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not detect ADOS effects, namely, the limbic to ventral attention subnetwork and right insula. However,
these site effects are not statistically significant after correcting for multiplicity.

Our analysis strongly implicates the frontoparietal-limbic subnetwork, and frontoparietal-ventral
attention subnetworks, as well as posterior/anterior cingulate cortical connections with the rest of the
brain, in behavioral deficits of ASD. Since we identify these regions and subnetworks using partial
correlation measures of functional connectivity, our results provide strong evidence that these network
components are directly involved in ASD. In particular, since the salience network [Uddin et al., 2013a;
Buckner et al., 2013] is thought to comprise the ACC, which falls within our frontoparietal network, and
insular regions that overlap limbic and ventral attention networks in our analysis, our subnetwork findings
are consistent with the salience network explanation for behavioral deficits in autism. Additionally, our
findings strongly implicate frontoparietal-limbic relationships. While our region of interest analysis found

Figure 6. Functional Subnetworks of Interest for Covariate Tests of Network Density. This figure
illustrates the subnetworks we have chosen to test for covariate effects in Table 1. Using previous studies
discussed in 4.2, we seek to test whether symptom severity is associated with individual differences
in the density or number of connections within and between these sub-networks. Panels A-D illustrate
subnetwork components of the full group level network in panel E. The network structure in Panel (A)
shows links within the limbic subnetwork as well as between the limbic regions and all other brain regions.
Similarly, each of the other panels emphasize connectivity of fronto-parietal (B), ventral attention (C)
and default mode (D) regions, respectively, to the whole brain. For the purposes of illustration, this
group level network is obtained using individually estimated graphical models from the procedure in
section 2.3.1. Nodes correspond to anatomical regions in the Harvard Oxford Atlas [Fischl et al., 2004].
The subnetworks correspond to resting state networks provided by Yeo et al. [2011]. We first threshold
weak edges with stability scores less than .8 in individual subject networks and then obtain a group level
network by aggregating edge presence across all subjects. Note that we use this group network exclusively
for illustrative purposes and not for statistical inference. The color gradient for edges in group network in
panel E corresponds to proportion of stable edges found across all subjects.
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Subnetwork 1 SubNetwork 2 pval (RRB + SA) RRB CI (L) CI (U) SA CI (L) CI (U) SITE CI (L) CI (U)

Default Default 0.061200 -2.66 -7.10 1.78 -0.66 -2.92 1.59 0.22 -5.85 6.30
Default Frontoparietal 0.010000 -2.34 -4.97 0.29 -0.18 -1.52 1.15 -0.52 -4.12 3.08
Default Limbic 0.004530∗ -1.51 -3.06 0.04 -0.10 -0.89 0.69 -0.30 -2.42 1.82
Default Ventral Attention 0.038000 -0.83 -1.76 0.10 0.08 -0.40 0.55 0.37 -0.91 1.64
Frontoparietal Frontoparietal 0.007030∗ -1.36 -3.23 0.52 -0.51 -1.47 0.44 -0.47 -3.04 2.10
Frontoparietal Limbic 0.000088∗ -1.15 -1.98 -0.31 0.00 -0.43 0.43 0.23 -0.92 1.38
Frontoparietal Ventral Attention 0.003793∗ -0.61 -1.16 -0.06 0.03 -0.25 0.31 0.75 0.00 1.50
Limbic Limbic 0.530000 -0.19 -1.70 1.32 -0.35 -1.11 0.42 -0.77 -2.83 1.29
Limbic Ventral Attention 0.955000 0.01 -0.45 0.46 -0.05 -0.28 0.18 -0.69 -1.31 -0.06
Ventral Attention Ventral Attention 0.196000 -0.05 -0.50 0.40 -0.21 -0.44 0.02 -0.24 -0.86 0.37

Table 1. Joint ADOS Covariate Effects on Subnetwork Density. We jointly test the effects of two ADOS
covariates on subnetwork density while accounting for site effects as a nuisance covariate. Here, the
most prominent findings suggest that a decrease in the numer of direct connections within frontoparietal
subnetworks, and between frontoparietal to limbic, and frontoparietal to ventral attention subnetworks
is linked with increased ADOS symptom severity. This result is consistent with the hypothesis that
abnormalities within the salience network, comprising anterior cingulate cortex (a region within our
frontoparietal network) and insula (a region within our ventral attention network), results in a failure
to regulate between attention to external stimuli versus attention to internal thoughts. A total of four
subnetworks, denoted by ∗, survive corrections for multiplicity, using false discovery control over all 23
hypotheses tested at the 5% level using Benjamini-Yekutieli. Although estimates of site effects were non-
zero, individual confidence intervals for most site-effects were close to zero and were thus not statistically
significant after corrections for multiplicity. Results are discussed further in Section 4.3

abnormalities in thalamar connectivity, a component of the limbic network, other limbic regions could
also be directly involved in ASD and thus warrant further study.

SubNetwork Region pval (RRB + SA) RRB CI (L) CI (U) SA CI (L) CI (U) SITE CI (L) CI (U)

Default L. Cingulate post. 0.004600∗ -0.68 -1.35 -0.02 -0.01 -0.34 0.33 -0.05 -0.96 0.86
Default R. Cingulate post. 0.009000∗ -0.49 -0.96 -0.01 0.03 -0.21 0.27 0.39 -0.26 1.03
Default R. pSTG 0.010900 -0.41 -0.85 0.04 -0.02 -0.24 0.21 0.08 -0.53 0.69
Frontoparietal R. Cingulate ant. 0.002100∗ -0.30 -0.65 0.04 -0.08 -0.26 0.10 0.62 0.14 1.09
Frontoparietal R. IFG pars oper 0.004100∗ -0.69 -1.30 -0.09 0.06 -0.25 0.36 0.05 -0.78 0.88
Frontoparietal L. Cingulate ant. 0.005400∗ -0.55 -1.14 0.05 -0.06 -0.36 0.24 -0.05 -0.86 0.76
Frontoparietal L. IFG pars oper 0.058000 -0.29 -0.70 0.11 -0.01 -0.22 0.19 0.07 -0.48 0.62
Limbic R. Thalamus 0.004200∗ -0.46 -1.02 0.10 -0.12 -0.41 0.16 -0.65 -1.41 0.12
Limbic L. Thalamus 0.037700 -0.49 -1.20 0.21 -0.08 -0.43 0.28 -0.57 -1.53 0.39
Limbic R. Amygdyla 0.092500 -0.29 -0.23 0.21 -0.01 -0.72 0.14 -0.26 -0.85 0.33
Limbic L. Amygdyla 0.175100 -0.14 -0.49 0.21 -0.07 -0.25 0.11 0.30 -0.19 0.78
Ventral Attention L. Insula 0.223300 -0.11 -0.46 0.24 -0.08 -0.26 0.09 -0.24 -0.72 0.23
Ventral Attention R. Insula 0.306800 -0.13 -0.60 0.34 -0.10 -0.34 0.14 -0.76 -1.40 -0.12

Table 2. Joint ADOS Covariate Effects on Node Density. We jointly test the effects of two ADOS
covariates on node density while accounting for site effects as a nuisance covariate. Notably, we find that
a decrease in the number of direct connections between posterior cingulate cortex (PCC) and anterior
cingulate cortex (ACC) with all other regions is linked with an increase in ADOS symptom severity.
This result corroborates previous findings that ACC (a component of the salience network) and PCC
connectivity might be directly involved behavioral deficits ASD. A total of six regions, denoted by ∗,
survive corrections for multiplicity, using false discovery control over all 23 hypotheses tested at the 5%
level using Benjamini-Yekutieli. Although estimates of site effects were non-zero, individual confidence
intervals for most site-effects were close to zero and were thus not statistically significant after corrections
for multiplicity. Results are discussed further in Section 4.3
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Although, previous analyses based on the UCLA and UM ABIDE samples Di Martino et al. [2014b];
Rudie et al. [2012b] as well as those independent of these sites [Uddin et al., 2013b] link insular,
amygdylar connectivity with autism symptoms, we did not detect strong effects for these regions. While
this does not rule out their involvement via alternative network metrics, the absence of strong effects in
our analysis suggests that the insular and amygdylar connections might be associated with behavioral
deficits in autism only by indirect correlations with other regions of interest. Similarly, although we
find abnormalities in the PCC, a region within the default mode network, and between the default-mode
and the limbic regions, we failed to find abnormalities linking the default mode with frontoparietal or
ventral attention networks. This suggests that previous findings involving the default mode network could
have been the result of indirect pairwise correlations, possibly driven by PCC. Although we use novel
functional connectivity models and methods to analyze the ABIDE dataset, some of our choices of a-
priori hypotheses for this analysis, notably, the inclusion of IFG pars opercularis and the amygdyla for
node density, were guided by alternative analyses of the ABIDE dataset [Rudie et al., 2012b; Di Martino
et al., 2014b]. Thus, we need further validation of the purported effects of ADOS on IFG pars opercularis
density.

In addition to finding abnormalities in subnetworks and regions previously implicated in Autism, our
results also offer some guidance on conflicting results in neuroimaging [Rudie and Dapretto, 2013]. We
offer insights regarding whether behavioral deficits in ASD are primarily driven by hyperconnectivity,
defined as abnormal increase in interactions between brain regions, or hypoconnectivity, defined as an
abnormal decrease in interactions between brain regions. All our results, at both the subnetwork and node
level, favor the hypoconnectivity hypothesis for behavioral deficits in autism. Specifically, we find that
a reduction in directly involved long-range functional connections increases ADOS symptom severity.
Assuming that the salience network model of autism dysfunction is correct, our results suggest that
reduced interactions between the executive control network and the salience network might be responsible
for ASD symptoms. A previous study found evidence of hyperconnectivity when counting the number of
local voxelwise connections in Keown et al. [2013]. Our results do not contradict this finding since a
network architecture of ASD could involve both reduced long range connections as well as increased
density of local connections Rudie and Dapretto [2013]. Other results on hyperconnectivity [Uddin
et al., 2013a; Supekar et al., 2013] do not explicitly employ degree or density of connections to measure
hyper or hypo-conectivity but measure the strength of the mean pairwise correlation within and between
regions and subnetworks. While the effect in Supekar et al. [2013] appears to be a large and robust
finding, the model of connectivity employed in their analysis could be misleading since it includes both
direct and indirect functional connections and does not explicitly measure the density of connections.
While further studies are needed to resolve the questions raised by Rudie and Dapretto [2013] on this
matter, we emphasize that using graphical models of functional connectivity that capture direct functional
connections combined with explicit density metrics enables stronger scientific conclusions regarding
network structure.

5 DISCUSSION

This paper investigates an understudied issue in neuroimaging – the impact of (often imperfectly)
estimated functional networks on subsequent population level inference to find differences across
functional networks. Using an important class of network models for functional connectivity, Gaussian
graphical models, we demonstrate that neglecting errors in estimated functional networks reduces
statistical power to detect covariate effects for network metrics. While lack of statistical power due to
small subject sizes is well documented in neuroimaging [Button et al., 2013], recent test re-test studies
[Birn et al., 2013; Laumann et al., 2015] suggest that typical fMRI studies of 5-10 minutes are highly
susceptible to lack of statistical power. This paper provides additional evidence that within subject sample
size, t, is important for well powered studies. For typical studies where t is comparable to the number of
nodes p, errors in estimating functional networks can be substantial and not accounted for by standard test
statistics. We show that our methods to mitigate this problem, R2 and R3, are always at least as powerful if
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not substantially more powerful than standard test statistics under a variety of sample sizes and covariate
signal-to-noise regimes. Additionally, regardless of the methods employed, our power analyses suggest
that in many scenarios, particularly for large networks, a more efficient use of a fixed experimental budget
would be to collect more within subject measurements and fewer subject samples in order to maximize
statistical power to detect covariate effects.

We employ our models and methods to detect covariate effects on the density of direct, long range
functional connections in ASD, using the ABIDE dataset [Di Martino et al., 2014b]. We particularly
highlight the scientific merits of employing explicit density based metrics in graphical models of
functional connectivity to gain insights into disease mechanisms at a macroscopic level. Our results
in section 4.3 suggest that hypoconnectivity, rather than hyperconnectivity of long range connections
is associated with autism symptom severity. We find evidence if hypoconnectivity within frontoparietal
subnetworks, between frontoparietal to limbic regions, between frontoparietal to ventral subnetworks, as
well as between anterior and posterior cingulate cortices to the whole brain. These findings are consistent
with the hypothesis that abnormalities in the salience network are involved in behavioral deficits of ASD.

While we focus on resting state functional connectivity in fMRI in this work, our concern regarding
errors in estimating large functional networks is applicable to other imaging modalities including
EEG/MEG studies. In fact, our two level models (1) and R3 framework can be easily extended
to functional network analyses based on partial coherence [Sato et al., 2009] networks or vector
autoregressive models [Koenig et al., 2005; Schelter et al., 2006] that are popular in EEG/MEG studies.
Additionally, our results are highly relevant to dynamic functional connectivity [Chang and Glover,
2010] analyses where studies estimate separate time-varying functional networks per subject using short
sliding-windows of 30-60 seconds rather than 5-10 minutes. In such a high dimensional setting where
t << p, our power analyses in figures 2 and 3 suggest that such dynamic network analyses will be
highly underpowered and could benefit from our methods. Thus, extensions of the R3 framework for
dynamic connectivity analyses as well as other multivariate network models is a promising avenue of
research. Other areas of investigation include inference for partial correlation strength and corresponding
weighted network analysis, as well as including high dimensional covariates in our general linear model
(2). Overall, this work reveals that accounting for imperfectly estimated functional networks dramatically
improves statistical power to detect population level covariate effects, thus highlighting an important new
direction for future research.

6 DATA AND SOFTWARE

The preprocessed ABIDE dataset used in this paper will be made available at http://dx.doi.
org/10.6084/m9.figshare.1533313. Software for reproducing our analysis will be provided
at https://bitbucket.org/gastats/monet.
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SUPPLEMENTARY MATERIALS

We include additional simulations and details of test statistics for our methods in the appendix.
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A SUPPLEMENTARY SIMULATIONS & FIGURES

In this appendix, we provide supplementary simulations and figures to complement the power analyses
and summary of type-I error control that appear in Figures 3,4 & 5 of our manuscript. The setup for the
supplementary simulations follows the procedures outlined in Section 4.1. Figures A.1 & A.2 provide a
complete set of type-I error simulations for node and subnetwork density, respectively, and complement
the power analyses found in Figures 3 & 4. Additionally, we demonstrate the impact of sparsity on the
ability of R3, R2 and the standard method to detect covariate effects in Figure A.3. Here, we employ the
node density metric in the medium SNR case (ν2 = .25) as a representative example, while holding all
other parameters consistent with Figure 3 of the manuscript constant with exception of baseline sparsity
threshold τ . While the simulations in our manuscript employed realistic networks obtained by setting all
partial correlations whose absolute values were less than τ = .25 to zero, we varied this threshold to
values {.1, .4} to obtain both denser and sparser baseline networks.

The supplementary simulations in Figures A.1 & A.2 are consistent with Figure 5 of our manuscript,
and demonstrate that all methods approximately control type-I error at the 5% level. In Figure A.3, as
expected, statistical power decreases with smaller sample sizes, especially when t ≈ p. In the sparser
baseline case, our methods, R3 and R2, are able to achieve better statistical power to detect covariate
effects over standard F-tests. In the sparser network case, it is easier to estimate subject networks even
in low sample sizes of t ≈ p, and initial stability scores continue to discriminate between true and false
edges more effectively than in denser network regimes. Since the benefits of adaptive estimation depend
on initial network estimates, we observe that the random adaptive penalization component of R3 improves
the estimates of network metrics, thus achieving greater statistical power than R2 in sparser network
regimes with small sample sizes. However, when baseline networks become denser, particularly when
τ = .10, the ability of all methods to detect covariate effects begin to fail as within subject sample sizes
reduce to t ≈ p. Overall our supplementary simulations continue to highlight the importance of within
subject sample size t, and the benefits of our methods, R3 and R2 over the standard approach at smaller
sample sizes.
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Figure A.1. Statistical Type I Error Control for Node Density. These simulations evaluate the level of our
tests; we report the estimated type-I error as a function of subject sample size n. The grey line represents
the 5% level of the test. Here, we provide a complete set of Type-1 error simulations to complement the
power analysis in Figure 3. All methods approximately control type I error across all scenarios studied for
node density.
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Figure A.2. Statistical Type I Error Control for Subnetwork Density. These simulations evaluate the
level of our tests; we report the estimated type-I error as a function of subject sample size n. The grey
line represents the 5% level of the test. Here, we provide a complete set of Type-1 error simulations to
complement the power analysis in Figure 4. All methods approximately control type I error across all
scenarios studied for subnetwork density.
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Figure A.3. Statistical Power Analysis with Varying Baseline Sparsity. This figure complements the
power analysis for node density in Figure 3 of the manuscript for the medium SNR case (ν2 = .25),
where the number of nodes is p = 50. Whereas the baseline pseudo-real networks in Figure 3 consist of
edges whose absolute partial correlation strength was greater than τ = .25, here we consider simulations
where the baseline density is decreased (τ = .40) as well as increased (τ = .10). Notice that for the
sparse baseline network, our results broadly match those of Figure 3. When node density varies with
an explanatory covariate (q = 1), statistical power to detect this covariate effect improves with subject
sample size n but crucially depends on the number of independent fMRI samples t from a single session.
When networks are hard to estimate at limited within subject sample sizes t ≈ p, we expect estimates of
node density to be both highly variable and potentially biased. However, as long as the baseline networks
are sufficiently sparse, we can account for these errors via our methods R3 and R2. In fact, R3 achieves
near perfect statistical power by adaptively improving the network metrics estimates of R2, thus improving
statistical power overR2 and standard F-tests. In contrast, when baseline graphs are dense, and the sample
sizes approach (t ≈ p), it becomes impossible to detect covariate effects. Thus, within subject sample sizes
continue to be crucial for detecting covariate effects
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B TEST STATISTICS FOR R3 AND R2

R3 and R2 model resampled network metrics using repeated measures mixed effects models to account for
two levels of variation in continuous network metrics. In this appendix, we begin with some elementary
estimators and test statistics for covariate effects in the linear mixed effect (LME) model defined in Eq. (9)
& (10) in Section 2.3 of our manuscript. Additionally, in Section B.2 we provide alternatives to the LME
models in Section 2.3.3 of our manuscript for two levels of binary valued resampled statistics. As in the
case of LME models, we outline relevant correlated binomial models and corresponding estimators for
covariate effects.

B.1 ESTIMATORS FOR REPEATED MEASURES LME

Many estimators Agresti [2015] are available to estimate fixed effects for LME models , where the number
of resamples within each subject is complete and balanced. We employ a generalization of ordinary least
squares regression for correlated two-level data given by weighted least squares estimators (GLS) Agresti
[2015]. Ideally, in order to make the least square residuals independent we weight the residuals by the
precision matrix, V −1

i , to obtain efficient estimates of β.

We redefine the earlier notation in Section 2.1 for the population model to account for the availability
of resampled network metrics. We denote the overall design matrix by W = [W1 . . . Wn]>. Here Wi is
the B × (1 + q + r) subject level design matrix for the fixed effects, obtained by stacking centered and
scaled explanatory and nuisance covariates [Xi Zi]. Let c denote a contrast vector to separate explanatory
and nuisance covariates of interest such that c = [0 11×q 01×r] and c>[β γ] = β\0. We omit the subscript
excluding the intercept when referring to β\0 in this section. Here B denotes the number of resamples, n
the number of subjects, q and r the number of explanatory and nuisance covariates, respectively.

Thus, the fixed effects estimate takes the form β̂GLS =
(∑n

i=1W
>
i V

−1
i Wi

)−1 (∑n
i=1X

>
i V
−1
i U∗i

)
.

The corresponding partial Wald statistic for explanatory fixed effects is given by

T =
β̂
>
GLS{Var(β̂)GLS}β̂GLS

rank(c)
, Var(β̂)GLS = c>

(∑n
i (W>i V

−1
i Wi)

−1
)
c (B.1)

Since our two level model in Section 2.3.3 is a random intercept model for repeated measures, V −1
i

has compound symmetry structure and depends on two unknown parameters (ν2, φ2) that do not vary
with subjects i. Consequently standard ANOVA and restricted maximum likelihood estimators for

variance components, φ, ν coincide [Searle et al., 2009], given by φ̂?2 =
∑

i

∑
b(ũ

?(i,b) − ¯̃u?(i,.))2

n(B−1) and

ν̂2 =
∑n

i (¯̃u?(i,.)− ¯̃̄u?(.,.))2

n . While Wald-type test statistics are asymptomtically χ2 distributed, they are
better approximated by scaled F-distributions at finite samples. Finite sample corrections and estimates
of the degrees of freedom for these F-distributions, provided by Kenward and Roger [1997], are
widely adopted for inference in LME models to ensure better type-I error control. For more details on
computational procedures and extensions to these models for more complex experimental designs, we
refer the reader to Agresti [2015].

B.2 MIXED EFFECTS MODELS FOR CORRELATED BINARY DATA

As in the case of continuous metrics, when R2 and R3 produce resampled binary network statistics
per subject, our data possesses two levels of variability. Although such statistics can be summarized
using proportions

∑B
b=1 ũ

∗,(i,b) per subject, we cannot model these correlated proportions using binomial
distributions, as the binomial assumes all nB × 1 binary valued resampled statistics to be independent.
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In fact, we expect the resampled statistics within each subject to be positively correlated. To resolve this
problem, following the well established literature [Liang and Hanfelt, 1994; Agresti, 2015], we consider
two-level models for correlated binary data.

To understand binomial models for correlated data, consider the example of the probability of observing
an edge as the network metric of interest. Recall, from Eq.(6) that we seek to conduct inference over
the fixed effect β which describes the rate of change in the subject edge probability in a population
logit πi = ηi = Xβ + Zγ for a unit change in the covariate [Williams, 1982]. However we only observe
network metrics for a sample of subjects in the population. To account for this inter-subject sampling
variability, we introduce a continuous latent random variable Pi that takes values in the interval [0, 1].
Additionally, however, we do not observe individual subject edge probabilities Pi but rather observe binary
network statistics per subject. Thus, conditional on a subject’s true edge probability Pi, we assume that
each resampled network statistic ũ∗,(i,b) is Bernoulli distributed, such that ũ∗,(i,b)|Pi = pi ∼ Ber(1, pi).
Together, this gives us the following model for the observed proportions U∗i =

∑
b ũ
∗,(i,b)

Pi ∼ F , E(Pi) = πi, Var(Pi) = φπi(1− πi)
E(U∗i ) = Bπi, Var(U∗i ) = Bπi(1− πi)[1 + φ(B − 1)] (B.2)

By employing this two-level model, we account for overdispersion in correlated resampled statistics in the
form of the multiplicative correction term [1+φ(B−1)]. Note that, while we can specify a fully parametric
model for F using beta or correlated binomial distributions, specifying the first and second moments is
adequate [Williams, 1982; Searle et al., 2009] for the estimation and inference of fixed effects.

In the presence of balanced within subject resamples B, our two-level model (B.2) is very similar
to our single level logistic-linear model in (6) with the exception of the additional overdispersion factor
(1+φ(B−1)). Thus, standard iterative reweighted least squares estimation can be used to obtain estimates
of fixed effects β,γ and moment estimators for φ [Kleinman, 1973; Williams, 1982]. We proceed with
inference for β̂, using Wald type statistics in (B.1), by ensuring that standard sample variance estimates
for Var(β̂) incorporate the overdispersion factor. In the absence of balanced data, or for more complex
experimental designs such as longitudinal imaging studies we recommend the maximum quasi-likelihood
or generalized estimating equations [Liang and Hanfelt, 1994] for correlated binary data.
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