidirectional edges, the 354

control for chance is, in this case, a modified Erdős-Rényi graph with the 355

same number of nodes, same number of unidirectional edges, and same 356

number of bidirectional edges as the graph of the simulated network, with 357

the unidirectional and bidirectional edges being independently populated. 358
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Figure 5. Change in synaptic weight as a function of initial
synaptic weight. The above plots show the distributions of change in
synaptic weight as a function of initial synaptic weight over a ten second
simulation time period. The plots on the left are from the simulated
network and are in electrophysiological units. The plots on the right are
from experiment [10] and are in units of volume as estimated from
fluorescence data. The plots on the top show the absolute change in
synaptic weight / size. The plots on the bottom show the relative change
in synaptic weight / size. Single trial data.

A similar control is used in [6]. We observe a similar pattern of “closed loop” 359

triadic motifs being overrepresented in Figure 7, as experimentally observed 360

in [6]. We note that the results for a non-topological plastic network with 361

classical STDP, in the absence of additional factors, does not, relatively 362

speaking, strongly select for any particular family of motifs. We similarly 363

note that while distance-dependent topology does select for the observed 364

family of motifs, it does not do so at the experimentally observed level. It 365

is only the combination of topology and plasticity that strongly selected 366

for the desired family of motifs while simultaneously producing all other 367

noted effects. Approximate experimental data for comparison was extracted 368

from [6] using GraphClick [41]. 369

Discussion 370

The problem of how the non-random micro-connectivity of the cortex arises 371

is a nontrivial one with significant implications for the understanding of 372

both cognition and development. We attempt, in this paper, to provide 373

insight into this problem by presenting a plausible model by which such 374

non-random connectivity arises as the self-organized result of the interaction 375

of multiple plasticity mechanisms under physiological constraints. Some 376

models attempt to describe elements of the graph structure of the micro- 377

connectome in purely physiological and topological terms [42]. However, 378

such models necessarily lack an active network, and are thus unable to 379

simultaneously account for synaptic dynamics, as our model does. Our 380

model is, of course, a simple model, but the degree to which it accounts for 381

observed non-random features of the typical cortical microcircuit without 382

detailed structural features, metabolic factors, or structured input to drive 383

the plasticity in a particular fashion is highly suggestive in terms of what is 384

necessary at a bare minimum to drive the development and maintenance of 385
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Figure 6. Distributions of synaptic lifetimes. The above plot shows
the distributions of of synaptic lifetimes during the stable phase. Slope is
approximately 5/3. The equivalent slope in the growth phase is slightly less.
Here, we define entries in the growth phase as having synaptic end times of
less than 150 seconds, and entries in the stable phase as having synaptic
start times of greater than 350 seconds. Slopes are approximated via linear
regression to the data points before the drop-off. Single trial data.

the complex microstructure of the brain. 386

As mentioned in the introduction, it is hypothesized that a small back- 387

bone of strong synapses may form the stable backbone of long-term memory. 388

The fact that in our model, strong weights remain stable in the presence 389

of ongoing plasticity and despite significant fluctuations of smaller weights 390

(which has been modeled as a stochastic Kesten process [37]), and the 391

naturalness with which such a dynamic arises out of the interactions of 392

known plasticity mechanisms, is both suggestive and supportive of this 393

theory. On a related note, the heavy-tailed distribution of synaptic effica- 394

cies (often described as log-normal or log-normal-like) is an experimentally 395

observed phenomenon seemingly fitting this narrative [6–10]. A theoretical 396

explanation connecting log-normal firing rates with a log-normal synaptic 397

efficacy distribution was one of the first proposed [43]. However, further 398

studies have suggested that such a firing rate distribution is not necessary 399

to create a heavy-tailed distribution of synaptic efficacies, using either a 400

self-scaling rich-get-richer dynamic [18] or a combination of additive and 401

multiplicative dynamics [36,37]. 402

An additional noted non-random feature of cortical recordings that has 403

been passed over in this model is the observed log-normal distribution of 404

cortical firing rates (touched upon in the previous paragraph). Our intrinsic 405

plasticity mechanism necessarily negates this feature, which may be self- 406

organized via mechanisms not included in our model, such as diffusive 407

homeostasis [44,45]. In order to maximize simplicity, a single target firing 408

rate is chosen for all neurons. This also permits pooling of the ISIs for 409

analysis. Additional testing in which the target firing rate is drawn from a 410

log-normal distribution produces minimal qualitative effects on the observed 411

features (except, trivially, the ISI distribution, see Figure S1). Another 412

issue is that as things stand, the exact statistics of the micro-connectome 413

are difficult to discern – though strong inferences can be made in the 414

right direction – due to inherent sampling biases in paired patch-clamp 415

reconstructions of limited size [46]. It is our hope and belief that advances in 416
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Figure 7. Triadic motif counts as a multiple of chance, corrected
for bidirectional overrepresentation. Triadic motif counts (in the
same order as [6]) for a simulated network as a multiple of chance value.
The counts have been corrected for the observed overrepresentation of
bidirectional connections. Results are shown for a complete network, a
purely topological construction, an equivalent network with no topology,
and approximate experimental data. For the topology-free network, the
count of motif 16 is out of range due to the extremely low expected count
after bidirectionality corrections. Data averaged over ten trials; error bars
are standard deviation. Horizontal axis has been jittered slightly to
increase readability.

fluorescence imaging, automated electron microscopy reconstruction [47,48], 417

and massive multi-unit array recordings will help to alleviate these biases. 418

One might imagine that additional biases may be caused by the relatively 419

small model size of 400 excitatory neurons, when realistic cortical densities 420

would result in thousands of neurons in such an equivalent volume. We 421

have tested the network at much larger sizes of up to 2000 neurons and 422

found no notable qualitative change to our observed results (Figure S2; all 423

other features remain the same as well), so we maintained a relatively small 424

network size to increase computational ease. It should be noted that except 425

for this check, all supplementary checks, tests, and additional analyses were 426

performed with the standard 400 + 80 neuron network size. 427

We have described the formation of the overrepresentation of bidirec- 428

tional connections in terms of the competition between structural growth 429

and structural pruning in the presence of a topological inhomogeneity. 430

Other possibilities for increasing the prevalence of bidirectional connections 431

include an STDP window with an integral greater than zero (i.e. biased 432

toward potentiation), or one in which the asymmetries are finely tuned 433

so that, given the target homeostatic target firing rate, connections are, 434

on the whole, more likely to potentiate (making the STDP window fully 435

symmetrical has, in our model, only a minimal effect). Additionally, more 436

complicated STDP models [50,51] are known to produce overrepresentation 437

of bidirectional connections in high-frequency firing regimes. 438

One other computational study has reproduced similar motif overrepre- 439

sentations, however, this model was significantly more complex and required 440

specific structured input [49]. Some might view the fact that, in this model, 441

the primary driver behind the overrepresentation of bidirectional connec- 442

tions is topology, as a shortcoming. We do not view this as a problem; after 443
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all, topology exists in the cortex and the rest of the study’s results suggest it 444

is an important factor in the self-organization of cortical circuits. There are 445

the previously mentioned mechanisms utilizing non-classical STDP, such 446

as the so-called triplet and voltage rules [50, 51], which, in the presence 447

of high-frequency activity, are capable of producing and maintaining bidi- 448

rectional connections. Introducing such mechanisms into a similar model 449

would be a welcome and interesting future study, and could potentially 450

lead to an even stronger and more precise motif selectivity. To further 451

explain the importance of the various mechanisms we have introduced in 452

self-organization, we have included a brief analysis of the behavior of the 453

network in the absence of individual mechanisms (see Table 4 below and 454

Figures S3 and S4). Essentially, removal of the topology leaves the synaptic 455

dynamics mostly unchanged, but significantly alters the connectivity struc- 456

ture. Removal of either element of structural plasticity, or of STDP (because 457

without depression, no pruning will occur) lead to failure to form (in the 458

case of growth) either divergent network growth (in the case of pruning 459

or STDP). Removal of the STP leads to “epileptic” behavior, resulting in 460

dynamic and structural disruptions. Removal of SN leads to a small subset 461

of synapses experiencing runaway growth, with the others shrinking to near 462

zero and being pruned. Finally, removal of the IP leads to small changes 463

to the structural properties, but requires fine tuning of the thresholds to 464

run even in this regime. Failure to tune the thresholds in this case leads to 465

silent or epileptic networks. 466

Table 4. Results of plasticity mechanism removal. See Figures S4
and S3 for additional illustration.

mechanism removed result
synaptic growth no network formation
synaptic pruning divergent network growth

topological constraints

loss of bidirectional overrepresentation
significant reduction in motif overrepresentation
see Figures 1 and 7

STP “epileptic” behavior leading to structural breakdown

STDP
uncontrolled network growth:
without depression, synapses are not pruned

SN

highly modified motif clustering
strongly unimodal weight distribution at synaptic maximum
(same as what would be normalization target):
would be bimodal, but pole at zero absorbed by pruning

IP

modified motif clustering
reduced connection fraction
requires fine tuning of threshold for stable activity

Additionally, with the aim of understanding the relationship between the 467

activity correlation, the synaptic weights, and the intersomatic separation, 468

a Spearman’s rank correlation analysis was performed on such data from 469

an example trial (results in Table S1). In summary, a strong and highly 470

significant positive correlation was found between the spike correlation and 471

the synaptic weight, as would be expected from STDP. However, only a 472

weak (negative) correlation was found between the spike correlation and the 473

intersomatic separation, and no significant correlation was found between 474

the intersomatic separation and synaptic weight. 475
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As a concluding point, often, models of cortical microcircuits are de- 476

scribed as random graphs, such as the classical random balanced net- 477

work [52]. However, experiments have demonstrated that the structure of 478

cortical microcircuitry is significantly non-random [5, 6], suggesting that 479

random networks may be insufficient for modeling cortical development 480

and activity. Lacking in structural plasticity of topology, such random 481

graph based balanced networks are incapable of producing the sort of re- 482

sults we have observed. Having provided a mechanism with which one 483

may generate a cortex-like non-random structure, it would be enlightening 484

to determine if said structure provides any significant computational or 485

metabolic advantage as compared to a random graph. Similarly, limitations 486

in online plasticity capabilities significantly hinder the use of such random 487

networks and their relatives in reservoir computing [53] for unsupervised 488

learning and inference tasks (though progress has recently been made in this 489

direction [54]), while earlier studies with the original SORN model [11, 15] 490

suggest that the particular combination of plasticity mechanisms in our 491

model can endow networks with impressive learning and inference capabil- 492

ities. A logical next step is therefore to study the learning and inference 493

capabilities of LIF-SORN networks and relate them to neurophysiological 494

experiments. Our rapidly developing ability to manipulate neural circuits 495

in vivo suggests this as an exciting direction for future research. It is our 496

belief that the future of neural network-based computation and modeling 497

of biological processes lies in the incorporation of multiple plasticity and 498

homeostatic mechanisms under simple sets of constraints. 499
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Supporting Information

Supporting Tables

Table S1. Spearman’s rank correlation and associated P-value
between intersomatic separation, synaptic weight, and pairwise
spike correlation. Representative single trial example data. Spike
correlation was taken from 50 s activity with 50 ms bins [55].

features Spearman’s ρ P-value
spike correlation and synaptic weight ρ = 0.32 P = 0.00

spike correlation and separation ρ = −0.02 P = 0.04
synaptic weight and separation ρ = −0.01 P = 0.46

Supporting Figures
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Figure S1. Triadic motif counts as a multiple of chance for
lognormal firing rates, corrected for bidirectional
overrepresentation. Triadic motif counts (in the same order as [6]) for a
simulated network as a multiple of chance value. The counts have been
corrected for the observed overrepresentation of bidirectional connections.
Results are shown for a complete network with IP target rates drawn from
a log-normal distribution (mean of 3.0, standard deviation of 1.0 Hz)
instead of a single value and approximate experimental data.. Other
parameters remain the same, aside from scaling of growth rate to obtain
stable phase connection fraction of 0.1. Error bars are standard deviation.
Horizontal axis has been jittered slightly to increase readability.

Figure S2. Triadic motif counts as a multiple of chance for a
larger (2000 neuron) network, corrected for bidirectional
overrepresentation. Triadic motif counts (in the same order as [6]) for a
simulated network as a multiple of chance value. The counts have been
corrected for the observed overrepresentation of bidirectional connections.
Results are shown for a complete network of 2000 neurons and
approximate experimental data.. Other parameters remain the same, aside
from scaling of growth rate to obtain stable phase connection fraction of
0.1. Error bars are standard deviation. Horizontal axis has been jittered
slightly to increase readability.
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Figure S3. Triadic motif counts as a multiple of chance for
networks with plasticity mechanisms removed, corrected for
bidirectional overrepresentation. Triadic motif counts (in the same
order as [6]) for a simulated network as a multiple of chance value. The
counts have been corrected for the observed overrepresentation of
bidirectional connections. Results are shown for a complete network, a
network without IP, a network without SN, and approximate experimental
data.. Error bars are standard deviation. Horizontal axis has been jittered
slightly to increase readability.

Figure S4. Log distribution of synaptic weights for networks
with plasticity mechanisms removed. The distribution of the base
ten logarithm of synaptic weights for a complete network (ten trials), a
single network without IP, and a single network without SN. Error bars are
standard deviation.
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