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Abstract1

The outcome of a major evolutionary transition is the aggregation of inde-2

pendent entities into a new synergetic level of organisation. Classical models3

involve either pairwise interactions between individuals or a linear superposi-4

tion of these interactions. However, major evolutionary transitions display syn-5

ergetic effects: their outcome is not just the sum of its parts. Multiplayer games6

can display such synergies, as their payoff can be different from the sum of any7

collection of two-player interactions. Assuming that all interactions start from8

pairs, how can synergetic multiplayer games emerge from simpler pairwise in-9

teraction? Here, we present a mathematical model that captures the transition10

from pairwise interactions to synergetic multiplayer ones. We assume that dif-11

ferent social groups have different breaking rates. We show that non-uniform12

breaking rates do foster the emergence of synergy, even though individuals13

always interact in pairs. Our work sheds new light on the mechanisms under-14

lying a major evolutionary transition.15
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1 Introduction17

Major evolutionary transitions share cooperation as a common theme: simple units aggregate to18

form a new level of organisation in which individuals benefit others bearing a cost to themselves19

(1, 2). However, from a Darwinian perspective, cooperation is difficult to explain, as natural selec-20

tion promotes selfishness rather than cooperation (3–7). The evolution of cooperation has often21

been approached through the lens of simple two-player games that depict social dilemmas (8–22

10). The study of games such as the Prisoner’s Dilemma, or alternative situations such as the23

Stag-Hunt game (11), have provided insightful views on which mechanisms are likely to promote24

cooperation — e.g., spatial reciprocity, direct reciprocity, indirect reciprocity, kin selection and25

group selection (12–14). However, the simplicity of two-player games is a double-edged sword,26

as these pairwise games may fail to capture the intricacies of complex interactions in real social27

and biological systems. Evolutionary transitions typically involve multiple interaction partners at28

the same time rather than a collection of pairwise interactions. For instance, when cells interact29

to form a multicellular organism, a superposition of pairwise interactions is insufficient to capture30

the intricacies of the complex organism. This is because an interaction among all the cells is not31

just a sum of pairwise interactions. Synergetic interactions — the whole being more than the sum32

of its parts — may be necessary to allow a high level of selection unit to emerge. Synergetic33

interactions could then pave the way for the emergence of complex phenomena such as division34

of labour or multicellularity. Therefore, understanding how synergetic interactions emerge is an35

important part of our understanding of evolutionary transitions.36

General multiplayer games, which cannot be decomposed into pairwise interactions, can rep-37

resent such synergy effects. They can display broader and richer dynamics than their traditional38

two-player counterparts (15–18). In particular, multiplayer games can exhibit payoff non-linearities39

and can thus account for the synergetic effects that are intrinsic to major evolutionary transitions.40

Although the emergence of synergetic interactions among multiple players is key to all major evo-41

lutionary transitions as aforementioned (19), we lack fundamental understanding on how such42

complex synergetic interactions occur in the first place. Here, we present a mathematical model43

that captures the emergence of synergetic multiplayer games from simple pairwise interactions.44
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2 Results45

2.1 Model description46

We consider a structured population of N individuals, assorted into l sets (20), each consisting47

of m individuals. Individuals can have a different number of set memberships and play one of48

two strategies, A or B. An individual accumulates the payoff through interactions within all the49

sets it belongs to. These interactions are always pairwise and the payoff depends on the set50

configuration, i.e., the number of individuals playing A and B in the set. At every time-step, either51

the strategy of an individual or the set structure is updated. With probability w, the strategy of an52

individual is updated. Two individuals are randomly chosen and one imitates the other’s strategy53

with a probability that increases with the payoff difference. Individuals with higher payoffs are54

more likely to be imitated (21, 22). With probability 1�w, a set is randomly chosen. This set may55

break up with probability ki — where i is the number of strategy A individuals in the set, ranging56

from 0 to m. As a consequence, ki determines the fragility of a set, which in turn, depends on57

the set composition (23). If the set breaks, a randomly chosen individual — which belongs to at58

least one other set — is expelled. In order to keep the size of the set constant, another random59

individual is then incorporated into the set (Fig.1).60

Although our model is simple, it captures two fundamental aspects. First, the set structure61

mimics the social interactions which is an intrisic characteristic of biological systems and human62

societies. For instance, the set size could be based on the diffusion rate of the public goods se-63

creted by cooperative cells (24, 25). The overall structure also allows to consider an organisation64

of arbitrary size, from a small family to a large assembly. Second, individuals only interact in65

pairs and payoffs are additive. In this case, the payoff of an individual is nothing but sum of the66

corresponding pairwise interactions. Thus, there are no imposed synergetic effects via the payoff67

accumulation process. Instead, it can only emerge from the dynamics of the population structure.68

Pairwise games between two strategies69

If the size of the sets is two, m = 2, the population structure is equivalent to a network, where70

a “set” becomes a “link” (Fig. 1). In this case, the accumulated payoffs can still be captured by71

a pairwise interaction, hence there is no synergetic multiplayer interactions (26, 27). Although72

our analytical framework is general enough to allow the study of any set size, we focus on the73

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2015. ; https://doi.org/10.1101/028357doi: bioRxiv preprint 

https://doi.org/10.1101/028357
http://creativecommons.org/licenses/by-nc-nd/4.0/


case where m = 3, that is, when the sets contain three individuals. Let us assume that for two74

individuals playing strategy A (B), each one obtains a payoff of a (d). Similarly, for two individuals75

playing different strategies, the individual using strategy A obtains the payoff b and the individual76

using strategy B obtains the payoff c. Given that there are three individuals in every set, the77

payoff of an individual within a set is determined by two pairwise interactions. Therefore, the78

payoff of an individual playing strategy A (B) in a set with j other individuals playing A is given by79

aj = aj + b(2 � j) (bj = cj + d(2 � j)). Note that for m = 3, j = 0, 1, 2. Given that the breaking80

probability of a specific set may depend on the number of A individuals within the set, the set81

dynamics allows for non-uniform breaking probabilities across the sets.82

To demonstrate that our simple model can indeed capture the emergence of synergy, we83

consider two aspects: the accumulated payoff of both types and the evolutionary dynamics of84

the two strategies. We find that non-uniform breaking probabilities across the sets foster the85

emergence of synergetic multiplayer interactions. In other words, when the fragilities of the sets86

are non-uniform we find that (i) the expected accumulated payoff of both strategies is consistent87

with the one of a typical multiplayer game that cannot be decomposed into a pairwise game, and88

(ii) the evolutionary dynamics of the strategies exhibit two internal equilibria of selection, which is89

impossible in a two-player game.90

The calculation of the average accumulated payoff in the general case is challenging, even91

though the model is simple. We overcome this problem by assuming that the probability with92

which the strategy is updated is small, w ⌧ 1. As a consequence, the set structure can reach its93

stationary state — which determines the accumulated payoffs — before a strategy update occurs.94

Importantly, the average accumulated payoffs for both strategies are consistent with the payoffs95

of the following 3-player game in a well mixed population, up to a positive rescaling factor (see SI96

Appendix, Section 2.1):97

Opposing A players 0 1 2

A a0/k1 a1/k2 a2/k3

B b0/k0 b1/k1 b2/k2

(1)

Here ai/ki+1 is the payoff for an individual using strategy A when it meets i opponents using98
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strategy A. Equivalently, bi/ki is the payoff for an individual using strategy B when it meets i99

opponents using strategy A. The payoff table in Eq.(1) has two important features. First, the100

derived multiplayer game is of the same size as that of the set. Second, the payoff entries are101

proportional to the product of the accumulated payoff in a set and its lifetime.102

The evolutionary outcome of both strategies can be predicted by the replicator equation for103

a large class of microscopic imitation rules, if the population size is sufficiently large (see SI104

Appendix, Section 2.2). The replicator equation is given by105

ẋA = xA(1 � xA)(fA � fB), (2)

where106

fA =
P2

s=0
as

ks+1

�2
s

�
x

s
A(1 � xA)2�s

, [3]

fB =
P2

s=0
bs
ks

�2
s

�
x

s
A(1 � xA)2�s [4]

are the payoffs for strategy A and B of the 3-player game based on Eq. (1), and xA is the fraction107

of individuals using strategy A. In other words, the dynamics of the pairwise game under active108

set dynamics can be captured by a multiplayer game in a well-mixed population. The internal109

equilibria of this equation are the roots of the equation fA � fB = 0. Based on the initial fraction110

of individuals using strategy A, these equilibria determine where an infinite population would end111

up (28).112

The above results on the accumulated payoffs and the evolutionary dynamics of strategies113

hold for any set fragilities (k0, k1, k2, k3). In the following, we apply these results to homogenous114

and heterogeneous set fragilities to address when and how synergetic interactions emerge.115

Whenever the fragility of the sets is homogenous, k0 = k1 = k2 = k3, Eq. (1) is identical116

to the one of the original pairwise game, even though it is a 3-player game (see SI Appendix,117

Section 2.2). Therefore there is no synergy effect in the payoffs. Given that the replicator equation118

is equivalent to the one of the pairwise game, there is at most one internal equilibrium with the119

same position and stability. The upper panel of Fig. 2 shows the agreement between the analytical120

approximation and a simulation of the full model.121

However, when fragilities are not homogeneous across the sets, Eq.(1) becomes a 3-player122

game, which cannot be decomposed into additive pairwise interactions (lower panel of Fig. 2).123
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In this case, the payoff of an individual interacting with two opponents is not equal to the sum of124

the two pairwise interactions (Fig. 3). Consequently, the presence of non-uniform set breaking125

probabilities generates synergetic payoffs. Synergy emerges exclusively as a result of the evolu-126

tionary dynamics of the set structured population. In addition to this, the replicator equation has127

two internal equilibria, which is not possible in pairwise interactions (see lower panel of Fig. 2).128

Static random networks display similar effects (29). A necessary condition for the emergence of129

two equilibria is that the sign of the effective payoff difference ai/ki+1 � bi/ki changes twice with130

the increase of the number of opponents using strategy A, i (30, 31). A more detailed analysis131

on the conditions that lead to two internal equilibria can be found in SI Appendix, Section 2.2. If132

one of the two equilibria is stable, the other has to be unstable. Given this, our model can explain133

both the maintenance of biodiversity and phenotypic dominance within the same framework.134

Pairwise games between n strategies135

The model can be extended to account for an arbitrary number of strategies, n, instead of only136

two. In the pairwise interactions with n strategies or an n ⇥ n game, the non-uniform breaking137

probabilities also generate synergetic multiplayer interactions. Although the analytical calculations138

are more intricate due to the increased number of set configurations, we find that the payoff matrix139

of the emergent multiplayer game is consistent with the one of an n-strategy m-player game (SI140

Appendix, Section 3.1). Interestingly, the intuition behind these payoff entries is similar to the ones141

of the two-strategy case, as they still represent the product of the additive payoffs via pairwise142

interactions and the duration of that set. In addition to this, the n-strategy m-player game has, at143

most, (m�1)n�1 isolated internal equilibria, whereas the original n⇥n pairwise game has at most144

one equilibrium (SI Appendix, Section 3.2). The dynamics in our model are thus rich enough to145

capture complex phenomena exhibited by social and biological systems.146

3 Discussion147

Synergy refers to the idea that the whole is greater than the sum of its parts. Interestingly, synergy148

is identical to “cooperation” in ancient Greek. Synergy can be observed in a plethora of different149

contexts such as in genes (32), microbial populations (33), and even social and economic sys-150

tems. From an evolutionary perspective, synergy is a cornerstone of all major evolutionary tran-151
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sitions. These evolutionary milestones involve the aggregation of simple units into a new entity152

which becomes a higher-level Darwinian unit of selection (1). With this in mind, we present a153

minimalistic model that shows how synergy can actually emerge. Our model allows to treat the154

emergence of synergetic interactions from simple additive pairwise ones analytically. We assume155

that the strategy of the individuals and the set structure evolve in time. The results prove that156

non-uniform set breaking rates, which depend exclusively on the configuration of these sets, lead157

to payoff non-linearities. These are consistent with the dynamics of a multiplayer game, even158

though individuals always play a two-player game and no group selection effects are present.159

These findings rely on two conditions: i) sets must contain more than two individuals, and ii) the160

breaking rates must depend on the configuration of the sets and, hence be non-uniform. As a161

consequence, our model may be useful as a starting point for the investigation of the evolution of162

more complex phenomena, e.g., synergetic interactions within the group. It shows how the ag-163

gregation of individuals can lead to complex interactions that cannot be disentangled into simpler164

interactions.165

Methods166

The Fermi updating rule. We use the Fermi update rule, given by the following algorithm:167

(i) Randomly select an individual, a

⇤ and denote its payoff as ⇡a⇤ ;168

(ii) Randomly select another individual, b

⇤, among all the individuals in the sets individual a

⇤ is169

in and denote the payoff of b

⇤ as ⇡b⇤ ;170

(iii) a

⇤switches to the strategy of b

⇤ with probability (1 + exp[��(⇡b⇤ � ⇡a⇤)])
�1.171

Accumulated payoffs. Each data point is the average of 100 independent realisations. Every real-172

isation takes 106 generations. In each realisation, for the first 104 generations, only set dynamics173

occur. For the rest generations, at every step, with probability w = 10�3 we compute the average174

accumulated payoff of each strategy. Otherwise, with probability 1�w, set dynamics happens. At175

the end of each realisation, we compute the mean value of all the average accumulated payoff.176

Selection gradient. Each data point is the average of 100 independent realisations. Every reali-177

sation takes 107 generation. For the first 104 generations of each realisation, only set dynamics178

occur. After that, with a probability of w = 10�3 two individuals are chosen randomly from the en-179

tire population. The first individual is the “focal” one which is the one that may imitate the strategy180
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of the second one based on the Fermi rule. We keep track of the transition without implementing181

them. We denote y and z as the number of times that an individual playing strategy A and B182

changes its strategy. z�y
Q is the estimator of the selection gradient ẋA, where Q is the number of183

strategy updating events in this realisation.184

Accumulated group payoffs. Each data point is the average of 100 independent realisations.185

Every realisation takes 106 generations. In each realisation, for the first 104 generations, only set186

dynamics occur. For the rest generations, at every step, with probability w = 10�3 we compute187

the average accumulated payoff of each strategy induced by the set with 0, 1 and 2 strategy A188

opponents, respectively. Otherwise, with probability 1 � w, set dynamics happens. At the end of189

each realisation, we compute the mean value of all the average accumulated payoff.190
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Evolving(networks(
m=2(

Evolving(sets(
m=3(

Figure 1: Set dynamics for sets of size m = 2 (left column) and m = 3 (right column).
Blue and red dots represent strategies A and B respectively. When m = 2 (left column)
“sets” are actually “links” and the overall structure is a network (26). In this case, inter-
actions are strictly pairwise, hence there is no synergetic effect in the payoffs. The right
column shows the case with m = 3, which is the minimum set size that illustrates the
emergence of synergetic interactions. With probability 1 � w a set is selected at random
(dashed lines). This set breaks up with probability ki, where i is the number of strategy
A individuals in the set. If the set breaks, a randomly chosen individual is expelled. In
order to keep the size of the set constant, another random individual is incorporated into
the updated set (dashed lines).
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els show the analytical approximation for the stable/unstable equilibria of the replicator
dynamics. Top: For uniform breaking rates, the accumulated payoffs for both strategies
match the ones of a pairwise game. Thus, the payoffs change linearly with the fraction
of A individuals and the replicator equation predicts just the single internal equilibrium of
the pairwise game. Bottom: When the breaking rates depends on the set configuration,
the payoffs for both strategies become non-linear. The more A individuals a set has, the
less likely it breaks up. The payoffs for both strategies have two interSections, which lead
to two internal equilibria. This illustrates that non-uniform interactions can lead to the
emergence of synergetic interactions. There is a perfect agreement between simulations
(dots) and analytical approximation (lines). (Parameters: Stag-Hunt game with a = 2,
b = 1, c = 1.5 and d = 7. Population size, N = 500, number of sets, l = 1000, proba-
bility of a strategy update, w = 10�3. Selection intensity, � = 0.1. See Methods for the
simulation details).
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Figure 3: Expected payoffs for individuals using strategies A (upper panel) and B (lower
panel) in groups of different compositions. The two insets within each plot show the
effective payoff entries of the emergent 3-player game Eq. (1) for a frequency of 0.5.
Main panels: Theoretical predictions for the payoff within the three set configurations of
each individual, Eqs. (3) and (4) (lines) agree well the accumulated payoff obtained by
simulation (symbols). This in turn proves that the synergetic 3-player game is intrinsically
captured by Eqs. (3) and (4) even term by term. Upper inset: Payoffs for equal abundance
of both strategies. An individual with strategy A gains less if it interacts in a set which has
1 individual with strategy A than it were in the synergy free case (grey, dashed). Lower
inset: An individual with strategy B gains much more if it interacts in a set which has 1
individual with strategy A than it were in the synergy free case (grey, dashed). Here the
payoffs in the synergy free cases are the average values of the two payoff entries for the
focal individual interacting with 0 and 2 A individuals. Thus, the interaction can no longer
be decomposed into multiple pairwise interactions, which is how every individual obtains
its payoff microscopically. (Parameters are the same as that in the lower panel of Fig. 2.
The inner panels are obtained by simulation via setting the frequency of individuals using
strategy A to be one half. See Methods for the simulation details.)
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1 Evolutionary dynamics in a set structured population9

Consider a set structured population of fixed size N where individuals engage in a pairwise game.10

The population is divided into a constant number of sets, l, each of them of constant size m.11

Individuals can belong to different sets.12

At each time step, we either update the strategy of an individual — with probability w — or the13

structure of the population, with probability 1 � w.14

A strategy update involves two randomly selected individuals, say Alice and Bob. Alice imi-15

tates Bob’s strategy with a probability depending on the difference of their payoffs, i.e., the imita-16

tion rule (1). The payoff of an individual is calculated as the sum of all the pairwise interactions17

through all the sets it belongs to. For instance, if Alice belongs to two sets, her payoff is the sum18

of the payoff in the first set, plus the payoff in the second one. Given that every set consists of19

m individuals, the payoff of an individual in a set is the sum of m � 1 pairwise interactions. On20

the other hand, when set dynamics occur, a set is randomly selected. This set may break with a21

probability which depends on the set composition. In particular, if there are only two strategies,22

the set composition is the number of individuals within the set playing a specific strategy. If the23

set is broken, a random individual within the set is expelled, provided it is in at least one other set.24

In order to keep the size of the set constant, another random individual is added to the focal set.25

We start with the simplest pairwise games with two strategies, A and B. The 2 ⇥ 2 payoff26

matrix is given by (a
ij

)2⇥2, where a

ij

is the payoff of an individual playing strategy i with an27

opponent playing strategy j, where i, j 2 {A, B}. We find that the average accumulated payoff for28

each strategy is consistent with the one of a 2-strategy, m-player game up to a positive rescaling29

factor. When the breaking probability of a set is uniform across all kinds of sets, the payoff of30

the m-player game is equivalent to that of a sum of m � 1 pairwise games. However, we notice31

that whenever the sets have different breaking probabilities that depend on the set composition,32

intrinsic multiplayer interactions emerge. In this case, the accumulated payoff of both strategies33

cannot be decomposed into collections of pairwise games anymore. In other words, synergetic34

effects in payoff can emerge from simple pairwise interactions. Based on accumulated payoffs,35

we further obtain the replicator equation of the m-player game to determine the evolutionary fate36

of each strategy. In addition to this, the replicator equation shows up to m � 1 internal equilibria.37

In contrast, for pairwise interaction there is at most one such equilibrium. These results are38

obtained under the assumption of fast set dynamics — very few strategy updates occurs before39
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the population structure has reached the stationary state — and a large population size.40

We generalise the above results for cases where the number of strategies, n, is greater than41

two. In this case the payoff matrix is given by (a
ij

)
n⇥n

, where i, j 2 {1, 2, . . . , n}. In this technically42

somewhat more challenging case, we find similar results:43

(i) The average accumulated payoff of each strategy is of the form of an n-strategy, m-player44

game up to a positive rescaling factor.45

(ii) When the set breaking probabilities are uniform, the payoff of the n-strategy m-player game46

is still consistent with the sum of the m � 1 pairwise games.47

(iii) Non-uniform set breaking probabilities foster the emergence of multiplayer interactions,48

which cannot be decomposed into a collection of pairwise games.49

(iv) The replicator equation of the n-strategy m-player captures evolutionary dynamics of the50

strategies and displays, at most, (n � 1)m�1 internal equilibria, whereas pairwise n ⇥ n51

games display, at most, a single equilibrium (2).52

2 Games with two strategies53

2.1 Accumulated payoffs54

Initially, i.e. at time t = 0, we call the l sets T

0
i

, 1  i  l. For the first time step in the set evolution,55

t = 1, we denote the selected set as T

0
i

⇤ . If this set is broken and transforms to another set, we56

denote the transformed set as T

1
i

⇤ , otherwise the set is not broken and we let T

1
i

⇤ = T

0
i

⇤ . For the57

other sets which are not selected, we denote T

1
i

= T

0
i

, i 6= i

⇤. Recursively, we define T

t

i

for t � 058

and 1  i  l.59

Let  (T t

i

) be the number of strategy A individuals in set T

t

i

, thus 0   (T t

i

)  m. For each set60

i, the dynamics of  (T t

i

) is a Markov chain in state space {0, 1, 2 · · · m} with the transition matrix61

Q =
1

l

V +
l � 1

l

I

m+1, [1]

where I

m+1 is the identity matrix of size m+1 and V is the transition matrix when set i is selected.62
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Hence, V = (V
ij

)(m+1)⇥(m+1) (0  i, j  m) is a tridiagonal matrix given by63

V

ij

=

8
>>>>>>>>><

>>>>>>>>>:

k

i

m�i

m

x

A

if j = i + 1

1 � k

i

�
m�i

m

x

A

+ i

m

x

B

�
if j = i

k

i

i

m

x

B

if j = i � 1

0 otherwise

. [2]

Here x

A

and x

B

= 1 � x

A

are the fractions of strategy A and B in the population, k

i

is the64

breaking probability of a set consisting of i individuals playing strategy A and m � i individuals65

playing strategy B.66

When x

A

> 0 and x

B

> 0, the matrix Q is irreducible and aperiodic and there is a unique67

stationary distribution y = (y0, y1, · · · , y

m

) of Q determined by yQ = y. Taking Eq. (1) into yQ = y68

leads to yV = y. This leads to the stationary distribution69

y

s

= 1
Nks

�
m

s

�
x

s

A

x

m�s

B

, 0  s  m, [3]

where N =
P

m

s=0

�
m

s

�
1
ks

x

s

A

x

m�s

B

> 0 is a normalisation factor. The stationary distribution also70

represents the proportion of each type of set among all the sets in the stationary regime.71

When set dynamics are fast, the imitation event happens rarely enough to allow the population72

structure to reach the stationary state before a single imitation event occurs. In this case, the73

stationary regime of the set dynamics determines the average payoff of both strategies. Here the74

accumulated payoff of strategy A is given by75

f

A

= Total payoff of all the strategy A individuals
Number of strategy A individuals

=
Pm

j=1 lyjj(aAA(j�1)+aAB(m�j))

NxA

= 1
N

l

N

P
m

j=1

�
m

j

�
j

1
kj

x

j�1
A

x

m�j

B

(a
AA

(j � 1) + a

AB

(m � j))| {z }
aj�1

. [4]

As j

�
m

j

�
= m

�
m�1
j�1

�
, Eq. (4) can be written as76

1

N
lm

N

mX

j=1

✓
m � 1

j � 1

◆
x

j�1
A

x

m�j

B

a

j�1

k

j

. [5]
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With s = j � 1, Eq (5) becomes77

f

A

=
1

N
lm

N

m�1X

s=0

✓
m � 1

s

◆
x

s

A

x

m�1�s

B

a

s

k

s+1
| {z }

f̃A

. [6]

Similarly, we have78

f

B

=
1

N
lm

N

m�1X

s=0

✓
m � 1

s

◆
x

s

A

x

m�1�s

B

b

s

k

s

| {z }
f̃B

, [7]

where b

s

= a

BA

s + a

BB

(m � 1 � s) is the accumulated payoff of an individual using strategy B79

gets in a set consisting of s individuals using strategy A.80

Besides the common positive rescaling factor 1
N

lm

N

, the average accumulated payoffs for both81

strategies are f̃1 and f̃2. Interestingly f̃

A

and f̃

B

are exactly the payoff of an m-player game in a82

well-mixed population,83

Opposing strategy A players 0 . . . s . . . m � 1

Strategy A a0/k1 . . . a

s

/k

s+1 . . . a

m�1/k

m

Strategy B b0/k0 . . . b

s

/k

s

. . . b

m�1/k

m�1

. [8]

Here a

s

/k

s+1 (b
s

/k

s

) is the payoff of an individual using strategy A (B) obtains when it meets84

s strategy A opponents. This payoff table has two remarkable features: First, the number of85

players in the multiplayer game and the set size are equal. Second, the payoff entries of the86

multiplayer game are the product of the linear collective payoff via pairwise interactions in a set87

and the duration of the corresponding set. Taking a0/k1 as an example, a0/k1 is the payoff of an88

individual playing strategy A when he interacts with 0 strategy A opponents, or m � 1 strategy89

B individuals. However, within a set, the accumulated payoff of an individual playing strategy A90

is given by a0 = (m � 1)a12 and results from the m � 1 pairwise interactions in the set where91

1/k1 is the duration of the set. In other words, a0/k1 is the accumulated payoff rescaled with the92

interaction time.93
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When m = 2, the population strcture is equivalent to a network and the sets represent links.94

In this case, the effective payoff table in Eq. (8) is still a pairwise game. This transformation can95

alter the effective payoff of both strategies, however it cannot lead to synergetic effect in payoffs96

as there is only one pairwise interaction in the transformed table. When m = 3, the emergent97

payoff table is consistent with a 3-player game. On one hand, we can take the payoff entries as98

the synergetic payoff of two individuals. On the other hand, we have the additive payoffs via the99

two pairwise interactions in that set. A comparison between these two payoffs can facilitate us to100

study when “the whole is better than the sum of its parts”, i.e., the synergetic payoff is better off101

than that derived by two pairwise interactions.102

When the set breaking probabilities are uniform — i.e., k

i

is constant —, we find — by Eq. (6)103

and Eq. (7) — that the accumulated payoffs for strategy A and B are f

A

= (m�1)(a11xA

+a12xB

)104

and f

B

= (m�1)(a21xA

+a22xB

). That is to say that the emergent payoff is equivalent to the sum105

of the corresponding m � 1 pairwise game and therefore there is no synergy. However, when the106

set breaking probabilities are non-uniform, intrinsic multiple player games emerge. In this case107

the “whole” is different from the sum of its parts.108

2.2 Evolutionary dynamics of strategies109

In large well mixed populations, the evolutionary dynamics of strategies based on the imitation110

rule can be approximated by the Langevin equation (3)111

ẋ

A

= x

A

(1 � x

A

) (g(�(f
A

� f

B

)) � g(�(f
B

� f

A

)))

+
q

xA(1�xA)(g(�(fA�fB))+g(�(fB�fA)))
N

⇠. [9]

Here ⇠ is the white Gaussian noise, f

A

(Eq. 6) and f

B

(Eq. 7) are the average accumulated112

payoffs for strategy A and B, respectively. In addition, g is the imitation function capturing the113

likelyhood of the focal individual to adopt the strategy of the opponent’s and � is the selection114

intensity (4). Throughout, g

0 is positive, implying that individuals are likely to adopt the strategy of115

individuals with high payoffs. In particular, the Fermi update rule is an imitation update rule with116

the imitation function g(x) = [1 + exp(�x)]�1.117
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For large population size N , the stochastic term vanishes and we obtain118

ẋ

A

= x

A

(1 � x

A

)

✓
g


1

N
lm�

N

(f̃
A

� f̃

B

)

�
� g


1

N
lm�

N

(f̃
B

� f̃

A

)

�◆
. [10]

Note that 1
N

lm�

N

is always positive and g

0
> 0, the equilibria of this equation are the same as that119

of the following replicator equation of the multiplayer game Eq. (8) in position and stability120

ẋ

A

= x

A

(1 � x

A

)(f̃
A

� f̃

B

). [11]

Therefore, the evolution of a pairwise game on the evolving set structured population is cap-121

tured by an m-player game in a well mixed population. Under uniform breaking probabilities,122

the replicator equation Eq. (11) is consistent with the one of the pairwise game in well-mixed123

population. At most one internal equilibrium can arise in this case. Under non-uniform breaking124

probabilities, however, Eq. (11) can exhibit up m � 1 internal equilibria.125

For any set size m, the internal roots of the replicator equation are determined by the roots of126

the following Bernstein polynomial (5)127

f̃

A

� f̃

B

=

m�1X

s=0

✓
a

s

k

s+1
� b

s

k

s

◆

| {z }
�ds

✓
m � 1

s

◆
x

s(1 � x)m�1�s = 0, [12]

where x 2 (0, 1). By the variation diminishing property (6) we know that the number of the internal128

roots is equal to the number of sign changes of (�d0, �d1 · · · , �d

m�1), or less by an even number.129

In particular, when there is only one sign change in the sequence (�d0, �d1 · · · , �d

m�1), there130

is exactly one internal equilibrium.131

When the set size m is 3, there can be, at most, two internal equilibria (Fig. 1). A necessary132

condition for the existence of two equilibria is either �d0 > 0 �d1 < 0 and �d2 > 0, or �d0 < 0133

�d1 > 0 and �d2 < 0. In both cases, the sign of the coefficient changes twice. The variation134

diminishing property tells us that there can be either two or no internal equilibria. Since �d0 > 0135

�d1 < 0 and �d2 > 0 is equivalent to �d0 < 0 �d1 > 0 and �d2 < 0 by exchanging the name136

of the two strategies. We focus on �d0 < 0 �d1 > 0 and �d2 < 0. In this case, the Bernstein137

polynomial Eq. (12) is negative at x = 0 and 1. Thus, the existence of two internal equilibria138

is equivalent to that the maximum of the Bernstein polynomial in (0, 1) has to be positive. In the139

present case, the Bernstein polynomial is quadratic with a maximum at x

⇤ = (�d1��d2)/((�d1�140
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�d2) + (�d1 � �d0)) 2 (0, 1). Therefore, the Bernstein polynomial is positive at x

⇤ if141

�2�d0�d1�d2 + 2(�d1)
3 � �d0(�d1)

2 � �d2(�d1)
2 + �d0(�d2)

2 + �d2(�d0)
2

> 0 [13]

To sum up, there are two internal equilibria if and only if either of the two conditions holds142

�d0 < 0

�d1 > 0

�d2 < 0

�2�d0�d1�d2 + 2(�d1)
3 � �d0(�d1)

2 � �d2(�d1)
2 + �d0(�d2)

2 + �d2(�d0)
2

> 0

or143

�d0 > 0

�d1 < 0

�d2 > 0

�2�d0�d1�d2 + 2(�d1)
3 � �d0(�d1)

2 � �d2(�d1)
2 + �d0(�d2)

2 + �d2(�d0)
2

< 0

3 Games with n strategies144

In the above section we assumed that each individual plays a pairwise game with its opponent.145

In addition, every individual can choose only between 2 strategies. In this section, we allow146

individuals to choose any number of strategies and thus generalise our analysis to n strategies.147

In this case, the pairwise interaction becomes an n ⇥ n game. We show that the previous results148

also hold for n strategies when the set dynamics are fast enough as, (i) the accumulated payoff for149

any strategy is an m-player game and (ii) the evolutionary dynamics of strategies can be captured150

by the replicator equation of the n-strategy m-player game.151

3.1 Accumulated payoffs152

Similar to the 2-strategy case, the breaking probability of a set depends exclusively on its strategy153

composition. Let us denote k(↵1,↵2··· ,↵n) as the breaking probability of a set where ↵

s

is the154

8



number of strategy-s individuals in the focal set and ↵
s

� 0 and
P

n

s=1 ↵s

= m indicates that the155

set consists exactly of m individuals.156

We start by randomly choosing one of the l sets, namely i. Then we define a sequence of157

sets T

t

i

(t � 0). Here the set T

t

i

evolves into T

t+1
i

. The type of the set T

t

i

— i.e.,  (T t

i

) — is a158

Markov chain whose states are given by the possible set configurations. These set configurations159

can be denoted as the simplex160

S

n,m

= {(↵1,↵2 · · · ,↵

n

)|↵
s

� 0 and
nX

s=1

↵

s

= m}, [14]

where ↵
s

is the number of strategy s individuals in the corresponding set. The transition matrix of161

this Markov chain is given by162

Q =
1

l

V +
l � 1

l

I, [15]

where I is the identity matrix of size |S
n,m

|. Here |S
n,m

| is the cardinal number of set S

n,m

. V163

is the transition matrix conditioned on the fact that the set i is selected. By the updating rule of164

the sets, two subsequent sets T

t

i

and T

t+1
i

have at least m � 1 individuals in common. Thus the165

transition is impossible between two states (↵1,↵2 · · · ,↵

n

) and (↵0
1,↵

0
2 · · · ,↵

0
n

), unless either of166

the following two cases holds.167

• There exist two different strategies s1 and s2 such that ↵0
s2

= ↵

s2 + 1 and ↵0
s1

= ↵

s1 � 1; for168

all the other strategies s, ↵0
s

= ↵

s

.169

• For all 1  s  n, ↵0
s

= ↵

s

.170

In the first case, the selected set is broken; one individual playing strategy s1 is expelled and171

one individual with strategy s2 is incorporated to the set. In order to illustrate this case, we take172

the transition from (↵1,↵2 · · · ,↵

n

) to (↵1 +1,↵2 · · · ,↵

n

�1) as an example. First, a set consisting173

of ↵
s

strategy s individuals is selected, and then breaks with probability k(↵1,↵2··· ,↵n). Second, a174

strategy n individual is expelled (with probability ↵
n

/m). Finally, a strategy 1 individual is incor-175

porated (with probability x

A

, i.e., the fraction of strategy 1 in the population). Thus the transition176

probability is ↵
n

x

A

k(↵1,↵2··· ,↵n)/m. Similarly, the transition probability from state (↵1,↵2 · · · ,↵

n

)177
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to (↵0
1, ↵

0
2 · · · , ↵

0
n

), where the two states fulfill the first constraint, is given by178

↵

s1

m

x

s2k(↵1,↵2··· ,↵n). [16]

The second case reveals that the two subsequent states are equivalent. Either the selected179

set is not broken or it is broken but the expelled individual and the new individual are the same in180

type. In this case, the transition probability can be obtained by the normalisation property of V —181

i.e., one minus the sum of all the other transition probabilities in Eq. (16).182

When all the strategies coexist, i.e., ⇧n

i=1xi

6= 0, the transition matrix Q is aperiodic and183

irreducible, consequently the Markov chain presents a unique stationary distribution. By Eq. (15),184

the stationary distribution of Q is the same as that of V . This holds for any number of total links185

l. However, the size of the state space |S
n,m

| is
�
n+m�1

m

�
(7). As a consequence, the number186

of states increases much more rapidly with the set size when there are more than two types of187

strategies in the population (Fig (2)). Given this, it becomes challenging to calculate the stationary188

distribution for multiple strategies. Still, as shown in (8), for general n⇥n games and the dynamical189

network m = 2, we have i) that the stationary distribution is a binomial distribution weighted by the190

duration time, ii) that the conditional transition matrix V satisfies the detailed balance condition.191

This binomial distribution arises from the network structure, which is a special case, m = 2, of our192

set structure. It turns out that these results can be generalised for m � 2.193

• The stationary distribution of V , y, is a multinomial distribution weighted by the duration194

time, i.e.,195

y(↵1,↵2,··· ,↵n) =
1

N
m!

↵1!↵2! · · · ↵n

!

1

k(↵1,↵2,··· ,↵n)
⇧n

i=1x
↵i
i

, (↵1, ↵2, · · · , ↵

n

) 2 S

n,m

[17]

where N =
P

(↵1,↵2,··· ,↵n)2Sn,m

m!
↵1!↵2!···↵n!

1
k(↵1,↵2,··· ,↵n)

⇧n

i=1x
↵i
i

is a normalisation factor.196

• The Markov chain V fulfills the detailed balance condition, i.e.,197

y(↵1,↵2,··· ,↵n)V((↵1,↵2,··· ,↵n),(↵0
1,↵

0
2,··· ,↵0

n))
= y(↵0

1,↵

0
2,··· ,↵0

n)
V((↵0

1,↵

0
2,··· ,↵0

n),(↵1,↵2,··· ,↵n)). [18]

We prove that the distribution Eq. (17) satisfies the detailed balance condition.198

If the transition from state (↵1, ↵2, · · · , ↵

n

) to state (↵0
1, ↵

0
2 · · · , ↵

0
n

) is impossible, then the199

reverse transition is also impossible. Thus, Eq. (18) holds. In the other cases, the transition is200
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possible. Therefore, the two states (↵1, ↵2, · · · , ↵

n

) and (↵0
1, ↵

0
2 · · · , ↵

0
n

) must satisfy one of the201

two constraints of the transition matrix.202

If they fulfill the first constraint, i.e., there exist two different strategies s1 and s2 such that203

↵

0
s2

= ↵

s2 + 1 and ↵

0
s1

= ↵

s1 � 1; for all the other strategies s, ↵

0
s

= ↵

s

. By Eqs. (16) and (17) we204

have that205

y(↵1,↵2,··· ,↵n)V((↵1,↵2,··· ,↵n),(↵0
1,↵

0
2,··· ,↵0

n))
= 1

N
m!

↵1!↵2!···↵n!
1

k(↵1,↵2,··· ,↵n)
⇧n

i=1x
↵i
i

⇥ ↵s1xs2k(↵1,↵2,··· ,↵n)

m

= 1
N

(m�1)!
↵1!···(↵s1�1)!···↵s2 !···↵n!

⇧
i 62{s1,s2}x

↵i
i

⇥ x

↵s1
s1 x

↵s2+1
s2

= 1
N

(m�1)!
↵

0
1!···↵0

s1
!···(↵0

s2
�1)!···↵0

n!
⇧

i 62{s1,s2}x
↵

0
i

i

⇥ x

↵

0
s1

+1
s1 x

↵

0
s2

s1

= 1
N

m!
↵

0
1!↵

0
2!···↵0

n!
1

k(↵0
1,↵0

2,··· ,↵0
n)

⇧n

i=1x
↵

0
i

i

⇥
↵

0
s2

xs1k(↵0
1,↵0

2,··· ,↵0
n)

m

= y(↵0
1,↵

0
2,··· ,↵0

n)
V((↵0

1,↵

0
2,··· ,↵0

n),(↵1,↵2,··· ,↵n)). [19]

If they fulfill the second constraint, i.e., the two states are the same, then Eq. (18) holds206

naturally. Therefore the stationary distribution of Q is the multinomial distribution weighted by the207

duration time. Furthermore, Q fulfills the detailed balance condition.208

When set dynamics are fast, the average payoff is determined by the stationary distribution of

each set configuration. For any strategy 1  i  n, we have

f

i

=
Total payoff of strategy i

Total number of strategy i

=

P
↵2Sn,m

(ly
↵

)
h
↵

i

⇣P
n

j=1 a

ij

(↵
j

� �

ij

)
⌘i

Nx

i

, (20)

where �

ij

is the Kronecker-delta and N is the population size.209

Taking Eq. (17) into Eq. (20) leads to210

f

i

= 1
N

l

N

P
(↵1,↵2,··· ,↵n)2Sn,m

m!
↵1!↵2!···↵n!

1
k(↵1,↵2,··· ,↵n)

x

↵i�1
i

⇧
k 6=i

x

↵k
k

h
↵

i

⇣P
n

j=1 a

ij

(↵
j

� �

ij

)
⌘i

.[21]

Considering that m!
↵1!···↵i!···↵n!

↵

i

= m

(m�1)!
↵1!···(↵i�1)!···↵n!

yields that211

f

i

= 1
N

lm

N

P
(↵1,↵2,··· ,↵n)2Sn,m

(m�1)!
↵1!···(↵i�1)!···↵n!

x

↵i�1
i

⇧
k 6=i

x

↵k
k

1
k(↵1,↵2,··· ,↵n)

⇥
⇣P

n

j=1 a

ij

(↵
j

� �

ij

)
⌘
[22]

Let ↵̃

k

= ↵

k

� �

ik

, (↵̃1, ↵̃2, · · · , ↵̃

n

) be the co-player configuration of a strategy i individual in a set212
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(↵1, ↵2, · · · , ↵

n

). Eq. (22) is given by213

f

i

= 1
N

lm

N

P
(↵̃1,↵̃2,··· ,↵̃n)2Sn,m�1

(m � 1)!

↵̃1! · · · ↵̃i

! · · · ↵̃
n

!
⇧n

k=1x
↵̃k
k

| {z }
multinomial sampling

1

k(↵̃1,···↵̃i+1,··· ,↵̃n)
⇥

0

@
nX

j=1

a

ij

↵̃

j

1

A

| {z }
duration time ⇥ collective payoff in the set

.[23]

This accumulated payoff is formally equivalent to an n-strategy m-player game up to a rescaling214

factor 1
N

lm

N

. The first term is a multinomial distribution which indicates that m � 1 co-players are215

sampled randomly as if in a well-mixed population. The second term shows that the payoff of216

strategy i of the multi-player game is the collective payoff of strategy i in a set times the average217

duration time of the corresponding set. This term is dependent on (i) the pairwise interaction218

between strategy i and (ii) the set duration time. This explicitly generates an n-strategy m-player219

game from a pairwise n ⇥ n game (a
ij

).220

3.2 Evolutionary dynamics of strategies221

During the imitation process, the role model and the focal individual are both chosen randomly222

through the entire population. The evolution of strategies can also be approximated by the223

Langevin Equation. More precisely, in this case when the population is large enough, the de-224

mographic noise induced by the finite population size can be neglected (9). This results in the225

following replicator equation:226

ẋ

i

= x

i

(f
i

� f̄), [24]

where f

i

is given by Eq. (23) and f̄ =
P

n

i

x

i

f

i

is the average payoff. Consequently, the replicator227

equation is consistent with an n-strategy m-player game and can exhibit up to (n � 1)m�1 internal228

isolated equilibria (2).229
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Figure 1: Rescaled selection gradient ẋ1/(xA(1 � xA)). The simulation based on the Fermi update
rule (dots) shows that it has two roots. The analytical approximation (Eq.(10)) captures the equilibria of
the selection gradient by simulation x

⇤
A ⇡ 0.13 and 0.46 (red dots). The absolute value of the selection

gradient, however, is systematically overestimated by the theoretical approximation for the positive selec-
tion gradient. This is because there is a heterogeneity in payoffs within the population using the same
strategy. Let us assume that Q(f⇤

A, f
⇤
B) is the probability that a strategy A individual is of payoff f⇤

A and
a strategy B individual is of payoff f⇤

B . Then the selection gradient based on simulation is an estimator ofP
f⇤
A,f⇤

B
tanh(�2 (f

⇤
A � f

⇤
B))Q(f⇤

A, f
⇤
B). Since tanh(x) is convex for x > 0, thus the theoretical approxima-

tion tanh(�2 (fA � fB)) = tanh(
P

f⇤
1 ,f⇤

2

�
2 (f

⇤
1 � f

⇤
2 )Q(f⇤

1 , f
⇤
2 )) is greater than the estimator of the simulation

P
f⇤
A,f⇤

B
tanh(�2 (f

⇤
A � f

⇤
B))Q(f⇤

A, f
⇤
B). By similar arguments, we obtain that the theoretical approximation

underestimates the simulation result for negative selection gradient. Each blue dot in the plot is the average
of 100 independent realisations. Every realisation takes 107 generation. For the first 104 generations of each
realisation, only set dynamics occur. After that, with a probability of w = 10�3 two individuals are chosen
randomly from the entire population. We keep track of the transition without implementing them. We denote
y and z as the number of times that an individual playing strategy A and B changes its strategy. z�y

Q is the
estimator of the selection gradient ẋA, where Q is the number of strategy updating events in this realisation.
(Parameters: Stag-Hunt game with aAA = 2, aAB = 1, aBA = 1.5 and aBB = 7. Population size, N = 500,
number of sets, l = 1000, probability of a strategy update, w = 10�3. Selection intensity, � = 0.1. The
breaking probabilities are ki = (1 + 10i)�1, where i is the number of strategy A individuals in the set.)
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Figure 2: The size of the state space of the Markov chain of the set dynamics as a function of the set
size m. For a two-strategy game, there are m + 1 set configurations. For a three-strategy game, there are�
m+2

2

�
= (m+2)(m+1)

2 set configurations. In general, the number of the states increases rapidly with the size
of the set, if the strategy number increases.
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