










	
   6	
  

A general and concise example of the structure of tumor-immune interaction equations 
can be given by the following pair of ordinary differential equations (ODEs):  
 
 
 

𝑇𝑢𝑚𝑜𝑟              !!!!!!!        
𝑑𝑇
𝑑𝑡   =     𝑓 𝑇     −     𝑏𝑇𝐼                                                                                                                  (1) 
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In the example above, populations T and I represent tumor and immune cell populations, 
respectively. Function f(T) represents net tumor growth; exponential, logistic and 
Gompertz functions are all commonly used and further detail on these models as well as 
several alternatives can be found in [67]. A simple schematic of these basic tumor-
immune population dynamics is provided in Fig. 1. 

 

 
 

Fig.1 Schematic of tumor-immune dynamics in a basic two-population model. Letters in brackets 
correspond to parameters in Eqn (1) and (2). 

 
This fundamental structure representing simple lymphocyte-tumor interactions has been 
extensively adapted to incorporate more complex features of the tumor-immune 
relationship over the last several decades, including cellular heterogeneity, spatial 
dynamics, delayed feedback, and cytokine activity and other signaling and modulating 
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factors, to name only a few. Crucially, many of these tumor-immune models could also 
incorporated immunotherapeutic treatment regimes in order to simulate patient response 
and predict treatment success. Some of the most insightful of these models of the last few 
decades will be summarized to facilitate discussion of the contributions and limitations of 
current research. As the primary emphasis of the present review is on the application of 
therapy and the associated clinical relevance of model predictions, details of 
computational solvers will mostly be omitted – for a summary of some of the many 
numerical methods for approximating solutions to differential equations the unfamiliar 
reader is directed to, for example, [68] 
 
Cytotoxic effector lymphocytes are commonly modeled as the immune population in the 
above simple but robust system of ODEs. One of the most widely referenced 
mathematical descriptions of tumor-immune dynamics was introduced by Kuznetsov et 
al. and involves modeling the response of CD8+ T cells to an immunogenic tumor and 
the corresponding kinetics of tumor growth and regression [62]. Above a threshold 
number of tumor cells growth is able to continue uncontrolled, and below this threshold 
oscillatory growth and regression is observed, a now widely accepted phenomenon in 
solid tumor immunoediting [63,64,69-71]. As well as T-lymphocytes, the cytotoxic 
effects of natural killer (NK) cells on the tumor population can be modeled in a similar 
manner. NK cells can act as a surveillance effector population; tumors with low 
antigenicity may experience mainly NK cytotoxic effects whereas those with high 
antigenicity have been found to primarily experience T cell cytotoxicity [66]. The two 
independent anti-tumor mechanisms can act with varying intensities, and both cytotoxic 
effector cell populations may be modeled simultaneously. Accounting for the saturation 
of effectiveness of CD8+ T cell killing, a strong patient-specific adaptive CD8+ T-
lymphocyte response is typically necessary to promote tumor regression and improve the 
likelihood of treatment success [73]. 
 
Despite the key role in the host immune response of cytotoxic effector cells, insights into 
the behavior of other immune cell populations can also be gained from simple 
mathematical models. Simulations of interactions between macrophages and T 
lymphocytes accounting for antigen presentation have demonstrated that the magnitude 
of the adaptive response can be dramatically increased by the early activation of CD4+ 
helper T cells, which allows early macrophage accumulation of tumor cell debris and a 
rapidly mounting immune attack [74,75]. Regulatory T cells can also influence tumor 
development and dormancy; in tumors featuring low immunogenicity and a high growth 
rate, effector T cells are able to outcompete regulatory T cells but are still unable to 
control the tumor [76]. For immunogenic tumors with a slow growth rate, the expansion 
of effector and regulatory cells is balanced, preventing tumor destruction.  
 
Simple ODE models are useful for considerations of temporal population dynamics, but 
to thoroughly analyze certain elements of the immune response, spatial variation may 
need to be taken into account. For example, even in the case of a stable temporal state of 
dormancy, heterogeneous spatial distributions of both tumor and immune cell populations 
may be present in immunogenic tumors [64]. Heterogeneous spatial patterning has also 
been found in the presence of macrophages, which have the potential to affect tumor 
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composition and structural characteristics by altering chemokine activity [77,78]. The 
effect of such chemical mediators on tumor-immune interactions necessitates a further 
increased level of model complexity in which reaction or diffusion processes such as the 
exchange of substances with the local microenvironment may need to be accounted for. 
For example, nutrient concentration and ECM-degrading enzymes can have substantial 
effects on tumor growth dynamics [10], and tumor-suppression has been observed when 
removal of mutant cells by immune cells reaches a critical level dictated by the difference 
in mitotic rates of the respective cells under the influence of biochemical control 
mechanisms [79].  
 
Delayed feedback due to transit time or signal delivery can be captured in a simple 
adaptation of a basic population model. Incorporating the response time of the immune 
system after recognition of non-self cells using a system of delay differential equations 
(DDEs) can demonstrate different stability dynamics to a comparable model without 
delay. Stronger oscillatory behaviors suggestive of the continued regrowth of the tumor 
can be observed with increasing delay before immune response [58]. Cancer and immune 
biology also feature stochastic or probabilistic events, presenting a further layer of 
complexity in tumor-immune modeling. As opposed to whole population dynamics, the 
action and interaction of discrete and distinguishable individual cells may need to be 
considered. Each cell follows a distinct set of rules in such models, and individual cell 
diversity can be accounted for to allow more detailed modeling of cellular-level 
biological phenomena. Reproduction of experimental observations of Gompertz growth 
has been achieved in such an agent-based model describing immune surveillance [14]. 
 
Considering both chemical species reaction-diffusion processes and cellular level 
individual-based interactions in a multi-scale hybrid model can allow further insights into 
patterns of both regression and invasion [80]. A strong immune response with high 
lymphocyte recruitment and high kill capacity can lead to greater reductions of tumor 
size [69], and slower nutrient uptake can indicate spatial stability and the development of 
a substantial necrotic core [19]. In contrast, increased nutrient uptake by tumor cells may 
demonstrate increased cell motility and morphologic variation in the form of branched 
growth. Additionally, lower cell adhesion can lead to quicker tumor cell movement to 
favorable nutrient conditions in which the population can grow [19]. 
 
As can be seen even from this brief summary, there exists a broad range of applications 
of mathematical models to the improved understanding of tumor-immune interactions, a 
full discussion of which is beyond the scope of the present review. Additional discussion 
of model types and selection in immunology can be found in [81-83]. With this 
foundation, the next logical step is to utilize such models to adapt and improve treatment 
protocols and guide clinical practice.  
 
Modeling treatment outcomes 
 
Several methods for achieving an immune system boost and improving tumor-specific 
adaptive immunity have been considered theoretically and in preclinical studies, 
including the instillation of various cytokines, adoptive cell therapies, vaccine therapies 
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and checkpoint inhibitors. As described previously, making the transition from concept to 
clinic in the case of immunotherapeutic strategies can be a long and challenging process, 
and despite extensive research, few such protocols have established themselves as a 
standard treatment. While monoclonal antibodies and to a lesser extent cytokine-based 
drugs and checkpoint inhibitors have had some clinical success in treatment of melanoma 
and lymphomas amongst one or two other specific cancers, the rate of FDA approval of 
immunotherapeutic treatments lags significantly behind our rapidly advancing knowledge 
and understanding of the field [84]. This has led to the increased utilization of 
mathematical models designed to predict the outcomes of hypothetical treatment 
scenarios to offer insights into the mechanisms underlying the potential success or failure 
of therapy in terms of tumor remission, dormancy and regrowth, with the intention of 
guiding future clinical trial design.  
 
The effects of various therapeutic strategies can be modeled by generic cell kill terms or 
simple adjustment of the fundamental growth, death and interaction parameters of a 2-
equation system comparable to that in Eqn. (1) and (2) [61,85]. For example, increasing 
the immune cell population initial condition to represent the instillation of effector T 
lymphocytes to a patient, or the imposition of a negative growth function for a tumor cell 
population to represent conventional chemo-radiation, can demonstrate initial growth 
acceleration but the ultimate diminishing of the tumor cell population, albeit after 
clinically unrealistic treatment durations [61]. As clinically verified data to support the 
many parameters of more complex models are often scarce, such simple complex 
mathematical models can be robust and insightful, yet for more specific treatments model 
complexity may be obliged to increase somewhat. 
 
Adoptive T-cell and cytokine therapies 
 
Tumor-infiltrating lymphocyte (TIL) therapy is a form of adoptive cell transfer (ACT) 
which involves the clinical extraction of antigen-specific T-lymphocytes from a patient 
tumor, which can then undergo rapid expansion ex vivo by incubation with cytokines and 
be transfused back into the patient in vast numbers to launch a targeted attack on the 
tumor cells. Increasing the flow of effector cells into a tumor, or a local increase in the 
rate of their proliferation, can provide a simple representation of the effects of impulse 
injections of effector lymphocytes. Although complete tumor destruction may not be 
possible under such a model, tumor mass can be reduced and tumors may persist in 
dormant state [86]. Therapies such as ACT have appeared to be more effective in tumor-
destruction and side effect limitation than alternative treatments such as T helper cell-
stimulating vaccine therapies in recent computational studies [87]. Despite this, only a 
small reduction in either the probability of a cytotoxic effector cell killing or deactivating 
a tumor cell, or the rate of influx of these lymphocytes into the tumor vicinity, has been 
found sufficient to provoke tumor regrowth [86]. It is clear that overcoming lapses in 
immune response which can lead to the tendency for regrowth is crucial: immune 
memory boosting in combination with other treatment protocols has demonstrated the 
potential to help to establish stable dormancy [88].  
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Immunomodulating cytokines are often utilized both in isolation and in concert with ACT 
therapies such as TIL to assist with response maintenance. Various cytokines which can 
mediate both innate and adaptive immunity have undergone extensive clinical and 
preclinical testing in recent years [89]. Of these, the interleukin family remains one of the 
most widely studied. IL-2 is primarily responsible for the activation, growth and 
differentiation of lymphocytes and is one of few cytokine-based treatments to receive 
FDA approval. When applied in isolation, models have observed the potential for an 
immune response capable of growing without bounds which could lead to harmful side 
effects such as capillary leak syndrome in clinical patients [63], although if both tumor 
antigenicity and the level of IL-2 are high, this side effect may be reduced [90]. However, 
when both IL-2 and effector lymphocytes are applied together, negative side effects can 
be minimized while also achieving significant tumor volume reduction or even complete 
elimination [63,90,91].  
 
IL-21 is additionally capable of directly modulating the volume and function of dendritic, 
NK and T-lymphocyte cells involved in the immune response. This includes regulating 
the transition from innate immune responses featuring natural killer cells to adaptive 
responses featuring activated T-lymphocytes. Enhanced T cell activity without too much 
inhibition of the NK cell response is required for successful treatment, and this balance 
may be highly dependent on tumor immunogenicity. In simulations of IL-21 modulation, 
efficient disease elimination does not occur in immunogenic tumors; only in non-
immunogenic tumors can IL-21 stimulate cellular immunity against cancer, and only then 
if dosage is calculated based on tumor mass at time of administration [92]. 
 
Generic immunostimulating therapies such as ACT or cytokine injection can be modeled 
in less complex models but with the intention of assessing constant, periodic and 
impulsive instillations [93,94,60] as opposed to stationary treatments. The eradication of 
tumor cells has been found to depend only on the mean value of the therapy term as 
opposed to on the shape on the function for realistic therapeutic durations [93], although 
further evidence of the aforementioned potential for boundless growth of the immune 
response suggests further tests would be required prior to clinical applicability.  
 
Dendritic cell vaccines 
 
The augmentation of antigen presenting cell (APC) activity is another way to arm the 
immune system against tumor cells [95]. Dendritic cells can be loaded with tumor-
specific antigens in vitro, allowing them to be returned to the patient in a similar manner 
to that of TIL therapy but now with the goal of presenting the antigen en masse and 
arming cytotoxic T lymphocytes against tumor cells. In comparing the effects of such 
dendritic cell vaccines to TIL therapy it has been observed that high numbers of APCs 
can delay tumor recurrence after regression, whereas high numbers of CTLs can actually 
have the opposite effect [96]. It is hypothesized that the cytotoxicity of activated 
lymphocytes to each other may be responsible for this phenomenon, potentially 
facilitating tumor growth as opposed to hindering it. Alongside the understanding of 
basic growth and regression dynamics, optimal control theory can be utilized to 
determine the optimal administration time and dosage of dendritic cells to reduce tumor 
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mass and also minimize the number of injected APCs [97]. Considering both discrete and 
continuous injections, it can be found that to optimize this form of therapy in the clinic, a 
high dose initial instillation is required to promptly reduce the tumor, following which 
smaller doses should continue at approximately even intervals for the duration of 
treatment. 
 
Preventative vaccines 
 
In recent years consideration has been given to the possibility of eliminating microscopic 
initial tumor cell populations prior to clinical detection as an alternative to the treatment 
of pre-existing, macroscopic tumors. To achieve this would require the development of 
preventative cancer vaccines which, although still far from clinical applicability and 
dependent on tumor-specific factors such as cell quantity and mitotic activity, could be a 
game changing development in the field of immunotherapy. The goal of such therapy is 
to train or sensitize the immune system, with particular emphasis on cytotoxic T 
lymphocytes, to identify and destroy tumor cells as soon as possible after initial genesis 
and prior to their acquisition of immune-suppression or metastatic characteristics. 
Considering both tumor site and lymph node dynamics under the influence of a vaccine 
modeled by anti-tumor memory CTLs which proliferate when activated by dendritic cells 
can suggest the number of cytotoxic T cells that need to be armed against a tumor for an 
immune memory-based vaccine to be effective [98]. This value may be surprisingly low: 
a memory lymphocyte population of only 3% or less is found to be sufficient to eradicate 
a tumor across a wide range of parameters. 
 
Cancer-specific treatments 
 
Mathematical models of specific cancers and treatments as opposed to more general 
concepts may incorporate more biologically realistic, detailed characteristics of tumor-
immune interactions due to the availability of clinical data with which they can be 
parameterized, calibrated and validated. Bacillus Calmette-Gue’rin (BCG), a tuberculosis 
vaccine, is a clinically established treatment for superficial bladder cancer [99]. The 
standard of care BCG treatment involves one intravesical instillation each week for a 
period of six weeks, and experiences a clinical response rate of up to 50%-70%. When 
tumor cells internalize BCG a strong immune response is initiated; the increase in 
cytokines (such as IL-2) leads to an influx of innate, non-specific effector lymphocytes. 
When these effector cells reach the site of BCG, they can either degranulate or activate, 
both of which have the potential to destroy the infected cell and cause bystander tissue 
trauma, ultimately eliminating the tumor. It is worth noting that an adaptive immune 
response may also contribute to the success of BCG therapy, given that to achieve the 
observed clinical response rate the approximate number of bystander cells killed per 
activated innate cell has been found in simulations to far exceed the natural capacity of 
the immune system [100]. 

 
As this is a therapy already present and effective in clinical practice, computational 
modeling is a highly useful tool: there exists human patient data from the clinic with 
which to validate models. Several studies have incorporated BCG therapy into tumor-
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immune models to gain a deeper understanding of its curative mechanisms and to make 
suggestions for improvements to standard therapy protocols. For example, it has been 
found that in pulsed BCG therapy, a decrease in pulse frequency may lead to treatment 
failure, and an increased dose can generate potentially harmfully large effector cell 
populations [101,102]. To minimize these risks, a stability condition for the tumor-free 
state may be defined by upper and lower bounds for the average dose per unit time [102]. 
BCG is also typically used in an adjuvant capacity post-resection; shortening the time 
between surgery and the first BCG instillation may be beneficial to patient outcome, as 
may extending the indwelling time beyond the current standard of care [103]. 
Furthermore, despite initial computational evidence to the contrary [101,102], patient 
response may also improve significantly under the combination of both BCG and IL-2 
infusion [104]. 
 
Malignant gliomas are another prominent area of modeling-based research due to the 
limited success of existing therapeutic strategies. The administration of membrane 
glycoprotein T11 target structure (T11TS) as a therapeutic agent has been shown to 
reverse the immune suppressed state of brain tumor by boosting the functional status of 
immune cells including macrophages and CD8+ T lymphocytes in animals. Modeling 
this treatment computationally can predict that treatment with T11TS can allow effector 
cells of the immune system to overcome blood brain barrier (BBB) impermeability and 
lead to enhanced phagocytic activity and diminishing of glioma cells [105]. CTL therapy 
has also been attempted as a treatment of glioma; previous failure of such therapies may 
be attributable to the administered dose being up to 20x lower than would be required for 
tumor eradication in this protected region, according to recent simulations of patient 
response [106]. Additionally, a constant infusion of T lymphocytes may need to be 
maintained after tumor volume reaches a near stable-state [107]. 
 
Combination therapies 
 
Immunotherapy applied in concert with other therapeutic regimes has led to significant 
successes in both clinical and pre-clinical trials in recent years [108,109]. Several such 
regimes have been found to significantly increase the probability of total remission. 
Despite currently limited utilization for this purpose, mathematical modeling has also 
proven beneficial in investigating synergy between therapies and optimization techniques 
for both adjuvant and neo-adjuvant immune-boosting treatments in the few cases of its 
application to date.  
 
As chemotherapeutic agents are designed to target dividing cells for systemic treatment 
of advanced cancers, in many patients extreme side effects can occur due to the toxicity 
of the chemicals used to other, non-cancerous rapidly proliferating cells such as those of 
the blood, mouth, digestive system, hair and nails. As such, these treatments have more 
recently been extended to include additional therapies that can reduce the need for such 
high dosages of toxic agents. In patients with a naturally weak immune response, neither 
IL-2 immunotherapy nor chemotherapy may be sufficient to trigger substantial tumor 
regression [110]. However, particularly in patients with a strong immune response, 
chemotherapy followed by pulsed immunotherapy may stunt growth substantially. Both 
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treatments concurrently was also found to be favorable due to the lower toxicity and 
greater immune stability, and such combination treatments have been suggested as a 
promising alternative to monotherapy in other computational studies [111]. A 
combination of 7 pulsed doses of chemotherapeutic drug along with the injection of 8 x 
10^8 activated CD8+ T lymphocytes has been found to lead to a rapid decline in tumor 
population, with regrowth additionally avoided by the addition of IL-2 treatment. Similar 
success was achieved under combinations of T cell boosts, IL-2 and cancer vaccines 
[112,113]. A selection of other combination immune- and chemotherapy treatments have 
been modeled computationally [114,115]. The main observation from such models to 
date has been that the synergistic effects of combination treatments are sufficiently 
beneficial to justify further investigations and implementation of such methods in the 
clinic on a more regular basis.  
 
During radiation therapy, highly energized particles cause damage to cellular DNA, 
leading to cell cycle arrest, senescence, and cell death [116]. An ongoing need to reduce 
damage to normal, healthy tissue and improve clinical outcomes has led to a succession 
of both clinical and computational attempts to improve and optimize treatment schedules 
for such therapies both alone and as part of combination treatments. Synergistic 
combinations of radiation and immunotherapy have shown promise in the clinical setting 
[108,117-120], yet mathematical models of such regimes are scarce. Despite this, in what 
may prove to be an important step towards the more effective contribution of 
mathematics to clinical oncology, a recent study has utilized a model incorporating 
systemic T cell trafficking to support the hypothesis that local immune activation in an 
isolated metastatic site followed by targeted radiation can lead to abscopal effects in other 
metastatic tumors distant to the initially targeted area [121]. Such mathematical modeling 
may help to identify promising treatment targets on a per-patient basis.  
 
Other models of immunotherapeutic treatments are interspersed throughout the literature. 
In prostate cancer vaccination therapies, the dosage and interval required to generate 
stable prostate-specific antigen levels has been found to vary greatly between individuals 
[122], yet increases in dosage and administration frequency may be able to stabilize 
disease progression in most patients [123]. IL-12 treatment has the potential to overcome 
the imbalance between Th1 and Th2 type lymphocytes in melanoma which can lead to a 
transition from immunosurveillance to immunotolerance, boosting antitumor immune 
pathways while minimizing harmful side effects [124]. Eleven consecutive doses of 
siRNA are sufficient to control oscillatory tumor behavior and limit the inhibitory effects 
on the immune system of TGF-β [125]. Tumor eradication by means of oncolytic virus 
therapies may require widespread spatial distribution of the virus throughout the tumor, 
particularly when vascularization has occurred [126]. The list goes on; many treatment 
protocols are amenable to mathematical modeling. The selection highlighted here is not 
exhaustive yet emphasizes the important insights into the mechanisms underlying 
treatment success and failure that can be gained from such computational tools. 
 
Discussion 
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Mathematical modeling has made many important contributions to the understanding of 
tumor growth, dormancy, regression and recurrence in recent years. Many of these 
models also account for tumor-immune interactions and both the innate and adaptive 
immune response, and have generally been accepted as valuable tools in aiding the 
biological and physiological understanding of cancer development. More recently, in 
silico studies have considered the effect of potential immunotherapeutic and combination 
treatments. Despite providing valuable insights into fundamental mechanisms underlying 
treatment success and failure, many of the findings of these studies are focused on basic 
system dynamics and remain far removed from clinical applicability. The observations 
made in such studies are yet to translate into the clinic and make significant contributions 
to the development of successful treatment protocols. Also, several significant 
immunotherapeutic strategies that have undergone preclinical and clinical testing are yet 
to be considered mathematically, and existing virtual trials may lag behind the most 
recent innovations in the biological realm due to the lack of sufficient sharable clinical 
data. The full potential of mathematical modeling to contribute to the improvement of 
cancer therapy is far from being reached.  
 
The question is, how can this be resolved? Why do examples of the contribution of 
computational modeling to successful clinical therapy design remain so sparse, and what 
steps need to be taken to align the capabilities of mathematicians, physicists and 
computer scientists with the needs of clinicians and patients, to streamline the transition 
from theoretical concept to clinical practice and improve patient-specific, adaptive 
immuno- and combination therapies? 
 
A crucial first step in bridging this gap is a greater level of collaboration between those 
with data, and those with models. The limited availability of valuable, relevant biological 
data with which to both parameterize and validate mathematical models can be greatly 
inhibiting. At present, best efforts are made to parameterize numerical models as 
thoroughly as possible, yet still great difficulty arises in finding recent, relevant and 
accurate data sources from which to derive them. The continued development of 
collaborative relationships is critical for understanding underlying concepts, accuracy in 
assumption-making and the extraction of usable parameters that reflect experimental 
observations. Several authors have made efforts to validate quantitative models in a 
human clinical setting (for example [127,128]), but the majority rely on small 
experimental cohorts of non-human responders, if experimental data is available at all. 
Conducting data fitting with very limited data points is an additional pitfall. To improve 
specificity and accuracy in modeling for use in clinical practice much more temporally 
and spatially resolved clinical data are desperately needed. With improved cross-
disciplinary collaborations, patient data could be more effectively collected and utilized 
to build more efficient model. Biologically informed models can thereafter be tested 
extensively and authenticated by comparison to actual patient response. In addition, such 
collaborations can encourage a new era of multi-disciplinary science; theoretical 
knowledge and experimental techniques should not be utilized in isolation but rather as 
complementary, synergistic components of successful precision medicine team science 
[129].  
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An additional requirement for the improved contribution of mathematical sciences to 
therapy design is the development of more models able to consider a wide range of doses 
and delivery schedules for particular immunotherapeutic and combination treatments. To 
overcome current shortfalls in trial design and to optimize treatment protocols for the 
quickest improvements in clinical response, a paradigm shift from the use of mathematics 
for primarily proof-of-concept demonstrations of underlying principles to a combination 
of both theoretical models and treatment optimization needs to occur. Simulation of many 
hypothetical regimens and identification of the optimal time and discrete dosing of 
therapeutic agents to generate the greatest patient response can allow the suggestion of 
improved protocols for both immunotherapy and combination treatments. Although some 
examples of more tangible, concrete suggestions for treatment protocols do exist (for 
example, [130] offers suggestions for improving current standard of care featuring 
optimization of dose and scheduling to maximize survival, and similar suggestions are 
made in [106,107,112,124]) such examples still remain sparse in the routine setting [131]. 
From early considerations of the effect of treatment regimes on patient response 
[132,133] through to the extensive considerations of optimization of a range of treatments 
for an equally wide variety of cancers in recent years, the work of Agur, Kronik, Kogan 
and colleagues continues to pave the way for the advancement of models designed to 
forecast patient outcomes [134,135]. Others have also begun to consider the simulation of 
individual treatment responses over large virtual patient cohorts to guide therapy and aid 
clinicians and innovative models of synergistic therapies can aid the development of 
novel hypotheses that may have wide reaching impacts in the oncological community 
such as the optimization of the abscopal effect [121]. However, the value of such 
prominent works needs to be widely appreciated to encourage further development of 
clinically motivated biomathematical models that can become commonly utilized by 
medical practitioners in the advent of immunotherapy. 
 
Based on model predictions of optimal schedule and dose as well as patient-specific 
disease characteristics, personalized treatment protocols are the highest objective of 
immunotherapy design to which mathematical modeling has great potential to contribute. 
To account for the co-evolution of a particular host immune system and tumor, patient-
specific inherent immunity must be taken into account. To achieve this goal, clinical data 
from individual patients needs to be utilized to evaluate patient-specific parameters such 
as those relating to the natural immune response. Incorporating such parameters in 
validated models allows the simulation of personalized responses to many different 
hypothetical doses and delivery schedules to identify the optimal regime. This must be a 
future development of clinical study design: personalized treatments which additionally 
permit adaptive treatment modification of schedule or dosing to maximize effectiveness 
for a particular patient and improve clinical outcomes. 
 
Summary 
 
To allow innovative, progressive treatments to make the transition from concept to clinic, 
experimentally calibrated and clinically motivated mathematical models are essential. To 
aid the development of well-informed clinical trials, collaboration between 
mathematicians, computational modelers, biologists and clinicians is required to allow 
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qualitative hypotheses to take on a quantitative dimension. Such inter-disciplinary 
science can allow both personalization and optimization of dose and scheduling of 
immunotherapeutic protocols, both as an independent therapy and in conjunction with 
other more traditional therapies, to streamline the transition from innovative concept to 
clinical practice, and improve clinical outcomes for individual patients. 
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