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Abstract 
 
Cancer prediction is of great importance and significance and it is crucial to provide researchers and scientists with 
novel, accurate and robust computational tools for this issue. Recent technologies such as Microarray and Next 
Generation Sequencing have paved the way for computational methods and techniques to play critical roles in this 
regard. Many important problems in cell biology require the dense nonlinear interactions between functional 
modules to be considered. The importance of computer simulation in understanding cellular processes is now widely 
accepted, and a variety of simulation algorithms useful for studying certain subsystems have been designed. In this 
article, a Sparse Compact Incremental Learning Machine (SCILM) is proposed for cancer classification problem on 
microarray gene expression data which take advantage of Correntropy cost that makes it robust against diverse 
noises and outliers. Moreover, since SCILM uses l1-norm of the weights, it has sparseness which can be applied for 
gene selection purposes as well.  Finally, due to compact structure, the proposed method is capable of performing 
classification tasks in all of the cases with only one neuron in its hidden layer. The experimental analysis is  
performed on 26 well known microarray datasets regarding diverse kinds of cancers and the results show that the 
proposed method not only achieved significantly high accuracy but also because of its sparseness, final connectivity 
weights determined the value and effectivity of each gene regarding the corresponding cancer. 
 

1. Introduction 
 
Most of human diseases are influenced by genes, and identifying genetic landscape and profile of diseases is an 
undisputable fact especially when it comes to diseases such as cancer [1]. In the quest for determination of genetic 
causes of diseases, new technologies such as Next Generation Sequencing [2, 3] or Microarray expression [4] which 
are high-throughput procedures have paved the way to quantitate and record thousands of genes expression levels 
simultaneously [5-7].  These new technologies provide computational oncologists with valuable information for 
cancer prediction and cancer classification [1, 8, 9]. Making the best use of these valuable information and 
extracting it from datasets requires advanced, accurate and robust computational techniques because these datasets 
most of the time follow “large-p-small-n” paradigm which means they have high number of observed genes but low 
number of samples [10]. Cancer classification has been studied comprehensively with diverse methods from 
weighted voting scheme [11] and Partial Least Square (PLS) [6] to Support Vector Machines (SVM) [12] and 
Extreme Learning Machines (ELM) [13].  In addition to these methods, Artificial Neural Networks (ANNs) [14], 
Probabilistic neural networks (PNNs) [15] and soft computing approaches (hybrid of evolutionary computation and 
machine learning) were also applied and developed for cancer diagnosis and cancer classification [10, 16].  One of 
the well-known types of ANNs are constructive networks whose optimum structures (number of nodes in the hidden 
layer) are determined automatically [17-19]. In these networks, number of nodes and connectivity weights are 
gradually increased from the lowest to the optimum value and they are categorized in two types: compact [17, 18, 
20] and non-compact [19]. Input parameters of the newly added node in the non-compact type are specified 
randomly whereas in the compact one, they are adjusted via an optimization process.  

Most of these methods are suffering from “curse of dimensionality” which is related to high dimensions of these 
datasets. Another aspect of cancer classification is related to feature selection (gene selection) methods in order to 
prevent over-fitting in the learning process [21]. Model et al. [22] applied several feature selection methods for 
DNA methylation based cancer classification. Another comparative study for feature selection was performed by Li 
et al. [23] for tissue classification based on gene expression. Cawley et al. [24] proposed a sparse logistic regression 
with Bayesian regularization for gene selection in cancer classification and Zhang et al. [25] used SVM with non-
convex penalty for the same problem. Piao et al. [26] take advantage of ensemble an correlation-based gene 
selection method for gene expression data regarding cancer classification. Interested readers can refer to five good 
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surveys of feature selection  in [27-30] and [31] and the references therein. However, feature selection comes with 
certain prices such as addition of another layer of complexity to the model or information loss [27].  
In this article, we propose Sparse Compact Incremental Learning Machine (SCILM) which prevents over-fitting 
without feature selection due to its compact structure. Further, because of Correntropy cost SCILM is robust against 
noises and outliers. In addition to these advantages, since SCILM takes advantage of l1-norm of the weights, it is 
sparse and this sparseness determines the most effective connectivity weights corresponding to all features. 
Therefore, the final weights of the generated model by SCILM can be utilized for gene selection purposes as well.  
SCILM is a learning method for datasets with low sample size and high dimensions. These characteristics are highly 
important and medical and pharmaceutical research because numbers of genes or drug compounds are significantly 
lower than number of features and attributes one can find for them. SCILM is proposed for such problems and 
microarray profiles for cancer classification have both these characteristics. The presented method prevents over-
fitting without feature selection due to its compact structure and also because of Correntropy cost SCILM is robust 
against noises and outliers. Authors in [32], investigated robustness of Correntropy objective function. In addition to 
these advantages, since SCILM takes advantage of l1-norm of the weights, it is sparse and this sparseness determines 
the most effective connectivity weights corresponding to all features. Therefore, the final weights of the generated 
model by SCILM can be utilized for gene selection purposes as well.  
The rest of the paper is organized as follows: section 2 presents the proposed method, section 3 describes the results 
and final section concludes the paper. 

2. Methods and Materials  

This section presents a new constructive network with sparse input side connections. The network has a single 
hidden layer in which the hidden nodes are added one by one until the network reaches a certain predefined 
performance. After the new hidden node is added and trained, its parameters are fixed and do not changed during 
training the next nodes. Each newly added node is trained in two phases: a) Input parameters adjustment, b) output 
parameter adjustment. The input parameters of the newly added node are trained based on Correntropy objective 
function. The output connection is adjusted by MSE objective function. In the rest of this section some preliminaries 
are described followed by the description of the proposed algorithm.   

2.1 Dataset representation 
The dataset with N  distinct samples is denoted by 
 

{ } 1, , ,N d
j j j j jx t x R t Rχ == ∈ ∈  (1) 

2.2 Network structure 
Let  f be a continuous mapping,  f� be the output of the network with  L hidden nodes. The network is represented as 
 
 

Where 

 

 

 

Where .,.〈 〉  is inner product between two elements. In this paper g is considered as tangent hyperbolic function. 
The network (with L hidden nodes) error vector is defined as 
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where ( ) , 1,..., ; 1,...,ij i jH g x j N i L= = = . 

2.3 Correntropy 
Let  v and  u be two random variables with u vζ = − . The Correntropy is a similarity measure between two random 

variables and defined as  

 

 

Where (.)E  denotes the expectation in probability theory and  k�. � denotes a kernel function which satisfy Mercer 

condition. In this paper only the Gaussian kernel is used. Regard to this, 

 

 

 

          2.4 Proposed method 

This subsection proposes a new incremental constructive network with sparse hidden layer connections. The hidden 
nodes are added to the network and trained one by one. When the new node parameters are tuned, they are frozen 
and do not change during training the next nodes. Fig. 1 illustrates the mechanism of the proposed method. 

Training of the new node performs in two stages: 

Stage 1: input side optimization 

In the previous work [33], Input parameters of the new node are trained based on Correntropy objective function as 
follows: 

Where Ls  is a real number which is obtained by trial and error and 1Lζ −  is the residual error for the network with L-

1 hidden nodes. Regarding Eq.(8), the new node LH  has most similarity to the residual error (regard to kernel 

definition). It is important to note that when the new node vector equals to the residual error vector (most similarity 
between the new node and the residual error), the training error becomes zero. Thus the optimal condition is [33] 
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Similarly, it is known that ( ) , 1,...,Li L iH g x i N= =  and g  is ( )tanh . . Since g  is bipolar and invertible the system 

(9) can be rewritten as [33] 
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(input weight and bias) of the Lth hidden node and ix  is the ith training sample. To obtain added simple 

representation, let:  

 

 

 

 
Thus, we can write 
 

 

 

 

 

Regard to this, as mentioned in [33], and since system of equations (9) and (12) are equivalent, the following 
equation will be solved instead of (8):  
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The expectation can be approximated from data points, the constant term can be removed, and thus the following 
optimization problem is obtained [33]: 
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As mentioned in [33], to avoid overfitting and achieve a better generalization performance, the regularization term 
should be added: 

 

 

 

 

 

As mentioned in [33] and similar to [34], employing the half quadratic optimization problem, the local solution of 
(16) is obtained, using the following iterative process [33]:  
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contaminated by noises. After some derivations (multiplying the optimization problem by constant term 2σ  and set 
' 2λ λ=  ) which are mentioned in [33], we obtain:   

 

 

 

 

 

Several literatures in machine learning and adaptive filters replaced l2 norm by l1 norm to provide sparse solution 
(optimum weight) [35, 36]. Accordingly, inspired by [36] and Different from previous work [33], to provide a sparse 
solution, the following iterative process should be performed instead of (18): 
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Where .  denotes the 1l  norm. Consider the following optimization problem that is extracted from Eq. (19): 
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LW r s= −  and , 1,...,i i ip q i Nξ = − = , inspired by [36], the optimization problem (20) can be rewritten as a 

linear programming problem: 

 

 

 

 
 

In order to solve the problem (21) by using Matlab toolbox, it needs to change optimization problem (21) to the 
standard form. The standard form of linear programming which is used in Matlab is: 
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Thus, the optimum input parameters of the new node are adjusted using the following iterative process: 

 

 

 
 

 

Stage 2: Output side optimization: Similar to [17], the output weight is adjusted using the following equation  

 

 
 

Where LH  is obtained from previous stage.  

The proposed method is specified in Algorithm 1 and Fig. 2 is the flow chart of SCILM: 

Algorithm 1 SCILM 

Input: training samples  χ � �x�, t�����
�   

Output: The optimal input and output weights  β�,W�, i �

1,… , L 

Initialization: Maximum number of hidden nodes L, 
regularization term   λ��, Maximum number of iterations IT1 

For i=1:L 

        Stage 1: calculate  P� and  X  by  (11) and (14) 

        For k=1:IT1 

                     Update input parameters according to (23) 
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        END 

      Stage 2: calculate the hidden node vector  H� using (5), 
and the error vector, 1Lζ −  , using (4):  

                    Adjust the output weight according to (24) 

        END 

        Update Error as 1L L L LHζ ζ β−= −    

END 

 

2.5 Datasets  

The experiments were performed on 26 datasets adopted from [21] which contain 11 multi-class and 15 two-class 
datasets. We applied the same reference numbering system as [21] for convenience. Reference numbers less than or 
equal to 15 are for two-class datasets and reference numbers greater than 15 indicate multi-class datasets. Most of 
the datasets have dimensions in the range of approximately 2000 to 25000 (except dataset 19 about yeast which has 
79 features) and the sample size varies approximately from 50 to 300. The detail for each dataset is as follow:  

Six of the datasets have been studied in [37] and among them, datasets numbered 1 to 3 relate to breast cancer, 4 and 
5 deal with lung cancer and dataset 6 is about hepatocellular carcinoma.  Another group of six datasets studied in 
[38]. Datasets 7 and 8 deal with prostate cancer, 9 and 10 are about breast cancer and finally 16 and 17 are related to 
leukaemia. Five well-known bioinformatics datasets are about colon cancer (11) [39], ovarian cancer (12) [40], 
leukaemia (13) [11], lymphoma (18) [41] and yeast (19) [42]. There rest of the datasets are selected from NCBI 
GEO and their corresponding IDs are available in [21] and in this paper they are numbered in the range of {14,15} 
U {20,...,26}. 

2.6 Experiments 
This paper used SVMs with Radial Basis Function (RBF) and sigmoid kernels and Correntropy based ELM (ELM-
RCC) [34] to compare with SCILM. The RBF kernel used in SVM is defined as K�u, v� � exp��γ�u � v��� and 
the sigmoid kernel is defined as ( , ) tanh( . . )K u v u vα β= + K�u, v� � tanh�αuv � β�. For SVM, we used the LIBSVM 
toolbox [43], the regularization parameter  C is selected from the set  �10��, 10��, … , 10�� and the RBF kernel 
parameter γ is selected from��10��, … , 10���. For the SVM with sigmoid kernel, the parameters α and β are 
selected from the sets ��10��, … , 10��� and �10��, … , 10�� respectively.  ELM-RCC [34] have a hyper parameter 
λand the best of this parameter is selected from the set��10��, 10��, … , 10���. Similar to [44], the number of hidden 
units in ELM-RCC is set to 1000. This paper used additive nodes with sine activation function for ELM-RCC as

( ) sin( , )h x w x b= + h�x� � sin�! ", # $ �%�. The parameters  w, b are randomly generated by uniform distribution 
between -1 and 1. Furthermore, the data samples are normalized into range -1 and 1. For the proposed method, the 
parameter  λ�� in the optimization problem (20) is selected from the set �10��, 10��, … , 10�� and the number of 
hidden nodes is set to one (the most compact network i.e., one hidden layer network with one hidden node) and the 
kernel width ( )σ  is selected from�10��, … , 10��. SVM used one against all strategy for multiclass classification 
datasets. To evaluate the performance of the proposed method in comparison with SVM and ELM-RCC, the testing 
accuracies are reported in table 1 and table 2. For the proposed method experiments are performed in 20 independent 
trials for each problem. In each trial, data samples are reshuffled and mean of accuracy is reported in the following 
tables.  
 

3. Result and Discussion  

In this section, we discuss the results from two viewpoints of accuracy and feature selection. In the accuracy part in 
comparison with the stated methods, SCILM achieved significantly better results in 10 datasets, performed equally 
in 6 datasets and only lost in 7 datasets. In table 1, the average accuracy of each two-class dataset over 20 
independent runs is reported. According to this table, in the case of dataset 1 SCILM achieved the accuracy of 
88.75% and among the compared methods ELM-RCC achieved 76.875%. For dataset 2, SCILM has an accuracy of 
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71.58% while SVM with RBF kernel has 66.94%. In the third datasets we achieved 71.33% but both SVMs were not 
able to perform better than 64.21%. In dataset 4, SCILM and SVM with RBF had accuracy levels of 61.27% and 
58.09%, respectively. For the fifth dataset, SVM with sigmoid kernel and SCILM performed equally, however, in 
dataset 6 the same SVM performs better than the proposed method. Both SVMs achieved almost the same result as 
SCILM for dataset 7 in spite of the fact that SCILM was slightly better. In dataset 8, SCILM achieved 97.85% and 
ELM-RCC was not better than 94.28%. In dataset 9, SCILM shows the performance of 87.5% while SVM with RBF 
had the accuracy of 80%. In datasets 10, 12, 13 and 15 the proposed methods and the best of the compared methods 
achieved almost the same accuracy level; however, in datasets 11 and 14 SVM with RBF kernel performs better than 
the proposed method.  

The results of the average test accuracies for multi-class datasets are reported in table 2. According to this table, for 
datasets 16 and 17 the proposed method achieved significantly better results than the best of the other compared 
methods, however, in datasets 18 and 19 SVM with sigmoid kernel achieved slightly better results than SCILM and 
for datasets 20 and 21, ELM-RCC achieved higher accuracy than SCILM. For the rest of the datasets, SCILM 
obtained competitive results and outperforms other methods especially in the case of datasets 22, 23 and 25. 

It is important to note than SCILM has only 1 neuron in its hidden layer for all datasets, while ELM-RCC has 1000 
neurons in its hidden layer and SVMs also take advantage of cross validation for parameter optimization based on 
LIBSVM library.  

Concerning the aspect of feature selection, because SCILM is taking advantage of the l1-norm, it has sparseness and 
the final connectivity weights also tend to be sparse. Therefore, after generating the model for each dataset these 
final weights can be analyzed from the feature selection point of view. According to this approach, each feature has 
a corresponding weight which indicates the value of that feature i.e. more valuable features have higher values for 
their corresponding connectivity weights and less vital features have approximately equal to zero values for their 
final weights. Due to sparsity of the generated model, most of these weights tend to be near or equal to zero. The 
values of these weights for 8 randomly selected datasets are illustrated in figure 3. In order to save space the rest of 
the datasets are not considered in this figure. As shown in this figure, the weights are clearly specifying valuable 
features and separate them from less informative ones. The advantage of this feature selection approach is that it 
does not have additional computational cost or complexity for the model since it is within the learning process. 

As for another advantage of SCILM, since the auxiliary variables ( α ) that appeared in optimization problem (20), 
have a small value for the outliers and these data points have a small role in the optimization of the network 
parameters, the proposed method is also robust to outliers as well. 
The proposed network has an advantage of having a more compact architecture i.e., only has one hidden node in 
single layer, while the experiments demonstrated that SVM and ELM have several nodes (from 15 to 200 support 
vectors for SVM and 1000 hidden nodes for ELM). Furthermore, SCILM has the most sparse input side connection 
(in most cases sparsity rate is up to 99%). This simpler structure and the lowest number of degrees of freedom 
(parameters) lead to a substantially better generalization performance compared with the other methods. 

4. Conclusion  
In this paper, we have proposed a new classification method named SCILM based on incremental learning machines 
for cancer classification based on gene expression microarray data, which has two main significant advantages. 
First, because of Correntropy cost function, it is robust against uncertainty and noisy data. Second, since it uses the 
l1-norm of the weights in its optimization process, it can be seen as a feature selection method as well. This norm 
provides the generated model with sparseness in the weights, which can be exploited for feature selection purposes.  

In the proposed method, the network structure is determined automatically, leading to a better generalization 
performance. Furthermore, due to optimization of the hidden layer parameters, the network has a compact 
architecture and fast training and testing speed.  

We demonstrated that SCILM significantly improved the performance of other compared methods in both two-class 
and multi-class datasets. The capability of the SCILM for feature selection and selecting meaningful genes still 
requires more experiments and studies which is in center of our future research.  
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Fig 1. Each newly added node is trained in two stages: a) Input weights adjustment b) Output weight adjustment. Existing nodes and 
connections do not change during training the new node. (R1.1), (R1.2), (R2.2) 
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Fig 2. Flow chart of the algorithm. (R1.2) 
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Fig 1. Flow chart of the proposed algorithm. (R1.2) 
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Fig 3. Connectivity weights (w) of the hidden layer are sparse and as these weights are coefficients of the genes, 
hardly informative genes are eliminated and only effective genes are considered for the model. 
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