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Abstract

Antigenic sites in viral pathogens exhibit distinctive evolutionary dynamics due to their role in evading recog-

nition by host immunity. Antigenic selection is known to drive higher rates of non-synonymous substitution;

less well understood is why differences are observed between viruses in their propensity to mutate to a novel

or previously encountered amino acid. Here, we present a model to explain patterns of antigenic reversion

and forward substitution in terms of the epidemiological and molecular processes of the viral population. We

develop an analytical three-strain model and extend the analysis to a multi-site model to predict character-

istics of observed sequence samples. Our model provides insight into how the balance between selection to

escape immunity and to maintain viability is affected by the rate of mutational input. We also show that

while low probabilities of reversion may be due to either a low cost of immune escape or slowly decaying host

immunity, these two scenarios can be differentiated by the frequency patterns at antigenic sites. Comparison

between frequency patterns of human influenza A (H3N2) and human RSV-A suggests that the increased rates

of antigenic reversion in RSV-A is due to faster decaying immunity and not higher costs of escape.
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1. Introduction1

Viral evolution is shaped by both epidemiological effects on population dynamics, and molecular effects of2

mutations in the viral genome [1]. The combination of these effects generates distinctive dynamics at antigenic3

sites of viral proteins, which are the targets of host immune recognition. Selection for strains carrying antigenic4

changes that evade immune recognition result in elevated rates of non-synonymous substitution. It is unclear,5

however, why different dynamics of forward or reverse substitution are observed. Antigenic reversion has been6

reported frequently in viruses such as HIV [2, 3, 4], respiratory syncytial virus (RSV) [5] and hepatitis C [6, 7],7

and less frequently in other viruses such as influenza [8, 9], parvovirus [10], hepatitis A [11] and polio [12].8

Various explanations for occurrence of reversion have been proposed, such as changing immunity [5], a limited9

antigenic repertoire [5, 9], or constraints on function [11, 7, 8], but it is not understood how the relative10

influence of these effects can generate differences in observed rates of reversion.11

∗Corresponding author
Email address: chschan@gmail.com (Carmen H. S. Chan )

Preprint submitted to bioRxiv September 29, 2015

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2015. ; https://doi.org/10.1101/027995doi: bioRxiv preprint 

https://doi.org/10.1101/027995
http://creativecommons.org/licenses/by-nc-nd/4.0/


The difficulty in evaluating the contribution of selective mechanisms is due to the lack of methods that model12

both epidemiological and molecular dynamics. Phylodynamic approaches [13] incorporating epidemiological13

models into a coalescent framework have provided insight into the origins and spread of novel pathogens.14

However, they assume that molecular changes do not affect epidemiological dynamics, and are uninformative15

about selection. In contrast, codon-based approaches [14, 15] aim to identify sites that contribute to the16

adaptation of a virus, but they assume that the population size is constant and that the selection coefficient17

is constant at each site. Various modifications of the substitution model allow for different selective effects18

based on directionality or target residue [16, 2], but retain the assumption that substitution occurs as a time-19

homogeneous process which is not affected by population dynamics. To understand how the probability of20

reversion at antigenic sites is affected by both selective constraint against molecular changes and selection to21

evade immune recognition, there is a need to incorporate the time-dependence imposed by epidemiological22

dynamics into the substitution process.23

Models of pathogen dynamics have shown that reversion probabilities are affected by fitness costs [17, 18,24

3, 19], at both the within-host and between-host level, and the availability of susceptible hosts [3], at the25

between-host level. However, these models were developed in the context of HIV escape mutations. HIV26

infects host chronically, with host susceptibility determined by human leukocyte antigen (HLA) type, which27

does not vary over time. Due to these infection dynamics the prevalence of each strain changes relatively28

slowly, and is expected to eventually stabilise [3]. In contrast, for acute infections such as human influenza and29

RSV where transmission occurs frequently and host immunity can last for much longer than the duration of30

the infection, the structure of host immunity can vary rapidly over time. Due to differences in the dynamics of31

selection, we expect antigenic selection to have qualitatively different effects on sequence changes at antigenic32

sites compared to constant selective pressure [1].33

Here, we examine the probability of antigenic reversion in an epidemiological model, which describes the34

complex ecology of multiple viral strains with cross-immunity competing for susceptible hosts. This model35

allows us to quantify the relative advantage of an antigenically novel mutation, compared to a reversion which36

may be antigenically less advantageous, but improves transmission. Using both a simple three-strain model and37

simulations with multiple codon sites, we examine the effect of the duration of host immunity, selective costs,38

population size, and the basic reproductive ratio. We show that these effects lead to distinctive dynamics in39

the frequencies of derived amino acids, which is informative about the duration of host immunity and strength40

of selective constraint. Time-structured sequence data from influenza and RSV are compared to simulated41

sequences, and we discuss what these results imply about the relative effects of host immunity and functional42

constraint.43
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2. Methods44

2.1. Simple analytical model for antigenic reversion45

The simplest model containing reversion is a system where the population has mutated away from the46

ancestral state, and potentially can mutate either back to the ancestral state (reversion) or to a novel state47

(forward substitution). In an epidemiological context, we consider a viral population described by a three-48

strain SIRS model [20]. The viral population is initially of strain 0 (ancestral state), which is then replaced49

with strain 1, and can subsequently be replaced by either strain 0 (reversion) or strain 2 (forward substitution).50

We assume a large host population of constant size N , with homogeneous mixing, so that the dynamics51

of the number of hosts which are susceptible Si, infected Ii, and recovered with immunity Ri, for strains52

i = 0, 1, 2 can be described by53

dIi
dt

= βi
Si
N
Ii − δIi, (1)

dRi
dt

= δIi − γRi, (2)

with transmission rate βi, recovery rate δ, and immunity that decays at rate γ. Interactions between strains54

are described by the implicitly defined term Si, which is the number of hosts susceptible to strain i. Assuming55

that each host can only be infected by a single strain at a time, and prior infection with strain j reduces56

susceptibility to strain i by a factor σij , the relationship between susceptible and immune hosts is given by57

Si = N −
∑
j

Ij −
∑
j

σijRj , (3)

with the constraint that Si > 0 for any strain i. All uninfected hosts (N −
∑
j Ij) can be categorised as either58

susceptible (Si) or immune (
∑
j σijRj) to strain i. The similarity between this model and the status-based59

model with polarised immunity developed by Gog and Grenfell [21] becomes evident when we differentiate60

Equation (3) to give61

dSi
dt

= −
∑
j

(
dIj
dt

+ σij
dRj
dt

)
,

= −
∑
j

βj
Sj
N
Ij +

∑
j

δ(1− σij)Ij +
∑
j

γσijRj . (4)

The main difference is that we retain the history of infections accumulated across the population through62

the additional set of variables, Ri. This allows us to obtain analytical expressions for the number of hosts63

susceptible to all strains as functions of the same set of variables, as shown in Equation (3). In contrast to the64

Gog and Grenfell [21] model assuming polarised immunity, we assume a model of partial additive immunity.65

A host that was infected twice with strain i at times t1 and t2 will contribute r = σiie
−γ(t−t1) + σiie

γ(t−t2) to66

Ri at time t. This additive structure can be easily generalised to incorporate multiple strains. However, our67

model allows a host to contribute r > 1 after multiple re-infections, so we tend to inflate Ri. The effect of this68

approximation is examined in greater detail for a single strain system in Appendix A.1. Overall, the effect69
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of the approximation is to reduce I, but leave S unchanged. The approximation also tends to have minimal70

effect when σ is small, or when the rate of immune decay varies between hosts.71

Our model of partial additive immunity generates similar dynamics to the Gog and Grenfell model [21].72

From Equation (4), it can seen that hosts infected with strain j are removed from the susceptible class Si,73

and then a proportion 1 − σij of all infected hosts are returned to the susceptible class on recovery, so that74

the overall contribution of immunity is σijβjSjIj/N , which is similar to the σijβjSiIj/N term in the Gog and75

Grenfell [21] model. The difference in the Si and Sj term arises because in the Gog and Grenfell [21] model,76

immunity arises from exposure, but in our model, immunity is only generated when infection occurs.77

The strict exclusion of co-infection involves a second approximation, where an infection by any strain j78

will always be removed from Si but not from Ri [first term in Equation (4)]. This occurs because while it is79

possible to distinguish between Si and Ri at the time of infection from strain j, it is not possible, at the time80

of recovery from strain j, to determine whether the host was previously susceptible or immune to strain i.81

Our approximation leads to an underestimation of Si. We expect this to have a small effect as the bias lasts82

only for the duration of the infection. In addition, strains which are closest to the current circulating strain j83

will not be heavily affected (σij ≈ 1); the most heavily affected strains are those distant from strain j which84

are likely to be no longer circulating.85

Using this model, we examine the effect of cross-immunity σij , immunity duration γ and selective costs86

incurred by antigenic escape s. The rate of immune decay γ includes the loss of immunity by the death87

and migration of immune hosts as well as the loss of immunity in individual hosts. The selective cost is88

parametrized through a reduction in the strain-specific transmission rate so that β0 = β, β1 = β(1 − s) and89

β2 = β(1− s)2. To understand the effect of these parameters, we first characterise the number of susceptible90

hosts to each strain at equilibrium, and use this to determine probabilities of fixation, assuming a single strain91

appears at a time.92

We assume the population is initially infected with only strain 0, which is maintained at equilibrium until93

strain 1 emerges at time t1. Strain 1, then replaces strain 0 and equilibrates until time t2, when a third strain94

(either strain 0 or strain 2) emerges and can potentially replace strain 1. These equilibrium assumptions95

allow us to characterise host immunity accumulated due to infection by strain 0 at t1 (denoted R∗0), and host96

immunity accumulated due to infection by strain 1 at t2 (denoted R∗1), which then allows us to evaluate the97

probability of strain 0 or 2 emerging at time t2.98

The equilibrium is obtained by setting the derivative of Si and Ii to zero. When the viral population99

consists of only one strain, the endemic equilibrium, which is asymptotically, locally stable when the basic100

reproductive ratio βi/δ > 1 [20], is given by101

S∗i =
δ

βi
N, (5)

I∗i =
γN

δσii + γ

(
1− δ

βi

)
. (6)

We assume that at time t1, when strain 1 emerges, the population remains close to equilibrium. As strain102
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1 has only just emerged and strain 2 has not yet occurred, the cross-immunity terms in Equation (3) can be103

ignored so that it contains only terms of subscript i = 0. Substitution of Equations (5) and (6) into Equation104

(3) gives105

R∗0 =
δN

δσ00 + γ

(
1− δ

β0

)
. (7)

Now, consider a later time t2, when a third strain (either 0 or 2) emerges and can potentially replace strain 1.106

Again, we assume that strain 1 remains close to equilibrium and that the third strain has had negligible effect107

on immunity. In addition, we assume that immunity due to infection by strain 0 has decayed exponentially108

since time t1, so that Equation (3) can be approximated as109

S∗1 = N − I∗1 − σ11R∗1 − σ10R∗0e−γ(t2−t1) . (8)

Substituting Equations (5) and (6) into (8) then gives110

R∗1 =
δN

δσ11 + γ

(
1− δ

β1

)
− δσ10N

σ11(δσ00 + γ)

(
1− δ

β0

)
e−γ(t2−t1) . (9)

Having obtained an expression for R∗0 and R∗1, we can now compute the proportion of hosts that are susceptible111

to each strain, pi(τ) = Si(τ)/N , where τ = t2 − t1 is the time since the emergence of strain 1. Thus,112

p0(τ) = 1− I∗1
N
− σ01

N
R∗1 −

σ00
N
R∗0e

−γτ , (10)

p2(τ) = 1− I∗1
N
− σ21

N
R∗1 −

σ20
N
R∗0e

−γτ , (11)

which can be written in the form113

pi(τ) = A+Bie
−γτ , for i = 0, 2. (12)

Assuming that cross-immunity is additive with respect to the number of antigenic differences (σii = σ, σ01 =114

σ10 = σ21 = σ/2 and σ20 = 0), the coefficients simplify to115

A = 1− δσ + 2γ

2(δσ + γ)

(
1− δ

β1

)
, (13)

B0 = − 3δσ

4(δσ + γ)

(
1− δ

β0

)
, (14)

B2 =
δσ

4(δσ + γ)

(
1− δ

β0

)
. (15)

Note that we expect that prior immunity reduces infection against an unmutated strain at appreciable levels116

(σ � 0.1) and that immunity lasts for much longer than the infection duration (γ � δ). Within the parameter117

range of interest, the fractional terms containing δ, σ and γ in Equations (13–15) approach constants, so that118

A is approximately a function of only β1/δ and B0 and B2 are approximately functions of only β0/δ.119

We calculate the probability of a strain generated by reversion or forward mutation at time t2 giving rise120

to a new epidemic by approximating the emergence of a new strain as a linear birth-death process. Ignoring121

initial changes in host susceptibility, the probability that a new strain reaches fixation [22] is given by122

fi =

 1− 1
re,i

, if re,i > 1

0, otherwise
(16)
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where re,i = βipi/δ denotes the effective reproductive ratio of the new strain i at the time of emergence. Using123

Equations (12–15), at time τ after strain 1 has reached equilibrium, we compute the probability of fixation for124

strain 0 (reversion) and strain 2 (forward substitution) to be125

fi(τ) =

 1− δ
βi(A+Bie−γτ )

, if τ > tc,i

0, otherwise
(17)

where the threshold tc,i is given by126

tc,i =

 −
1
γ log

(
δ

β0B0
− A

B0

)
, if i = 0

0, if i = 2
(18)

The probability of reversion given fixation is therefore127

ρ(τ) =
f0(τ)

f0(τ) + f2(τ)
. (19)

The probability of reversion is low immediately after the strain 0 has been replaced; in fact from Equations128

(17–19), it is zero for τ < tc,0. Asymptotically, if all prior immunity against strain 0 has decayed, then the129

exponential term in the denominator of Equation (17) approaches zero, thus giving130

ρ∞ =
β0A− δ

2β0A− δ(1 + β0

β2
)

(20)

=

1
2

[
β
δ − (1− s)−1

]
− 1

β
δ − (1− s)−1 − (1− s)−2 − 1

. (21)

In summary, Equation (19) describes the combined effect of immunity γ and functional constraint s on the131

probability of reversion at some time τ after immunity has begun to wane from equilibrium levels. Whereas132

the long-term asymptote ρ∞, given by Equation (21), shows the effect of functional constraint in the absence133

of immunity.134

2.2. Multi-site simulation model135

To verify our theoretical model, and to examine the impact of increasing the antigenic space, we develop136

a stochastic computer simulation model where each infection is associated with a sequence of antigenic sites.137

Population dynamics are similar to the analytical model (see Table 1 for a complete list of parameters), but138

in the multi-site simulation, we explicitly model the mutation process. In the analytical model, we assumed139

the emergence of three strains at specified times, and calculated the probability that these strains would reach140

fixation. In contrast, for the simulation model, we allow mutations to occur stochastically at any antigenic141

site throughout the simulation; thus, new strains may emerge before the old strain reaches equilibrium and142

even favourable mutations may be lost due to stochasticity.143

We implement two models using different representations of the antigenic space. The first model uses a144

bit-string representation so that each of the La antigenic sites can take values of v = {0, 1}, and a change at145

any site away from the ancestral state (0) will reduce transmissibility. The bit-string model with two sites146
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has a antigenic space similar to the analytical model. In the second model, we use a more realistic codon147

representation. Sites can mutate to any one of the 64 possible codons, but viral fitness is only affected by148

non-synonymous changes (i.e., v consists of the 20 amino acids). Specifically, any amino-acid change will affect149

cross-immunity, but only changes from the ancestral amino acid to a derived state will reduce transmissibility.150

The ancestral codon sequence is determined at the beginning of each simulation by randomly sampling La151

non-terminating codons with uniform probability.152

Throughout the simulation, we track the number of infected hosts I, the genotype of each infection, and the153

immune status of the host population. The last variable is stored in the immunity matrix consisting of 2×La154

elements for the bit-string model, or 20× La for the codon model, where each element rv,j stores the number155

of people with immunity to a value of v at site j. That is, rv,j stores the site-specific immunity accumulated156

across the whole population, and we compute the immunity against any viral genotype by summing across157

these values (described below).158

The multi-site model is implemented as a discrete time simulation [22], with a time-step of one day. The159

system is initialised with a naive population (rv,j = 0 for all v and j) and an infected host which carries the160

ancestral strain. At each time-step, the population changes according to SIRS dynamics, with the following161

events occurring:162

1. Mutation: The number of mutations that occur in the viral population in each time-step is drawn from163

a Poisson distribution with mean µILa, where µ is the mutation rate per site per time-step, and occur164

uniformly across all sites and all individuals. For the codon model, the probability of any codon occurring165

at the mutated site is specified by the Kimura two-parameter model [23] with a transition-transversion166

rate of κ = 3.167

2. Transmission: The number of potential new infections which occur in each time-step is a Poisson random168

variable X ∼ Pois(Λ), where Λ =
∑I
i=1 β(1− s)ki is the force of infection. The scaling factors (1− s)ki169

account for the reduction in transmission of genotype i due to the cost of ki changes away from the170

ancestral strain. The genotypes of the X potential infections are determined by multinomial sampling171

according to (1 − s)ki , to account for variation in transmissibility within the viral population. We can172

then calculate the probability of each potential infection i encountering a susceptible host, given by173

pi =
N − I − σ

La

∑La
j=1 rvij ,j

N
, (22)

where rvij ,j is the level of recognition against a particular antigenic site as described above. Equation174

(22) corresponds to Equations (10–11) in the analytical model. The success of the potential infection is175

determined using a Bernoulli random variable U ∼ Bernoulli(pi). If U = 1, a new infection is generated176

with a genotype identical to the parent.177

3. Recovery: The number of infected hosts which recover in each time-step is Poisson with mean δI trun-178

cated with an upper bound of I − 1. Each recovered host i is drawn from the infected population with179
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uniform probability and increases immunity to allele vij at site j = 1, · · · , La. That is, for each recovery,180

we update La elements of the immunity matrix181

rvij ,j := rvij ,j + 1 . (23)

4. Decay of host immunity (across the whole population) is simulated by reducing rv,j for all antigenic182

states v ∈ v at each site j = 1, · · · , La by a binomial random variable,183

rv,j := rv,j − V, where V ∼ Binom(rv,j , γ) . (24)

Note that the epidemic is artificially prevented from extinction. The forcing mechanism is necessary as we184

have, for simplicity, not included a migration term. In stochastic models of recurrent epidemics, the infection185

frequently dies out without re-introduction by migration, particularly in smaller populations [24, 25].186

3. Results187

Using the analytical and simulation models, we examine how the epidemiology of the virus affects the188

probability of reversion at antigenic sites. We first describe the dynamics of the simple three-strain model189

(Section 3.1), before examining the time dependence of this system (Section 3.2) and the effect of the epidemi-190

ological parameters (Section 3.3). The combined effect of these interacting factors on the observed amino acid191

frequencies is described in Section 3.4, and we compare this to sequence data for human influenza A (H3N2)192

and RSV-A in Section 3.5.193

3.1. Dynamics of changing susceptibility194

To provide some intuition about the process, we show an example of forward substitution and reversion in195

the three-strain model (Figure 1). The dynamics of the simulations, where mutations occur stochastically, are196

compared to the analytical model by setting t1 and t2 to the times at which the strains are observed to emerge197

in the simulation. By analogy with the three-strain model, whichever strain that emerges first containing one198

mutation (either 01 or 10) is denoted strain 1. For the time interval shown here, only three strains emerge,199

but over longer durations, all four strains will typically be observed.200

For two separate simulations using the two-site bit-string model, we show the number of hosts infected201

with each strain i = 0, 1, 2 [panels (a) and (b)], and the corresponding proportion of susceptible hosts pi202

[panels (c) and (d)]. The emergence of the ancestral strain 0 in the initially naive population sharply reduces203

the proportion of susceptible hosts to strain 0, p0; p1 is also slightly reduced due to cross-immunity between204

strains 0 and 1, while p2 is unaffected. When strain 1 emerges and dominates the population, both p0 and p2205

are temporarily reduced but p0 slowly increases above its previous equilibrium.206

In the first simulation [panels (a) and (c)], strain 1 is rapidly replaced with strain 2, so that at the time207

of emergence t2, susceptibility to strain 0 remains quite low [black line in panel 1(c)]. In this case, forward208

substitution is favoured because there is a larger pool of susceptible hosts for strain 2. In contrast, in panels209
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(b) and (d), the interval between t1 and t2 (vertical grey lines) is longer than the first simulation, providing210

time for p0 to reach similar levels to p2 so that reversion can occur.211

3.2. Time-dependence of the probability of reversion212

In Figure 2, we show the probability of reversion as a function of τ = t2 − t1, the interval between the213

time of strain emergence (indicated by vertical grey lines in Figure 1). The theoretical probability of reversion214

[Equation (19)] is compared to the proportion of reversion events in simulations with a two-site bit-string215

model. We compute a proportion by binning substitution events with the same value of log10(τ), rounded to216

two significant figures.217

To correspond to the analytical model, only substitution events following transitions between strain 0 to218

strain 1 are counted. Note that in the analytical model, τ is the interval between the times of emergence;219

however, in the simulation, it is difficult to determine which of the emerging mutations will reach fixation. As220

a proxy for τ , the counts from the simulation are binned according to the time between antigenic substitutions221

(i.e. the time at which a different antigenic strain becomes the dominant strain in the population).222

These results confirm that the reversion probability varies with τ . The probability of reversion is low if223

substitution occurs rapidly, and gradually increases with τ until it flattens at the asymptote ρ∞, given by224

Equation (21). This asymptotic value represents the probability of reversion in the absence of cross-immunity.225

The decay rate of host immunity γ affects the speed at which the asymptotic value is reached, but not the226

value of the asymptote.227

Greater variation is seen in the simulated results for large τ , as these represent proportions computed from228

a smaller number of more rare events. However, the greatest discrepancy between theoretical and simulated229

results occurs near the transition tc,0 [Equation (18)]. At τ = tc,0, the theoretical model predicts a sharp230

transition away from ρ(τ) = 0; in the stochastic simulations, the transition is more gradual. The reason for231

this discrepancy is that the theoretical model assumes that each strain reaches equilibrium before it is replaced.232

However, in large viral populations, the mutational input rate can be large enough that strain 1 replaces strain233

0 before I0 can reach equilibrium. In these cases, R∗0 will be upwardly biased, so that ρ(τ) underestimates the234

probability of reversion. We confirm this in Figure B10 in Appendix B where a similar plot is shown ignoring235

substitution events that occur before equilibrium is reached.236

Based on the form of ρ(τ), we expect the time-dependent probability to be independent of the viral mutation237

rate and population size. Consistent with this, we observe that simulation results for different population sizes238

lie on the same curve, with points from small populations (circles) corresponding to large values of τ and239

points from larger populations (triangles) corresponding to smaller values of τ .240

3.3. The effect of epidemiological parameters241

To examine the effects of viral transmission (β, δ, s) and host immunity (γ, σ), we now consider ρ for242

a fixed τ in the analytical model [Equation (19)]. For simplicity of notation, we omit the argument τ in243

this section. Equations (13–15) indicate that the strength of immune protection σ affects ρ only through the244
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coefficients A, B0, B2, and is expected to have only a weak effect. In Figure 3, we confirm that the level of245

immune protection σ has only a weak effect on ρ unless the typical duration of the infection 1/δ [Figure 3(a)]246

is as long as the immune duration 1/γ [Figure 3(b)], or σ is negligibly small. Throughout the rest of the paper,247

we set σ = 1.0.248

Figure 4(a) shows how the reversion probability varies as a function of the basic reproductive ratio β/δ, for249

various values of selective cost s, for a fixed level of host immunity (γτ). For sites under no selective constraint250

(black line), the probability of reversion increases slightly with β/δ, but very different effects are observed251

for a non-zero selective cost. The effect of a selective cost is strongest for small transmission rates, as slight252

decreases in infection rates can have a more detrimental impact on the mutant subpopulation.253

The interaction between the selective cost s, and the immunity decay rate γ, is shown for a fixed τ254

[Figure 4(b)]. We showed in Figure 2 that for large γτ , ρ(τ) plateaus at ρ∞, which is independent of γ;255

however, when the rate of strain replacement is comparable to the decay rate of host immunity, there are256

strong dependencies. The effect of varying γ, in the absence of selective constraint (s ≈ 0), can be seen in the257

difference between ρ where the curves plateau. Further increases in selective cost leads to a rapid increase in258

the probability of reversion, with more rapid increases for longer lasting immunity (solid line).259

3.4. Fluctuating frequencies at antigenic sites260

In Sections 3.1–3.3, we observed that τ had a strong effect on whether reversions occur or not. In fact,261

where τ is known, no further information on mutation rate µ or population size N is required. However, in262

practice this quantity is difficult to measure. It is possible to account for variation in τ by integrating over the263

distribution of τ , but this can remove important information; under certain parameter ranges, the stochasticity264

of τ is sufficient to cause noticeable variation in reversion probabilities.265

To observe the effect of fluctuations in ρ, we measure the frequency of the ancestral allele π0 at each266

antigenic site. The frequency of an allele is informative about its fixation probability [26], and the rate of267

change in frequency is proportional to the strength of selection s [27, 17]. Under directional selection, we expect268

any allele to eventually reach fixation or extinction. Thus fluctuations between π0 = 0 to π0 = 1 indicates269

changes in selection. We measure the frequencies of each antigenic site separately, as immunity against each270

site may vary depending on the history of previous circulating strains.271

In Figure 5, we show frequency trajectories π0, under conditions of both antigenic selection and selective272

constraint, so that antigenic changes away from the ancestral sequence imposes a cost. To account for in-273

accuracies due to sampling, π0 was computed from sequences sampled at discrete intervals, and the earliest274

sequence sampled after the burn-in period was used as the ancestral sequence. In all panels, we observe fluctu-275

ations in frequency levels as reversion probabilities vary due to the stochasticity of the time between antigenic276

substitutions, although there is no change in µ, N , or s during a simulation. The pattern of fluctuations in π0277

differs depending on the host population size N (varying along columns) or the decay rate of host immunity278

γ (varying along rows). Faster changes in π0 are observed for larger N and fixation of the ancestral allele279

becomes less likely. Tracking frequency over time also provides information on γ that would not be available280
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in the time-averaged approach. Comparison between columns in Figure 5 indicates that increasing γ tends to281

reduce both the frequency and amplitude of π0. This effect is particularly evident for larger population sizes282

[panels (c)–(f)], where the rate of substitution is not limited by the rate of mutational input.283

The effect of removing the selective cost (s = 0) is shown in Figure 6. Although fluctuations can still284

occur, the ancestral allele at the antigenic site rarely returns to fixation (π0 = 1) and, if so, does not remain285

fixed for long. This effect occurs even for small population sizes [panel (a)] which favour reversion. Continual286

antigenic selection drives further substitutions to other derived amino acid residues, that have not induced287

prior immunity. That is, multiple instances of increasing π0 as an indication of high selective costs s is robust288

to misspecification of the ancestral allele. However, consistently low values of π0 may simply be due to using289

an misspecified ancestral allele (an alternative interpretation is that π0 correctly identifies that an unfavoured290

amino acid is unconstrained).291

3.5. Application to influenza and RSV292

In Figure 7, we show π0 changing over time for the human influenza A virus subtype H3N2 and the293

respiratory syncytial virus (RSV) subtype A at antigenic and non-antigenic sites. The H3N2 data set consists294

of all HA sequences for human H3N2 from the influenza virus database [28] where the year of sampling is295

known. The accession numbers surface G protein sequences of RSV-A sequences that we used were listed296

in Botosso et al. [5]. In total, we analysed 5831 H3N2 sequence spanning 45 years and 538 RSV sequences297

spanning 19 years.298

We computed π0 for antigenic sites which have been identified by experimental methods, as sequence-based299

methods are also designed to identify sites with variation in amino acid composition. For H3N2, we used the300

seven sites (145, 155, 156, 158, 159, 189, 193) listed in a recent study [29] which used antigenic cartography301

which integrates information over multiple pairs of antigen and antisera in order to evaluate overall antigenic302

change [30]. For RSV-A, experimental studies with monoclonal antibodies have identified a large number303

of sites which react to different monoclonal antibodies [31, 32]. More recent studies have used phylogenetic304

analysis of natural isolates to identify potential antigenic sites [33, 34]. Note that there is an ascertainment305

bias in using sites identified on the basis of frequent amino acid changes. Here, we have restricted the analysis306

to eight sites (225, 226, 233, 237, 244, 274, 280, 290) which were identified as reducing antigenic recognition307

in multiple studies [33, 34, 31, 32], with at least one being experimental [31, 32]. Including a larger number of308

sites does not affect the results, but will obscure features of distinct trajectories.309

For both viruses, we obtain oscillating patterns of π0 that are consistent with our expectations for antigenic310

sites evolving under both immune selection and functional constraint. Non-antigenic sites [Figure 7(c) and (d)]311

generally do not exhibit these fluctuations, but some non-antigenic sites in RSV-A may experience frequency312

fluctuations due to linkage to antigenic sites [Figure 7(d)]. Patterns of frequency change in H3N2 and RSV-313

A differ considerably from each other. H3N2 frequencies have sharper and slower oscillations, which are314

suggestive of both a smaller population size and longer lasting immunity. At least four antigenic sites in H3N2315

revert and fix at the ancestral state which indicates very strong selective constraint. RSV-A shows more rapid316
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oscillations, suggesting faster decaying immunity and moderate selective constraint. The relatively short time317

that the ancestral allele is at high frequencies suggests that selective constraint has a smaller influence than318

for H3N2.319

4. Discussion320

We have shown that for acute, recurrent infections, the probability of reversion at antigenic sites depends321

on the interaction between the cost of immune escape and the duration of host immunity. Similar to models322

for HIV [17], we find that a higher cost of immune escape increases the probability of antigenic reversion. The323

impact of the cost of immune escape on the reversion probability is greater when the basic reproductive ratio324

is low, as small reductions in transmissibility have a more detrimental effect. This is in agreement with a325

previous study on the effect of selective constraint on antigenic drift [35]. In addition to these two parameters,326

we find that longer lasting immunity can also reduce the probability of reversion, but the precise extent of this327

reduction depends on the time between antigenic substitutions.328

The time between antigenic substitutions, which is inversely proportional to the viral population size and329

mutation rate, is closely related to the rate of mutational input θ, a parameter commonly used in population330

genetics to describe the time-scale of selection and drift. In the epidemiological model, it affects the balance331

between selective constraint and antigenic selection by determining the extent to which prior immunity has332

decayed. When the interval between antigenic substitutions is small, immunity against the ancestral strain333

remains high at the time of substitution so that antigenic selection reduces the reversion probability. For larger334

intervals between antigenic substitutions, prior immunity will have decayed to a greater extent and the basic335

reproductive ratio and cost of immune escape become stronger determinants of the reversion probability. In the336

context of phylodynamic models, θ is also the parameter which is used to link the coalescent to epidemiological337

models [36].338

Previous studies have described varying levels of reversion in a range of viruses and speculated on the339

influence of host immunity [5, 2, 8], but it has been unclear how the level of reversion should be quantified340

and how these results should be interpreted. In contrast to previous studies [5, 37] based on phylogenetic341

methods, we propose using temporal patterns of frequency change to quantify reversion. Where sequence data342

from multiple time-points is available, a frequency-based approach can more easily show the time-dependent343

effect of antigenic selection. Simulation results predict that varying parameters controlling population size,344

transmission rate, immunity decay and selective constraint have qualitative effects on the frequency of the345

ancestral allele π0 which are consistent with the analytical model, providing a means for interpretation. As346

our approach uses site-frequency data rather than a phylogeny, it is amenable to the application of large347

time-structured data sets, but is also more sensitive to effects such as biased sampling and spatial structure.348

In this paper, we compared patterns of π0 for two viruses that induce acute respiratory infection which349

recurrently infect human populations and induce long-term immunity: influenza A (H3N2) and RSV-A. For350

both viruses, we observed fluctuations in frequency at antigenic sites suggesting the presence of both immune351
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memory and selective constraint. Without the continuously changing balance between these two effects, we352

would expect an allele for a particular site to reach fixation and remain in that state [27]. While RSV has been353

reported to experience high levels of reversions [5], previous phylogentic studies have not identified reversion354

in H3N2. However, a recent study [8] showed that changes at antigenic sites in H3N2 occur as cycles in a355

genotype network; that is, mutations to multiple states occur before reversion to the ancestral allele, so that356

the reversion is not identifiable along a the phylogeny.357

Our model suggests that the higher rates of reversion in RSV-A compared to H3N2 is due mainly to more358

rapidly decaying immunity rather than stronger selective constraint. Fluctuations in frequency are more rapid359

and complete fixation of the ancestral amino acid does not occur for most antigenic sites of RSV-A. In contrast,360

for H3N2, we observe multiple occasions where a fixation of the ancestral amino acid occurs, and long periods361

where π0 = 1 is maintained, suggesting strong selective constraints. This is consistent with the location362

of the sites within the receptor binding region of the HA gene, so that any antigenic change is also likely363

to affect viral transmissibility [29]. Comparison between the frequency of the oscillations also suggests that364

H3N2 induces more long-lasting immunity than RSV-A. RSV-A exhibits more rapid fluctuation while several365

of the antigenic sites in H3N2 were fixed for long periods (> 10 years) at a derived amino acid, supporting366

the hypothesis that immune pressure against reversion is maintained for long periods. Frequency patterns367

of H3N2 frequency patterns are consistent with multi-site codon simulations (Figure 5) with host immunity368

decay rate γ on the order of 10−4, whereas a value of γ ≈ 10−3 is more compatible with frequency patterns369

for RSV-A. These values are in agreement with reinfection experiments which estimate immunity for H3N2370

lasting 8 years (γ = 3× 10−4 day−1) [38] compared to 1.8 years (γ = 1.5× 10−3 day−1) for RSV-A [39].371

Our study shows that the frequency of the ancestral allele, π0, which can be easily calculated for time-372

stamped viral sequences, is informative about the immune dynamics and cost of escape. In particular, sharp373

fluctuations in frequency is indicative of immune selection occurring at a comparable time-scale to substitutions374

at antigenic sites. However, a small number of linked sites may also display similar patterns as they co-segregate375

with antigenic sites. That is, frequency patterns should not be used as a method to identify antigenic sites;376

but where the antigenic sites are known, frequency patterns provide information about the epidemiology of377

the virus as a whole.378

The approach outlined here provides a qualitative description rather than estimates of the epidemiological379

parameters. Analytical expressions, relating the probability of reversion to the parameters underlying the viral380

dynamics for the three-strain model, rely on the assumption that each strain reaches equilibrium before it is381

replaced. This assumption tends to be violated when population sizes and mutation rates become large, so382

that we generally underestimate the probability of reversion. To address the restrictions of the equilibrium383

assumptions and the assumption of only three strains, we used computer simulations describing sequence384

dynamics in a multi-site model. Formal inference using a complex computational model is a challenge for future385

research. Despite the simplicity, our approach is useful in providing a scheme to consider both epidemiological386

and molecular effects simultaneously. As such, it is complementary to both coalescent approaches [40, 41, 42]387

which assume epidemiological dynamics are largely unaffected by molecular changes, and to codon-based388
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methods [14, 15] which assume that substitution occurs instantaneously as a time-homogeneous process along389

branches of the phylogeny.390

Our model highlights the importance of understanding the interaction between epidemiological and molec-391

ular effects. The results imply that different evolutionary trajectories are expected in viral populations with392

the same distribution of fitness effects but differing population size and contact rates. In particular, we expect393

that viral populations in larger cities with denser populations undergo less reversion and are more likely to394

generate antigenically novel variants.395
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Table 1: Table of parameters used in the multi-site simulation model.

Parameter Description

β Transmission rate per time-step

δ Recovery rate per time-step

γ Decay rate of host immunity per time-step

σ Strength of immune protection

µ Mutation rate per site per time-step

s Cost of immune escape

La Number of antigenic sites

N Host population size
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Figure 1: An example of forward substitution [panels (a) and (c)] and reversion [panels (b) and (d)] in the two-site bit-string

epidemiological model. Solid lines show the trajectory from a single simulation of the number of hosts [panels (a) and (b)] infected

by, and the proportion of hosts susceptible [panels (c) and (d)] to strains 0, 1 and 2. Simulations are initialised with a small

number of hosts infected with strain 0 which tend towards the equilibrium [horizontal grey dashed lines; Equations (5–6)]. At time

t1, strain 1 emerges and dominates the population until time t2 when a third strain (either strain 0 or 2) emerges. Times t1 and

t2 are indicated by vertical dotted grey lines. Between t2 and t1, the expected proportion of susceptible hosts [Equations (12–15)]

is shown by dashed lines. Simulations were run with parameters (a) β = 1.0 day−1 and (b) β = 0.6 day−1 and in both panels,

N = 104, δ = 0.2, γ = 10−3 day−1 and s = 0.1.
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Figure 2: The probability of reversion, as a function of the time between strain emergence τ . The blue line shows the reversion

probability [Equation (19)] of an unconstrained antigenic site as immunity decays, whereas the green (s = 0.1) and red (s = 0.2)

lines show the combined effect of selective cost and immunity. Points show the proportion of reversion events observed from

simulations of the two-site bit-string model. The proportion was computed from the binned number of substitution events that

occurred immediately after a transition from strain 0 to strain 1, using the observed time between antigenic substitutions as

a proxy for τ . Simulations were run for 105 time-steps, with a time-step of one day, with 1000 replicates for each parameter

combination of s and N . All other parameters were set to immune decay: γ = 10−3 day−1, mutation rate: µ = 10−5 site−1

day−1, recovery rate: δ = 0.2 day−1 and transmission rate: β = 0.6 day−1.
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Figure 3: A comparison of the sensitivity of the reversion probability [Equation (19)] to the strength of immunity σ for different

(a) rates of recovery δ and (b) rates of immunity decay γ. Unless otherwise specified, parameters were set to γ = 10−3 day−1,

δ = 0.1 day−1, β/δ = 5, γτ = 0.5 and µ = 10−5 site−1 day−1.
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Figure 4: The effect of the cost of immune escape s and decay rate of immunity γ on the probability of reversion [Equation (19)].

In (a), we hold the level of immunity (γτ = 0.5) constant to show how varying basic reproductive ratio β/δ changes the effect of

s. In (b), we show the effect of varying s for different values of γ with a fixed time between strain emergence τ = 3 × 365 days

and β/δ = 5. Other parameters were set to δ = 0.2 day−1 and µ = 10−5 site−1 day−1.
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Figure 5: The effect of population size and duration of immunity on the frequency of the ancestral allele π0 at antigenic sites

under selective constraint (s = 0.2). Each line represents the changing frequencies, at a single antigenic site, of the ancestral

allele estimated to be the earliest sampled amino acid residue after the burn-in period (1000 days). For high rates of mutational

input [panels (d) and (f)], the earliest sequence may not be the true ancestral sequence (set to be the most transmissible), which

in some cases results in low observed values of π0. Each panel represents the dynamics of a single simulation, with π0 computed

from samples of 20 sequences taken every 200 days. All simulations were run with a time-step of one day and parameters β = 1.0

day−1, δ = 0.2 day−1, µ = 10−5 site−1 day−1, La = 7, to match parameters used for human influenza A (H3N2) [43].
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Figure 6: The frequency of the the ancestral allele π0 at antigenic sites under no selective constraint (s = 0). Lines in each

panel show the changing frequency of the ancestral (earliest sampled) allele at each antigenic site in a single simulation. π0 was

computed from samples of 20 sequences taken every 200 days, discarding all sequence data from the burn-in period of 1000 days.

All simulations were run with γ = 1 × 10−3 day−1, β = 1.0 day−1, δ = 0.2 day−1, µ = 10−5 site−1 day−1 , and La = 7.
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Figure 7: Trajectory of the frequency of the ancestral allele π0 computed at antigenic sites of (a) human H3N2 and (b) human

RSV-A show fluctuations which are distinct from randomly chosen non-antigenic sites [panels (c) and (d)]. Frequencies were

computed at (a, c) seven sites in the HA segment of H3N2 with A/Aichi/2/1968 as the ancestral strain, and (b, d) eight sites in

the C-terminal hyper-variable region of the surface G protein of RSV-A using strain AF065406 (sampled in 1981) as the ancestral

strain. Sequences were pooled according to the year of isolation, with years in which fewer than five sequences were sampled were

excluded.
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Appendix A. Comparison of the compartmental SIRS model with an agent-based model for a520

single strain521

The compartmental SIRS model described in Section 2.1 tracks only the number of hosts with immunity522

in the population R, which is increased with each infection by an increment of σ. The model, however, does523

not account for the fact that partially immune hosts which are re-infected cannot gain more than complete524

immunity. To examine the effect of this approximation, we implement, for the single strain case, an agent-525

based model which tracks the level of immunity ri ∈ [0, 1] in each host i in the population. The agent-based526

variables can be related to the population model [Equation (3)] by summing across all uninfected hosts Ĩ,527 ∑
i∈Ĩ

ri = σR.

We implement two agent-based simulations which differ in how they model the decay of host immunity. In528

model A1, immunity decays deterministically, so there is no variability in the rate of decay between hosts. In529

contrast, in model A2, we maximise the variability in the rate of decay by having complete loss of immunity530

in a proportion of hosts. In both models, population-wide levels of immunity are reduced, but there are531

considerable differences in the variation in levels of immunity between hosts, which is known to affect the532

epidemiological dynamics [44].533

1. Transmission : The number of new infections in each time-step is Poisson with mean βSI/N . Newly534

infected hosts are randomly drawn with the set of uninfected hosts by multinomial sampling, according535

to 1− ri. Note that their immunity status is not altered on infection, so they retain immunity obtained536

from prior infections, but their contribution is not included into the population variable R.537

2. Recovery: The number of infected hosts which recover in each time-step is Poisson with mean δI trun-538

cated with an upper bound of I − 1. Each recovered host i is drawn from the infected population with539

uniform probability and their immunity is increased by540

ri := min(1, ri + σ) . (A.1)

3. Decay of host immunity is simulated differently between models A1 and A2. In model A1, immunity is541

reduced deterministically in each uninfected hosts i542

ri := ri(1− γ) , (A.2)

whereas in model A2,543

ri := ri(1− U), where U ∼ Bernoulli(γ) . (A.3)

We compare the agent-based models to the compartmental model implemented in Section 2.2 with no mutation544

(single-strain). Importantly, the equilibrium value for S is largely unchanged between models [Figure A.8(b)],545
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Figure A.8: Comparison of the simulation dynamics between agent-based and compartmental simulations. Shaded areas show

the interquartile range for 100 replicates with β = 0.6 day−1, δ = 0.2 day−1, γ = 10−3 day−1, σ = 0.8, N = 103.
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Figure A.9: Underestimation of the size of the infected population in the compartmental model compared to the agent-based

models (a) A1 with gradual decay of host-immunity and (b) A2 with sudden decay of host-immunity. The extent of underestimation

was computed by taking the mean of I(t) over 100 simulations over 104 time-steps for both the compartmental model and the

agent-based model, and taking the ratio of the means. Simulations were run with δ = 0.2 day−1 and γ = 10−3 day−1.

suggesting that derivations of ρ(τ) remain valid. However, differences can be seen in equilibrium value of I.546

The compartmental model equilibrates at a lower mean value of I compared to both agent-based models A1547

and A2, with a larger difference when compared to A1 (Figure A.9). However, this discrepancy is comparable548

to the variance in the of I(t) over time [Figure A.8(a)]. The difference in I between simulations is largely549

unaffected by changes in population size N or transmission rate β, but mainly influenced by σ (Figure A.9).550
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Figure B.10: The probability of reversion, as function of the time between strain emergence τ . This is the same as Figure 2,

except that substitution events which occur before the population reaches equilibrium are ignored.

Appendix B. Effect of equilibrium assumption in SIRS model551

The derivation of the probability of reversion [Equation (19)] depends heavily on the assumption that the552

system reaches equilibrium before antigenic substitutions occur. This effect can be seen by comparing Figure553

2 to Figure B.10 where substitution events that occur before equilibrium is reached are ignored. The points554

with the greatest discrepancy to the theoretical values of ρ(τ) for intermediate values of τ are are not seen in555

Figure B.10. There is more variation from theoretical expectations for large τ , as more substitution events556

have been removed the calculation.557
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