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Abstract

Cell assemblies are thought to be the units of information representation in the
brain, yet their detection from experimental data is arduous. Here, we propose
to infer effective coupling networks and model distributions for the activity of
simultaneously recorded neurons in prefrontal cortex, during the performance of
a decision-making task, and during preceding and following sleep epochs. Our
approach, inspired from statistical physics, allows us to define putative cell as-
semblies as the groups of co-activated neurons in the models of the three recorded
epochs. Tt reveals the existence of task-related changes of the effective couplings
between the sleep epochs. The assemblies which strongly coactivate during the
task epoch are found to replay during subsequent sleep, in correspondence to the
changes of the inferred network. Across sessions, a variety of different network
scenarios is observed, providing insight in cell assembly formation and replay.

Author Summary

Memories are thought to be represented in the brain through groups of coacti-
vating neurons, the so-called cell assemblies. We propose an approach to identify
cell assemblies from multi-electrode recordings of neural activity in vivo, and ap-
ply it to the prefrontal cortex activity of a behaving rat. Our statistical physics
inspired approach consists in inferring effective interactions between the recorded
cells, which reproduce the correlations in their spiking activities. The analysis
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of the effective interaction networks and of the model distributions allows us to
identify cell assemblies, which strongly co-activate when the rat is learning, and
also during subsequent sleep. Our approach is thus capable of providing detailed
insights in cell-assembly formation and replay, crucial for memory consolidation.

Introduction

Cell assemblies [1, 2, 3], closely connected, synchronously activating groups of cells
have been posited as the main constituents of memory and information represen-
tations. The activation and reactivation (‘replay’) of cell assemblies is thought
to be critical for consolidation and re-elaboration of memories, working memory
and decision making [4, 5, 6]. The precise characterization of cell assemblies from
experimental data remains, however, very difficult. Brute force and exhaustive
search for groups of neurons with strongly correlated firings is impossible due to
the combinatorial number of possibilities. Current available methods for cell as-
sembly detection and replay estimation often rely on the identification and on the
matching of templates [7, 8, 9]. In the hippocampus, for instance, such templates
are provided by the temporal sequence of firing events of place cells during the
awake phase. The correlational structure of data can also be used to approximate
templates from principal component analysis [10, 11], or to search for clusters of
neurons with related firing patterns [12, 13].

In this work we propose an alternative approach for identifying cell assemblies.
We first infer a model for the distribution of the neural activity from the recorded
spiking activity, based on an estimate of the effective coupling network between
the neurons (Fig. 1). While the anatomical synaptic structure is usually unknown
[14], the effective couplings may be inferred by methods borrowing from statisti-
cal inference and statistical physics [15], mapping the observed spiking data onto
abstract network models, e.g. generalized linear models [2, 16, 17], integrate-and-
fire models [18, 19], Boltzmann machines [20] and Ising models of binary neurons
[21, 22, 23, 24, 25]. The effective-coupling-based model allows us to character-
ize the firing probability of any neuron conditional to the activity of the other
cells in the population. We may then search for self-sustaining activity patterns,
in which each neuron ‘reads’ the activities of the other recorded cells, and, in
turn, participates as an input to those cells in a coherent way. This concept of
self-sustaining pattern is closely related to Hebb’s classical definition of a cell as-
sembly as “a diffuse structure ... capable of acting briefly as a closed system™ [1].
Self-sustaining patterns are encoded in the effective-coupling network, arise spon-
taneously whenever favorable network or cellular excitability are met, and may
be detected by a downstream ‘reader’ neuron [3]. A computationally-efficient way
to search through the combinatorial number of putative self-sustaining patterns
consists in applying a driving input favoring high-activity configurations, mim-
icking transient increases in network excitability, as may be induced by e.g. slow
oscillations of sleep. As the drive gets stronger self-sustaining activity patterns
with more and more active neurons are revealed (Fig. 1). Those patterns contain
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groups of strongly coactivating neurons, which define our cell assemblies.

Here, we infer the effective couplings of Ising models [26] that best repro-
duce the distribution of activity of prefrontal neurons during performance of
a decision—making task [10, 27] and during the preceeding and following sleep
epochs. Comparison of the sleep interaction networks reveals the presence of
task-related effective potentiation or depression of the effective couplings. We
then simulate the models of each epoch under an external drive, thereby identify-
ing self-sustaining configurations of neural activity permissible at different levels
of neural excitability, and putative cell assemblies. The cell assemblies support-
ing the effectively potentiated couplings are shown to strongly coactivate in the
behavioral epoch but not in the preceding sleep epoch, and to be replayed in the
subsequent sleep epoch. A wide-scale study of about 100 experimental sessions
shows a variety of possible scenarios for the cell assemblies across the epochs,
which allows us to formulate empirical rules for their formation and replay.

Results

Model for the neural activity distribution and effective cou-
pling network.

We briefly present the approach to model the distribution of activity of the
N recorded neurons (see Methods for more details). The spiking times are
binned within small time bins of duration At = 10 ms; the activity configuration
(01,09, ...,0xn) are snapshots of the neural activity, where o; takes values one or
zero depending on whether the i-th neuron is, respectively, active or inactive in
the time bin. We model the probability distribution of activity configurations as

1
P(O’l,O'Q,...,O'N):Z exp (Zjija'ia'j—i‘ZhiUi) ) [1]

1<j 7

where Z ensures normalization of the distribution. The 1N (N + 1) parameters
h; and J;; are fitted to reproduce the N individual spiking frequencies f; and the
TN (N —1) pairwise spiking frequencies f;; (within a time-bin At) estimated from
the recording data, see Methods. P in Eq. [1], called Ising model in statistical
physics, is the least constrained (with maximum entropy), default probability
distribution reproducing this low-order spiking statistics [21].

Parameters J;; define the effective pairwise couplings between the cells (Fig. 1):
J;; different from zero expresses the presence of a conditional dependence between
neurons ¢ and j, not mediated by other neurons in the recorded population. The
conditional average activity of neuron i given the other neuron activities {o,},
with j # 4, reads

Vi
o P(o1,...,0,=1,....0N) e

<O_i> = P(01,40i=0, 0 N)+P (01, 0i=1,0N) 14+evi’

3(#1)
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It is a logistic function of its total input, V;, equal to the sum of the other neuron
activities o; weighted by the couplings J;;, and of the local input h;.

We have re-analyzed recordings of the activity of tens of neurons in the pre-
frontal cortex of five behaving rats [10]. Each recording session is divided in three
~ 30-minute epochs: a Task epoch in which the rat had to learn a rule (go left,
right, where the light is on, or off, in a Y-shaped maze), which was changed as
soon as the rat had learned it, and two Sleep epochs, one before (Sleep Pre) and
one after (Sleep Post) the Task epoch. We have inferred with the adaptive cluster
expansion of [26] the parameters h; and J;; for the three epochs of the 97 recorded
sessions, together with their statistical error bars, Ah; and AJ;; (Methods). The
inferred model distribution P reproduces the single-neuron and pairwise spiking
probabilities in a time bin with great accuracy (Fig. 2a). In addition, it also
predicts the value of higher-order moments such as triplet firing probabilities,
and the probability of multiple neuron firing in a time bin, in excellent agree-
ment with the data (Fig. 2b). Our model approach successfully complies with
standard criteria for statistical inference, such as cross-validation (Methods and
Fig. 2¢). In addition, the structure of the inferred interaction network is found to
be largely sparse, with an average of about 60% of zero couplings across epochs
and sessions, while about 40% of pairwise correlations are compatible with zero
within one standard deviation. The Ising model therefore offers an accurate and
compressed representation for the empirical distribution of activity snapshots,
over an extended period of time.

Comparisons of Sleep epoch coupling networks reflect Task-
related changes.

We describe in detail the findings for one typical experimental session, called A,
with N = 37 neurons, and we will present results on the remaining sessions in
what follows. We first compare the networks inferred from the three recorded
epochs of session A. The scatter plot of the inferred couplings is shown in Fig. 3,
giving information about how couplings change between the epochs. Most cou-
plings do not vary much between Sleep Pre, Task, and Sleep Post, while some
are strong in the Sleep epochs only. Interestingly, some couplings are weak or
negative in Sleep Pre, and become stronger and positive in Task and in Sleep
Post (Fig. 3). In session A those effectively potentiated couplings are mostly
supported by a group of five neurons (1-9-20-21-26 in Fig. 4, top panels), which
are strongly and positively interconnected in Task and in Sleep Post, but not in
Sleep Pre.

Similar scatter plots can be drawn and studied for all available sessions. Fig-
ures corresponding to six representative sessions, labelled B to G, can be found
in Supporting Information-II. Session B, with N = 10 recorded cells only, dis-
plays a behavior similar to session A (Supporting Information, Fig. S10), with
an effectively potentiated group of four cells (Fig 4). Session C exhibits a more
complex network reconfiguration between the Sleep Pre and Post epochs, with
the appearance of new positive (as in sessions A and B) and new negative cou-
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plings (Fig. S13). As shown in Fig. 4 the effectively potentiated group is made
of three neurons (9-29-45), with couplings vanishing in Sleep Pre but large and
positive in Task and Sleep Post. In addition, many couplings between this group
and another group of four neurons (12-40-42-44) are strongly depressed, decreas-
ing from zero values in Sleep Pre to negative values in Task and Sleep Post. In
Session D no signature of task-related change in the couplings is found (Fig. S18);
the three largest positive couplings define the network shown in Fig. 4, which is
conserved across the three epochs. Session E includes two strongly potentiated
couplings between two unrelated pairs of neurons (Fig. S21). Sessions F and G
show very similar behaviors to, respectively, A and B, see Figs. S23 & S28.

The examples above show that Task-related changes of the couplings between
the Sleep epochs greatly vary across the sessions. To quantify this effect in a
way allowing us to scan efficiently the 97 sessions we introduce the following
session-wide estimator:

Ad] — Z Sign(JgaSk—ng%p Pre) > (J{jleep Post_J{jleep Pre) ] [3]

pairs ¢, j with nonzero
couplings in Task and Sleep Post

Adj is measure of the task-related adjustment of the inferred couplings between
the Sleep Pre and Post epochs. The presence of the sign function allows us to sum
constructively contributions corresponding to effective potentiation (as in sessions
A, B, C) and depression (as in session C) of the couplings. The summation is
restricted to pairs ¢, 7 of neurons, whose couplings are significantly different from
zero in Task and Sleep Post. In practice we require that |J;;|/AJ;; > 3, where
AJ;; is the error bar on the inferred coupling J;;, though the value of Adj varies
little upon relaxing the criterion to |J;;|/AJ;; > 2.

Figure 5, left panel, shows the values of Adj vs. the numbers N of recorded
cells for the 97 sessions. Some sessions (including, but not restricted to, A, B, C,
E, F, G) have large and positive Adj, more than one standard deviation above
a null model (where the correspondence between pairs of neurons across the
epochs is removed by reshuffling the neuron indices, see Supporting Information-
[.D) average. The outcome of a control calculation, where, for each session, we
exchange the Sleep Pre and Sleep Post couplings in Eq. [3] is shown in Fig. 5, right
panel. As expected no large—Adj session is found. This simple control provides
a clear evidence for the fact that Adj captures experience-related changes in the
couplings.

Simulations of the inferred distribution of activity identify
putative cell assemblies.

We now simulate the model distribution P derived above to identify groups of
neurons, or ‘putative cell assemblies’” most likely to co-activate. We call self-
sustaining a configuration of activity (oy, o9, ..., o) such that for each cell i, the
total input V; in Eq. [2] is positive and the neuron is active (o; = 1), or V; is
negative and the neuron is silent (o; = 0). In other words, in a self-sustaining
configuration, each neuron activity is consistent with the inputs coming from the
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other neurons (and from h;). It is easy to show that self-sustaining configurations
are local maxima of the distribution P (Methods), and are therefore prototypical
patterns of the neural activity.

As the effective couplings J;; and local inputs h; reflect the neural activity
distribution over the entire epoch, neural activity is quite sparse. A simulation
of the model distribution with the parameters as inferred will not generate any
self-sustaining state, but the all-silent neuron configuration, o; = 0 for all ¢ =
1,...,N. In neural activity, cell assemblies are not sustained for a long period,
but happen transiently during bouts of high neural excitability. To simulate that,
we introduce an extra parameter H which increases the likelihood for neurons to
activate (in an uniform way [28]) and allows us to reproduce assembly-generating
transients. In practice, for each epoch of the recorded sessions, we identify the
self-sustaining configurations upon changing the total inputs V; into V; + H in
Eq. [2] for all neurons ¢ (Methods). Figure 6 shows the number of active neurons
in the self-sustaining configurations as a function of H for the three epochs of
Session A. As H increases from zero, neurons start to activate one after the
other, in decreasing order of their local inputs h;. As more and more neurons ¢
get activated contributions to the total inputs of the other neurons j build up,
facilitating (J;; > 0) or hindering (J;; < 0) their activations.

Discontinuous ‘jumps’ in the number of active neurons are found at special
values of H, and are indicated with arrows in Fig. 6. A jump signals the coex-
istence of two self-sustaining configurations, with, respectively, a low and a high
numbers of active neurons. We take such co-existence of a high and a low-activity
configurations as the hallmark of a cell assembly, as it highlights how transiting
to a new self-sustaining state requires the concomitant activation of a group of
neurons. We show in the insets of Fig. 6 the variations d(o;) in the conditional
average activities, (o;) in Eq. [2], between the ‘low’ and ‘high’ self-sustaining con-
figurations. As the local inputs h; and the drive H are constant across the jump
large variations §(o;) (in absolute value) may come only from the collective acti-
vation of a group of neurons i (Fig. 1 & 4), which we call putative cell-assembly
(As), see details in Methods and Supporting Information-II.A. In either Task or
Sleep Pre only one out of the two jumps defines a putative cell assembly, while
the other jump does not show strong variations 6(c;), see Fig. 6a & 6b and Insets.
In Sleep Post the single jump defines a large putative cell assembly (Fig. 6c¢).

Comparing the cell assemblies of session A across the different epochs we find
common subgroups of neurons (Fig. 6 and caption). The ‘Sleep’ group (neurons
6-7-11-12) is shared by As.2 in Sleep Pre and the large assembly As.3 in Sleep
Post (Figs. 6b&c). The subnetworks of couplings, inferred in the three epochs
of session A, between the neurons in the Sleep and Replay groups are shown
in Fig. 7. Neurons in the Sleep group are the only ones to be interconnected
by large and positive couplings in the Sleep Pre epoch, and the same statement
holds for the cells in the Replay group in the Task epoch. In the Sleep Post
epoch, however, the two groups becomes largely interconnected. The merging of
the Sleep and Task cell assemblies in a large, interacting group of cells in Sleep
Post, corresponds to the large coactivation jump in Fig. 6¢c, is a general finding
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for all the sessions with a large coupling adjustment, see description of scenarios
below.

Identified Task-related groups of coactivating neurons re-
play during subsequent Sleep.

We now show that the putative assemblies found in the model simulations corre-
spond to real coactivations of the attached neurons in the spiking data. To this
aim we define the co-activation ratio (CoA) of a group G of neurons over the time
scale 7 through

f(G)
HiEG fi ,

where f(G) is the probability that all the neurons in the group are active within
the time scale 7, and the denominator is the product of the individual spiking
probabilities. For a group of independent cells the CoA is on average equal to
unity. As a relevant coactivation event contributing to f(G) should correspond
to a sequence of readings’ of spikes, triggering in turn the next spike, we expect
7 to be not larger than n x At, where n is the number of neurons in G and
At = 10 ms is the time-bin duration used for the inference.

We have computed the CoA of the cell assembly As.1 from the spiking data,
with the results shown in Fig. 8a. As.1 is found to strongly coactivate in Task
and in Sleep Post (on much longer time scales), but only during Slow-Wave-Sleep
periods (SWS), in which hippocampal sharp waves are known to be important for
memory consolidation. In Sleep Pre As.1 does not coactivate, which is compatible
with the independent-cell hypothesis due to the low firing frequencies (Methods).

The ‘Sleep’ group (neurons 6-7-11-12), shared by As.2 in Sleep Pre and the
large assembly As.3 in Sleep Post, coactivates in Sleep Pre and Sleep Post, both
in SWS and non-SWS periods over 7 ~ 30 — 40 ms (Fig. 8b). We find essentially
no coactivation in Task (CoA close to 1). The 'Replay’ group (neurons 1-9-20-21-
26), shared by As.1 in Task and As.3 in Sleep Post (Figs. 6a&c), coincides with
the five-neuron group supporting the strongly effectively potentiated couplings
identified above (Fig. 4). It strongly coactivates in Task and in SWS-Sleep Post,
on similar time scales, respectively, 7 ~ 20 — 30 ms and 7 ~ 30 — 40 ms, and
does not coactive in Sleep Pre nor in non-SWS periods of Sleep Post (Fig. 8b). In
addition the large CoAs of the Replay group found in Task and SWS-Sleep Post
are significantly higher than CoAs for random groups of five neurons (Fig. S8).
Those findings support the hypothesis that the five-cell Replay group is (part of)
a cell assembly involved in memory consolidation.

The coactivation of subgroups of neurons in the putative cell assemblies of
each epoch can be studied further. Looking at subgroups rather than the whole
assembly allows us to investigate the internal structure of the putative cell assem-
blies, e.g. the alternative activation of subgroups resulting from the presence of
negative couplings. As an example, in As.2 of Sleep Pre, large CoA are found for
the subgroups 2-6-9-11-12-13 (shown in Fig. 8a) and 2-6-7-11-12-13 (peak CoA

CoA(G, 1) = [4]

7
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value ~ 500), but their simultaneous activation is not observed in the data. It is
possible to quantitatively understand and predict which group of cells correspond
to strong or to weak coactivations based on the model distribution P. To this
purpose we introduce the log-likelihood variation (6 log P), which measures the
difference in the log-likelihoods of the high and low activity configurations due to
the interactions between the neurons in the group (Methods, Eqn. [5]). In session
A, the only three five-cell groups found to have CoA comparable to the replay
group are obtained by replacing one of the five cells in the group with another
neuron in As.1; these three variants are the groups with the largest ¢ log P values
(Supporting Information.II-A and Fig. S7). Similarly, variants of the Sleep group
or subgroups of the Sleep Post assembly As.3 with large dlog P and CoAs are
also identified, see Figs. 6a & ST7.

A variety of scenarios for cell assemblies are found across
experimental sessions.

The approach described above for session A has been applied to the other available
sessions; results for six representative sessions, labelled B to G, are reported
in Supporting Information-II. Given the strong and random undersampling of
the neural activity it is not surprising that we find different scenarios for cell
assemblies. Those scenarios are summarized and illustrated in detail on two
sessions (B and D), which were recorded in two different animals, distinct from
the rat of session A.

A prototypical scenario, encompassing session A, is that a Task-related group
of coactivating neurons is found in Sleep Post, which was not present in Sleep
Pre. An illustration is provided by session B, which consists of 10 recorded cells
only. The number of active neurons in the self-sustaining configurations of the
inferred Ising model of the three epochs of session B are shown in Fig. 9. No cell
assembly coactivates in Sleep Pre. However, a 4-cell assembly is found in Task
and is almost perfectly reproduced in Sleep Post (Fig. 9 and effective networks
in Fig. 4); this cell assembly strongly coactivates in both epochs (Fig. S12). The
same scenario is encountered in session G (Figs. S29 & S31).

Other sessions are found to be even more similar to A in that they have a cell
assembly in Sleep Pre, a different one in Task, and both merge in Sleep Post. An
example is given by Session F, see Figs. 524, S26 & S27. In session C, the Replay
group is composed of a 3-cell potentiated subgroup, whose neurons silence a 4-cell
inhibited group, see Fig. 4 and caption. Remarkably, the complex structure of
the Replay group is apparent through a decrease of the CoA upon addition of
inhibited neurons to the potentiated 3-cell group, compare Figs. S16 & S17.

In some sessions, the same cell assembly is encountered across all three epochs.
This scenario is illustrated by session D, see Fig. 9. This ‘conserved’ cell assembly
is supported by three neurons (effective network in Fig. 4). We find similar values
for dlog P (= 5,6.7,6.5) and for the maximal CoA (= 25,40, 40) in, respectively,
Task, Sleep Pre and Sleep Post, see Fig. S20.

Many sessions show very small values of the adjustment Adj, Eqn. [3] and
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Fig. 5, and show no coactivation at all or a conserved cell assembly as in session
D above. Interestingly, a few sessions with large or intermediate values of Adj
do not exhibit any cell assembly; for those sessions, the effectively potentiated
couplings do not interconnect a small set of recorded neurons, but are scattered

over non-overlapping pairs of neurons. An example is provided by session E, see
Fig. S22.

Discussion

As a conclusion, our Ising-model approach offers a natural way to detect and
study cell assemblies in terms of the (co)activation properties of a virtual neural
network. Those assemblies can be related to task learning or not, as the ones
which are specific to the Sleep epochs. In the former case, our method can detect
replay events, even when ‘templates’ [7, 8, 9] as provided for example by the
sequential activation of hippocampal place cells, are not available. Our analy-
sis significantly extends the principal component analysis (PCA) of [10, 11], as
it identifies the neurons participating to cell assemblies in a detailed way in all
epochs. The largest entries of the top components of the Pearson correlation
matrix have some correspondence with the neurons in the coactivated groups
identified with the present method, especially in the Task epoch. However, dis-
entangling those co-activated groups is difficult, even with the use of clustering
procedures [12], see Supporting Information III for more details.

The approach consists in three steps: (1) The inference of couplings for each
epoch allows us to compute the coupling adjustment Adj for each session, and
retain large—Adj sessions for the study of experience-related replay; (2) The sim-
ulation of the inferred models under an external drive H permits us to determine
coactivating groups of neurons, and to assess their robustness through their log-
likelihood variation ¢ log P; (3) The coactivation properties of these putative cell
assemblies are then directly estimated from the spiking data through their CoA.
Steps 1&2 complement and validate each other. Large coupling adjustments
can be found without experience-related cell assembly and replay, e.g. when
potentiated couplings do not sufficiently interconnect the recorded neurons, as
in session E. Similarly, cell assemblies mixing coactivation and inhibition (as in
session C) would be hard to characterize from the 'jump’ analysis only.

During wakeful experience and during sleep, neural activity shows very differ-
ent regimes. The Ising models can bridge the gap between these states by clearly
separating coupling and input effects. As the firing rates are, on average, very
similar in Sleep Pre and Sleep Post, the creation of task-related cell assemblies
mainly result from a change in the effective couplings J;;, which we quantify with
the coupling adjustment Adj, Eq. [3]. Whether Adj is related to physiological,
synaptic plasticity or not is a fascinating and totally open question. A difficulty,
intrinsic to multi-electrode recordings, is that the random and limited sampling
may miss important cells, and skew our estimate of experience-related changes
to the couplings. This may partially explain the presence of session-to-session
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fluctuations in Adj (Fig. 5).

A crucial ingredient of our approach is the addition of a global drive H to the
local inputs h; in order to detect the cell assemblies (Fig. 6). The set of h; esti-
mated from the data allow us to fit the diversity of session-averaged firing rates for
different neurons, but cannot reproduce transient fluctuations in activity, which
are important for cell assembly recruitment. It is a remarkable fact that 'rare’
coactivation events can be evoked through an extra-stimulation of the model in-
ferred from the session-average activity. It would be interesting to study whether
this result holds with other inference approaches, e.g. generalized linear models
[16] or integrate-and-fire models [18, 19]. In physiological terms, H may translate
to increased neuronal excitability, synaptic facilitation/depression state, or large
transient inputs, such as those arising from hippocampal sharp waves [10]. The
choice of a homogeneous input H to identify the groups of coactivating neurons
ensures that the coactivating neural groups found are induced by the parameters
fit on the data (set of J;; and h;) only. In addition, non-homogeneous inputs
targeting one or more neurons eventually reveal the same neural groups in case
of strong coactivation (Supporting Information-I1I1.A; Fig. S9).

Our approach to identify cell assemblies is based on the notion of simultaneous
coactivation [4], irrespectively of temporal ordering aspects. The network of
pairwise couplings inferred on short time scales, At = 10 ms, suffices to predict
coactivation patterns between n neurons on longer time scales, 7 ~ n x At ms.
Informally speaking the repeated spiking of neurons in short ‘bursts’ allows for
the coverage of 7 with a sequence of pairwise coactivation events (Fig. 1). As
the Ising model gives the distribution of snapshots of the activity couplings are
symmetric, and no ordering can be predicted by the model. Yet, we have not
been able to identify a clear activation ordering in the replay groups in the spiking
data. A possible explanation is that the information encoded in prefrontal cortex
has, indeed, aspects that are not inherently sequential, in particular, the current
rule used to solve the task.

Simple empirical rules for cell assembly modification emerge from the analysis
of the various experimental sessions. If a cell assembly is found in Task, while no
coactivation is seen in Sleep Pre, then this cell assembly is found also in Sleep
Post, e.g. Session B in Fig. 9. If cell assemblies are found both in Task and
in Sleep Pre, but those assemblies differ in their constituting neurons, then they
become associated in Sleep Post, e.g. the merging of jumps in session A (Figs. 6 &
7). This association can be accompanied by a reshaping of cell assemblies in the
presence of effective inhibitory couplings, e.g. in session C. Last of all, if the same
cell assembly is encountered in Task and in Sleep Pre, then it is conserved in Sleep
Post, see session D in Fig. 9. In regards to this empirical rules, the large body of
knowledge on Ising models with non-homogeneous couplings accumulated over the
last decades [30] could prove useful to improve our theoretical understanding of
how cell assemblies can be created, modified, suppressed, or combined with each
other [3]. Combined with optogenetics techniques [31] this would open exciting
perspectives in the manipulation of cortical cell assemblies in a controlled way.
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Materials and Methods

Inference and validation of Ising distribution of activity.

We associate to each neuron ¢ in time bin ¢ a variable o;(t) = 1 if the neuron is
active, 0 if it is silent. The frequencies f; and f;; are defined as the average values
over time bins of, respectively, the variables o;(t) and o0;(¢)o;(t). We look for
the Ising model parameters {h;, J;;} such that f; and f;; match, respectively, the
average values of o; (for all neurons ¢) and o;0; (for all pairs of neurons 4, j) over P,
Eqn. [1]. The inference of the parameters is carried out using the Adaptive Cluster
Expansion (ACE) of [26, 29|, see Supporting Information-I.A. ACE recursively
builds up of clusters of strongly interacting neurons of increasing sizes, whose
contributions to the entropy of the Ising model are larger than a threshold ©.
The value of © is chosen to reproduce accurately the single-neuron (f;) and
pairwise (f;;) spiking probabilities, see Fig. 2a and Supporting Information-I.A,
within the expected uncertainty due to the finite recording time. Statistical errors
bars {Ah;, AJ;;} on the inferred parameters are also computed, see Supporting
Information-1.B.

To compute the average values of observables with the inferred model distri-
bution P, we resort to Monte Carlo simulations. The quality of the reproduction
of the single-neuron and pairwise spiking probabilities in a time bin is shown
in Fig. 2a, and the predictions of higher-order moments, such as triplet firing
probabilities and the probability of multiple-neuron firing in a time bin, are com-
pared to the data in Fig. 2b. To cross-validate the model P we divide the data
set of the Task epoch of the session A in two halves. We extract the spiking
probabilities from the first half of the recording, and we infer the Ising model
able to reproduce these data within their statistical errors. We then compare in
Fig. 2c the correlations ¢;; = f;; — f; f; obtained with the model (through Monte
Carlo Markov Chain simulations) to their experimental counterparts computed
from the first half (used for the inference, left panel), and from the second half
(independent of the inference, right panel) of the data. We choose to represent
the correlations c;; rather than the pairwise probabilities f;; as the former are
more sensitive to errors in the inference than the latter. The excellent agreement
confirms the absence of overfitting in our inference.

Statistical significance of the Coactivation factor (CoA).

To assess the statistical validity of the CoA defined in Eq. [4] for a group G of
neurons we compute the error bar on CoA, shown in Fig. 5. Assuming a Poisson
distribution for the co-activation events, the standard deviation of the CoA is
estimated to be CoA(7)/y/Ng(T), where Ng(7) is the number of coactivation
events for the cells in G over the time scale 7. Note that simultaneous-firing events
(contributing to f(G)) are unlikely to be found, and the CoA is likely to be zero,
if the duration of the recording is small, e.g. compared to Trnin = 7/ [ ;e fi(T).
This happens for the five-cell replay group of session A for time scales 7 < 55 ms
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in the Task epoch, and for all the values of 7 considered in Sleep Pre and Post in
Fig. 8.

Search for self-sustaining neural activity configurations.

We start by showing that self-sustaining configurations & = (01, 09,...,0y) are
in one-to-one correspondence with the local maxima of the distribution P, Eq. [1]
. Consider a neuron, say, ¢, and its total input V;, given by Eq. [2]. By definition
of a self-sustaining configuration, we have either o; = 0 and V; < 0, or 0; = 1 and
V; > 0. In the latter case, after changing the activity of neuron ¢ from o; = 1 to
o; = 0 the log-probability log P decreases by V; > 0. In the former case, after
changing the activity of neuron ¢ from o; = 0 to g; = 1 the log-probability log P
increases by V; < 0. In both cases we see that changing the value of the neuron
activity leads to a decrease of log P.

The search procedure for configurations in which all neurons are self-sustaining
is the following. We start with the all-silent neuron configuration (o; = 0 for
i =1,...,N). If the configuration is self-sustaining, the algorithm has found a
maximum of P and halts. If one or more neurons are not self-sustaining, .e.
their values o; do not agree with the signs of their total inputs V;, we pick up
uniformly at random one of them, say, i, and flip its value o; (from silent to active,
or vice-versa). This asynchronous updating is iterated until the configuration is
self-sustaining. The procedure is guaranteed to converge as the log-probability of
the configuration increases after each updating step. Re-running the dynamics
may, however, produce different maxima, due to the stochasticity in the choice
of the (non self-sustaining) neuron to flip at each step.

Cell assemblies, and log-likelihood variation.

For each value of the drive H we determine the self-sustaining configurations o,
their numbers of active neurons, and the total inputs V;(o) + H to those active
neurons, see paragraph above. A jump corresponds to the coexistence of two
self-sustaining configurations o) and o® for the same value of H, with more
neurons active in o® (high activity) than in o™ (low activity). To determine
the cell assembly attached to the jump we rank all the cells ¢ according to the
variation 0(o;) = (01(2)) - <0§1)> of their conditional average values, see Eq. [2].
Neurons with the largest d(o;) are included in the assembly. The cut-off value
over d(o;) is chosen to be ~ 0.2, but may depend on the session, see Supporting
Information-II.

We define the log-likelihood variation of the cell assembly as the change in
log-likelihood due to the interactions only:

dlog P = Z Jij (0@0](2) - ai(l)a(-l)) : 5] .

i J
i<j

The log-likelihood variation of a subgroup of neurons in o® is defined as in

Eq. [5], with the double sum restricted to the neurons in the subgroup.
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Figure Legends

Figure 1: Model for the neural activity: definition and simulation.
Spiking times are binned into time bins of width Atf; each neuron i is assigned
the variable o; = 1 or 0, if it is active in the time bin or not (top, left). A model
of the neural activity distribution (P in Eq. [1]) is inferred to reproduce the 1-
and 2-cell firing frequencies of this binned data (bottom, left); Red and blue
links correspond, respectively, to positive and negative effective couplings J;; in
the inferred network. The model distribution is then simulated with the addition
of an increasing drive, which favors configurations with more and more active
neurons; Values of the activity variables o; in the most likely configuration given
the drive are shown (right). As the drive increases a group of neurons (comprised
in the dashed contour) may abruptly coactivate, defining a cell assembly.

Figure 2: Quality and validation of the inferred model.

a. Reproduction of the low-order statistics of the spiking data. Scatter plots of
the single-neuron ( f;, left panel) and of the pairwise ( f;;, right panel) frequencies.
Values of the frequencies computed from the spiking data are shown along the
r-axis, while their counterparts computed from the inferred model distribution
P, Eqn. [1], are shown along the y-axis. b. Predictions for higher-order statistics.
Left panel: scatter plot of the triplet frequencies f;j; computed from the data (-
axis) and from the inferred model distribution (y-axis). Right panel: probability
p(k) that k neurons are active in a time-bin (of duration At = 10 ms), computed
from the data and from the model distribution. The agreement is excellent for k
such that p(k) times the number of time-bins is larger than or equal to one, that
is, provided the recording time is sufficient to sample those rare configurations of
multiple neuron firing. c. Cross-validation of the model distribution P, inferred
from the spikes emitted in the first half of the recording of the Task epoch in
Session A (Methods). The correlations ¢;; = fi; — fi f; are shown along the z-axis
(left panel: first half of the recording, right panel: second half), and compared
to the values computed from the model distribution (y-axis). In both panels the
points lie close to the diagonal line, within one or two error bars corresponding
to the statistical standard deviation due to the finite sampling. Moreover the
offsets from the diagonal are of the same order of magnitude in the two panels,
confirming the absence of overfitting in our method.

Figure 3: Comparison of the inferred couplings in the different epochs
of Session A.

Scatter plot of the Ising couplings inferred for the Task vs. the Sleep Post epochs
in session A. Positive and negative (or null) couplings in the Sleep Pre epoch are
shown with, respectively, + and — symbols. A group of five neurons (1-9-20-21-
26) supports most of the potentiated couplings, shown by red circles; five of the
pairs are shown with the corresponding neuron numbers.
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Figure 4: Relevant subnetworks of couplings in sessions A, B, C, D.
Relevant subnetworks of couplings in the three epochs of sessions A to D (red:
J > 0, blue: J < 0; Line thickness is proportional to |J|). Pyramidal cells
are shown with triangles, undetermined cells with circles, and interneurons with
squares. In Session A to C, we show the subnetworks of couplings with most
changes between Sleep Pre and Post; the subnetworks in Sleep Post show large
similarities with the ones in Task. In Session D, where no significative change
in the inferred couplings is observed between Sleep Pre and Post, we show the
most interconnected subgroup of (3) neurons. Session A: The potentiated group is
composed of neurons 1-9-20-21-26 identified in Fig. 3. Session B: The potentiated
group is composed of neurons 3-4-6-10. Session C: neurons in a potentiated
subgroup (9-29-45) have inhibitory connections with the group (12-40-42-44).
Session D: One 3-cell, largely connected group (28-31-32) is conserved across all
three epochs.

Figure 5: Coupling adjustment across all 97 recorded sessions.
Coupling adjustment Adj, see Eqn. [3], is shown for the 97 sessions in the left
panel. The right panel shows a control calculation, where we have exchanged the
Sleep Pre and Post inferred couplings. Red lines show the predictions of the null
model (average: full lines, +1 standard deviation: dashed lines), see SI, Section
[.D. Colors identify the five recorded rats; circles locate sessions A to G.

Figure 6: Identification of groups of coactivated neurons in Session A.
Number of active neurons in the self-sustaining configurations of the Ising model
as a function of the drive H for the Task (a), Sleep Pre (b), Sleep Post (c)
epochs. Distinct self-sustaining configurations may coexist (at a given H) and
are indicated by the same colored dots, and defines jumps indicated by arrows.
The changes in the conditional averages (o;) corresponding to the self-sustaining
configurations shown by the colored dots are given in insets. While the first two
jumps in Sleep Pre and Task correspond to small changes in (o;), the second two
jumps in those epochs and the jump in Sleep Post include a group of neurons with
substantial changes in (o;), which define our cell assemblies. As.1 includes neurons
1-9-10-16-18-20-21-26-29, As.2 includes 2-6-7-8-9-11-12-13, and As.3 includes 1-
5-6-7-8-9-11-12-15-20-21-26-29-34-35. Two groups of neurons, common to the
cell-assemblies of the different epochs, are the replay (1-9-20-21-26) and the sleep
(6-7-11-12) groups.

Figure 7: Association of the Replay- and Sleep-group subnetworks in
the Sleep Post epoch of session A.

Subnetwork of strong couplings within the Replay (top five neurons 1-9-20-21-26,
black symbols) and Sleep (bottom four neurons 6-7-11-12 | violet symbols) groups
identified in Fig. 6. Red: J > 0, Blue: J < 0. Line width is proportional to the
coupling intensity. Pyramidal cells are shown with triangles.
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Figure 8: Coactivation ratios (CoA) in session A.

a. CoA of As.1 in Task (dlog P ~ 16.2), the group 2-6-9-11-12-13 in As.2 of
Sleep Pre (0log P ~ 8.9), the group 7-8-11-12-20-21-26-35 in As.3 of Sleep Post
(0log P ~ 12.3). b. CoA of the Replay and Sleep groups; see caption of Fig. 6 for
the lists of corresponding neurons. CoAs are shown for time scales 7 ranging from
5 ms to n X 20 ms, where n is the number of neurons in each group considered.
Note the variations in the CoA and temporal scales along the y- and z-axis
between the panels. See Methods for the computation of error bars. CoA equal
to zero are compatible with the independent-cell hypothesis due to the low-firing
rates of the neurons, see Methods.

Figure 9: Scenarios for cell assemblies across sessions

Number of active neurons in the self-sustaining configurations of the Ising model
as a function of the drive H for the three epochs of sessions B (left) and D
(right). Coexistence of distinct self-sustaining configurations (at a given H) with
different levels of activity (colored dots) is indicated by an arrow. The changes
in the conditional averages §(o;) corresponding to the jumps indicated by the
arrows are shown in insets. Session B: Cell assemblies are found in Task and
Sleep Post. Neurons of the potentiated, replay group (3-4-6-10) (indicated in
orange) show a large d(o;) in both Task and Sleep Post. Session D: Only three
assemblies out of 5 jumps are found to be significant on the basis of §{(c;), and
coincide with the group 28-31-32 (indicated in green) in every epoch. No Replay
or Sleep group has been found in this session.

Supporting Information Files

Text S1. Supporting Information for Inferred Model of the Prefrontal Cortex
Activity Unveils Cell Assemblies and Memory Replay .
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