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Abstract 24 

Background. Large mega base-pair genomic regions show robust alterations in DNA methylation levels 25 

in multiple cancers, a vast majority of which are hypo-methylated in cancers. These regions are generally 26 

bounded by CpG islands, overlap with Lamin Associated Domains and Large organized chromatin lysine 27 

modifications, and are associated with stochastic variability in gene expression. Given the size and 28 

consistency of hypo-methylated blocks (HMB) across cancer types, their immediate causes are likely to 29 

be encoded in the genomic region near HMB boundaries, in terms of specific genomic or epigenomic 30 

signatures. However, a detailed characterization of the HMB boundaries has not been reported. 31 

Method. Here, we focused on ~13k HMBs, encompassing approximately half the genome, identified in 32 

colon cancer. We analyzed a number of distinguishing features at the HMB boundaries including 33 

transcription factor (TF) binding motifs, various epigenomic marks, and chromatin structural features. 34 

Result.  We found that the classical promoter epigenomic mark – H3K4me3, is highly enriched at HMB 35 

boundaries, as are CTCF bound sites. HMB boundaries harbor distinct combinations of TF motifs. Our 36 

Random Forest model based on TF motifs can accurately distinguish boundaries not only from regions 37 

inside and outside HMBs, but surprisingly, from active promoters as well. Interestingly, the 38 

distinguishing TFs and their interacting proteins are involved in chromatin modification. Finally, HMB 39 

boundaries significantly coincide with the boundaries of Topologically Associating Domains of the 40 

chromatin.  41 

Conclusion. Our analyses suggest that the overall architecture of HMBs is guided by pre-existing 42 

chromatin architecture, and are associated with aberrant activity of promoter-like sequences at the 43 

boundary.  44 
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Background 45 

Cells in an individual adopt hundreds of distinct phenotypes in their structure and function. This 46 

dramatic phenotypic variability through development and disease cannot be explained by genetic 47 

differences alone, but is rather encoded in the so-called epigenetic variation – varying degrees of 48 

chemical modifications of the DNA and nucleosome histones that the genomic DNA is wrapped around 49 

[1, 2]. Epigenetic mechanisms are integral to gene regulation; and, their role in cellular differentiation 50 

[3], aging [4] and disease [5] are areas under active investigation. DNA methylation is one of the earliest 51 

known epigenetic modifications, for which cellular inheritance mechanisms are now well understood 52 

[6].  Although a direct relationship between locus-specific DNA methylation and gene expression is well 53 

known, a more specific involvement of DNA methylation in various diseases, in particular, cancer, is only 54 

beginning to be investigated in a comprehensive manner [5, 7, 8]. Collectively, these studies have 55 

identified specific oncogenes that are hypomethylated, and thus activated, in cancer [9], certain tumor 56 

suppressor genes that are hypermethylated, and thus inactivated [10], and additional methylation 57 

changes in cancer [7, 8].  58 

 59 

A recent study showed well-demarcated, large regions, collectively covering half of the genome, to be 60 

differentially methylated in cancer [5]. Moreover, presence of such large cancer-specific differentially 61 

methylated regions (cDMRs) was found to be a general epigenomic signature across many cancer types 62 

[5]. The cDMRs contain important genes involved in mitotic cell cycle and matrix remodeling and were 63 

shown to exhibit extreme gene expression variability. Moreover, cDMRs are highly enriched among 64 

regions differentially methylated during stem cell reprogramming of induced pluripotent stem cells [11]. 65 

Subsequent investigations revealed that cDMRs significantly overlapped with Lamina Attachment 66 

Domains (LAD), Large organized chromatin lysine modifications (LOCK) [12] and Partially Methylated 67 

Domains (PMD) in cancer [3]. Additionally, 1kb regions flanking cDMR boundaries were shown to be 68 

enriched for DNase hypersensitive sites [13]. Nucleosomes were found to be locally enriched in 69 

hypomethylated regions in normal tissue [14]. Collectively, these observations led the authors to 70 

postulate a model of cancer progression involving epigenetic instability of well-defined genomic 71 

domains [5]. However, investigations of additional genomic and epigenomic correlates of cDMRs, and 72 

ultimately the causes of cDMR formation are needed to gain a better mechanistic understanding of the 73 

role of DNA methylation in cancer, in order to harness the full potential of these earlier studies for 74 

epigenetic-based cancer diagnostics [15]. 75 
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A vast majority of large cDMRs are in fact hypomethylated in cancer, i.e. less methylated in 76 

cancer tissue than the corresponding normal tissue, and such hypomethylation happens in large 77 

contiguous genomic regions called hypomethylated blocks. Here, we focused on ~13k hypomethylated 78 

blocks (HMB), encompassing approximately half the genome, previously identified in colon cancer [5]. 79 

Given the length of HMBs and their general overlap with chromatin structural features such as LADs and 80 

enrichment of DNAse hypersensitive sites at HMB boundaries, it is likely that the genome and the 81 

epigenome at HMB boundaries hold the clues to the underlying mechanisms of genome wide 82 

hypomethylation with distinct boundaries. We therefore analyzed a number of genomic and epigenomic 83 

features at the HMB boundaries including TF binding motifs, epigenomic marks, and three-dimensional 84 

chromatin structural features (Figure. 1). 85 

Our analysis revealed that the classical promoter epigenomic mark – H3K4me3, is highly 86 

enriched at HMB boundary in normal colon tissue, and the boundaries that are enriched for promoter 87 

marks are also enriched for in vivo binding of the insulator protein CTCF in colon cancer. We also found 88 

that the HMB boundaries harbor distinct combinations of TF motifs. Our Random Forest machine 89 

learning model that uses TF motifs as features can distinguish boundaries not only from regions inside 90 

and outside HMBs, but surprisingly, from active promoters as well, with very high accuracy (F-measure ~ 91 

0.98). Interestingly, the TFs that preferentially bind at HMB boundaries and their interacting partners 92 

are involved in chromatin modification. Finally, we found that HMB boundaries are associated with the 93 

boundaries of Topological Associating Domains (TADs), which form the backbone of chromatin structure 94 

[16].  95 

Taken together, our analyses suggest that the overall architecture of HMBs is guided and 96 

restricted by pre-existing chromatin architecture, while their creation in cancer may be caused by 97 

aberrant activity of promoter-like sequences at the boundary, with a direct chromatin modification 98 

activity. 99 

 100 

Methods 101 

Hypomethylated blocks 102 

We obtained coordinates for 13,540 reported long hypo-methylated block (HMB) in colon cancer with 103 

an average and median size of 144 kbps and 39.5 kbps, respectively [5].  We define the boundary of an 104 

HMB as its 5kb flanking regions outside the HMB plus an additional 1kb inside the HMB. The choice of 105 
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5kb for the flanking region is arbitrary and 1kb inside is included to offset a lack of precision in localizing 106 

HMB boundary (e.g., Supplementary Figure 10b of [5]).  107 

Random Forest based discrimination of HMB boundaries 108 

We used Random Forest classifiers [17] to distinguish the resulting 27,080 6-kb-long HMB boundary 109 

from other genomic regions:  (1) inside HMB - randomly selected 6kb block from inside of the HMBs, 110 

excluding HMB boundaries; (2) outside HMB - randomly selected 6kb regions from outside of the HMBs 111 

excluding HMB boundaries; (3) promoter - randomly selected 6kb promoters for protein-coding genes, 112 

including 5 kb upstream and 1 kb downstream of the transcription start site using the Ensembl 113 

annotation (www.ensembl.org, version 69). Given two sets of sequences (e.g., HMB and inside-HMB), 114 

and a set of characteristics (i.e. features) describing each sequence (e.g., putative binding sites for a set 115 

of transcription factors), the Random Forest classifier learns the combinations of features that 116 

distinguish one set of sequences from the other. When given an unforeseen sequence and its features, 117 

our Random Forest classifier can determine the set to which the sequence belongs to based on its 118 

features. The more distinguishing the features of the two sequence sets are (e.g., HMB and inside-HMB), 119 

the higher the accuracy with which our classifier can determine the set to which a new sequence 120 

belongs. To design the right control while building the Random Forest classifier, in each sequence set we 121 

selected the same numbers of regions for each pairwise classification task, while controlling for the GC 122 

content. For instance, when classifying between HMB boundaries and promoters, we selected two sets 123 

of regions that are non-overlapping and with similar GC content distribution. Finally, each set of 124 

sequences were composed of ~20k sequences. 125 

As feature sets in the Random Forest classifiers, 931 motifs corresponding to vertebrate TFs 126 

were obtained from TRANSFAC v2011 [18]. Putative motif binding was determined in each 6kb region 127 

using the FIMO (Find individual Motif Occurrences) software [19]. Each 6 kb region was represented as a 128 

931-dimensional feature vector where the measurement of each dimension is the count (0 or greater) of 129 

binding sites of each corresponding motif within the 6kb region. We assessed the classification accuracy 130 

using a 70%-30% split of the data into training and test sets, chosen randomly, for cross-validation in 131 

each of the pairwise classification tasks distinguishing HMB boundaries from the three sets of regions: 132 

inside HMB, outside HMB, and promoters. The classification accuracies are reported using both area 133 

under curve (AUC) of the receiver operating curve and harmonic mean of precision and recall (F-134 

measure). As an additional robustness measure, we also performed the HMB boundary versus promoter 135 
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classification task using Support Vector Machine (SVM) implemented in R statistical package (www.r-136 

project.org), based on 10-fold cross-validation. 137 

CpG island overlap as an additional feature in the Random Forest Classifiers 138 

CpG Islands tend to exhibit increased methylation in colon cancer. Consequently, HMBs are frequently 139 

`broken' by CpG Islands [5], and thus their boundaries frequently overlap CpG islands. Therefore, motifs 140 

can be found more frequently in HMB boundaries than inside or outside HMBs simply due to the 141 

presence of CpG islands. We used the fraction of the 6kb region that overlaps any of the 28,681 CpG 142 

islands annotated in the UCSC genome browser (genome.ucsc.edu) as an additional feature in the 143 

classification task, in addition to controlling for GC content in the classification task. 144 

Identifying most discriminating motifs 145 

We determined the importance of each motif in distinguishing between region types using Mean 146 

Decrease Accuracy obtained from the Random Forest classifier. Mean decrease accuracy of a feature 147 

measures the reduction in classification error upon including the corresponding feature in the model, 148 

and thus represents the importance of the motif in distinguishing HMB boundaries from a specific 149 

control region set; the higher the mean decrease accuracy the more important the feature is. We also 150 

determined enrichment of each motif in HMB boundaries relative to each control set (inside, outside, or 151 

promoters) using Fisher’s exact test. The motif is considered as enriched (depleted) in the HMB 152 

boundaries relative to the control when the corresponding odds ratio is greater than 2 (less than 0.5). 153 

Epigenetic data processing 154 

Genome-wide profiles of six histone marks (H3K4me1, H3K4me3, and H3K9ac, H3K9me3, H3K27me3 155 

and H3K36me3) in normal colon mucosa tissue were downloaded from the Roadmap Epigenetics Project 156 

website (www.roadmapepigenomics.org/). We calculated average signal for each histone mark (at 20bp 157 

resolution as provided by the Roadmap project) within each 6kb region in HMB, inside HMB, outside 158 

HMB, and promoter region. ChIP-Input was also obtained for normalization. To get the normalized 159 

values, we took the log ratio of methylation levels of histone marks and their corresponding ChIP-Input 160 

at the base-pair resolution. 161 

Chromatin interaction measurement in hypo-methylated blocks 162 

To obtain the chromatin interaction information, we used Hi-C experimental data, which provides the 163 

spatial proximity information between pairs of different genome segments [20] . We obtained Hi-C data 164 
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for human embryonic stem cell (hESC) and lung fibroblasts (hIMR90) cell lines from [16] as normalized 165 

interaction matrices with 40 kb bin size denoting the frequencies of physical contacts among pairs of 166 

genomic loci at a genome-wide scale. We mapped those 40 kb bins onto the HMBs and disregarded 167 

partially mapped blocks so HMBs smaller than 40kb were excluded from the analysis. We then 168 

measured interaction strength within each HMB as the sum of all pairwise bin interactions within the 169 

HMB divided by the number of 40 kb bins within the HMB. As a negative control, the same was done for 170 

randomly chosen non-overlapping genomic regions with same lengths as HMBs.   171 

Measuring Proximity to Topologically Associating Domains 172 

We downloaded the locations of 3,029 topological associating domains (TADs) from [16] for hESC cell 173 

lines. For each boundary of the TAD we obtain the minimum distance to a HMB boundary. As a control, 174 

we selected 13k random non-overlapping blocks of same sizes as HMBs. As for real HMBs, we also 175 

obtained the minimum distance of each TAD boundary to a random block selected for control.  176 

Fisher’s exact test: calculating enrichment/depletion of motif in different regions and finding motif 177 

interaction with chromatin modification enzymes (CME). 178 

The contingency table for testing enrichment/depletion of each motif is shown below. 179 

 Positive Negative 

Presence  a c 

Absence b d 

 180 

a (respectively b) denotes the number of positive examples in which a motif is present (respectively 181 

absent). Similarly, c (respectively d) denotes the number of negative examples in which a motif is 182 

present (respectively absent). 183 

The contingency table for testing interaction with CME is shown below. 184 

 Selected Motifs Other Motifs 

Interact with CME a c 

Do not interact with a CME b d 

 185 
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a (respectively b) denotes the number of selected motifs that themselves are CMEs or do not interact 186 

with a CME (respectively all others). Similarly, c (respectively d) corresponds to the control for testing 187 

CMC interaction using all the other motifs that themselves are not CMEs. 188 

 189 

Results  190 

Overview.  Our objective is to characterize genetic and epigenetic features that demarcate 191 

Hypomethylated blocks in cancer, in order to gain insights into the mechanism and functional 192 

implications of these genomic blocks. Our findings are organized as follows: First, we determined and 193 

examined epigenomic marks that are enriched at HMB boundaries. Second, we analyzed genomic 194 

properties, namely, putative binding sites for all vertebrate transcription factors at HMB boundaries. 195 

Third, we showed that many of the motifs enriched at HMB boundaries exhibit specific positional 196 

distributions aligned with the HMB boundary. Fourth, we investigated specific transcription factor motifs 197 

enriched at HMB boundaries and their links to chromatin modifying enzymes (CMEs), in order to 198 

understand the mechanistic link between transcription factor binding and chromatin structure. Fifth, we 199 

furthered examined the link between genetic/epigenetic properties of the HMB boundaries and CMEs 200 

by analyzing the association between HMB boundaries and topologically associating domains (TAD) 201 

boundaries, which define the structural backbone of the chromatin. Finally, we examined at HMB 202 

boundaries, the putative sites for CTCF which acts both as mediator of chromatin loop formation as well 203 

as an insulator that restricts the spread of chromatin marks. 204 

Boundaries of hypo-methylated blocks are enriched for promoter-associated histone mark H3K4me3. 205 

Previous studies have shown cross-talk between DNA methylation and various histone modifications 206 

[21]. Given that HMBs exhibit relatively sharp demarcation of their boundaries [5], we investigated the 207 

patterns of various histone marks in normal colon tissue in the vicinity of HMB boundaries. We 208 

summarized the signal strength of six histone marks in 20 kbp flanking the HMB boundaries (see 209 

Methods) from human colon tissue data downloaded from the Epigenetic Roadmap Website 210 

(www.roadmapepigenomics.org). Histone marks H3K4me3 and H3K9ac, known to be associated with 211 

active promoters, showed a distinct peak immediately outside the HMBs (Figure 2). Patterns for other 212 

histone marks (H3K4me1, H3K9me3, H3K27me3 and H3K36me3) did not show noticeable trends at HMB 213 

boundaries (Supplementary Figure 1a-d). 214 
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Given the enrichment for promoter histone marks at the HMB boundaries, we considered the 215 

possibility that the HMB boundaries coincide with or are near gene promoters. We excluded the HMB 216 

boundaries (5kb outside the HMB and 1 kb inside the HMB) that overlapped with the transcription start 217 

site of any gene or pseudogene (including non-coding genes), based on Gencode annotation [22], and 218 

repeated the analysis of histone mark pattern. The remaining boundaries still showed a significant, but 219 

smaller than previously mentioned peak, at the HMB boundary. For instance, as shown in Figure 2c, 220 

H3K4me3 signal strength in 3kb outside HMBs was lower than that in the regions immediately outside 221 

HMBs. The mean of normalized signals (see Methods) at the HMB boundaries was -0.82, while at 222 

random 3kb regions outside of HMBs the mean signal was -1.01 (Wilcoxon test p-value = 7.08e-42). This 223 

suggests that the observed enrichment of histone modification at HMB boundaries is not entirely due to 224 

annotated promoters for genes or pseudogenes. 225 

 226 

HMB boundaries harbor distinguishing TF binding motifs. 227 

Given the enrichment for promoter-like histone marks near HMB boundaries, we assessed whether 228 

HMB boundaries are distinct from non-boundary regions as well as other known promoters in terms of 229 

their TF binding motifs. For this purpose, in addition to the HMB boundary regions we defined three sets 230 

of regions of 6kb length (see Methods): (1) Inside: regions within HMBs, (2) Outside: regions between 231 

HMBs, and (3) Promoters. All regions were non-overlapping and in each pairwise comparison task, the 232 

GC content was similar in the two sets of regions (See Methods). For each 6kb region we constructed a 233 

932-dimensional feature set quantifying the fraction of CpG Island overlaps and the number of motif 234 

matches for each of the 931 vertebrate TF motifs from TRANSFAC, v2011 [18], using FIMO [19] as the 235 

motif search tool. We then applied Random Forest (RF) classifiers on the feature set to distinguish HMB 236 

boundaries from the other genomic region sets under study. We trained the RF using 70% of the data 237 

and noted the classification accuracy on the remaining 30% of the data. The classification performances 238 

are shown in Table 1. Surprisingly, HMB boundaries can be distinguished from even other promoters 239 

with very high accuracy (F-measure ~ 0.978); Figure 3 shows the ROC curve corresponding to 240 

classification between HMB boundaries and promoters (ROC curves for the rest of the classification 241 

tasks are presented in Supplementary Figure 2). We were able to recapitulate the RF results of HMB 242 

boundary versus promoter classification accuracy using Support Vector Machine (SVM) (F-measure 243 

~0.97) – SVM is a classic tool for learning the combination of features of set of sequences that 244 

distinguishes the set from the control set. This suggests that the motif composition at HMB boundaries 245 
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is distinct from those in promoter regions. We also obtained high discriminative performance when 246 

distinguishing HMB boundaries from regions inside HMBs (F-measure ~0.90).  247 

 248 

Positional distribution of discriminating motifs. 249 

Next we assessed whether TF motifs that distinguish HMBs exhibit a positional bias relative to the HMB 250 

boundaries. To prioritize the motifs we used the Mean Decrease Accuracy as the measure of a motif’s 251 

relevance to a specific discrimination task (see Methods). Supplementary Table 4 lists the top 20 most 252 

discriminating motifs in the classification of HMB boundaries against inside-HMB, outside-HMB, and 253 

promoters. Also, we only selected 46 motifs that were enriched above a threshold in the boundary (see 254 

Methods). For each of the 46 motifs, we plotted the frequency of the motif in 100 bps windows within 255 

the 6 kb HMB boundary regions, averaged over all HMB boundaries. Figure 4 shows the positional 256 

profile for the two most discriminating transcription factors ZFX (TransFac id M01593) and SP1 (TransFac 257 

id M00196) as an illustration; the profiles of all other motifs are included in Supplementary Figure 3. We 258 

next estimated for each motif the positional bias of binding sites within HMB boundaries by taking the 259 

most extreme (high or low) frequency of binding motifs among all 100 bp windows. The extreme 260 

frequencies of binding motifs were normalized and converted to Z-scores across all 100 bp windows in 261 

the 6kb regions. Z-score provides a standardized measurement of deviation from the mean frequency of 262 

binding motifs across the 46 motifs. We found that the majority of extreme frequency was located near 263 

the HMB boundaries: within 6k block the median location is 5574 from the outside of the boundary with 264 

a standard deviation of 892. Z-scores for all motifs ranged from 2.35 to 5.94 with a mean of 3.48 (See 265 

Supplementary Figure 3 for all positional profiles, the corresponding Z-score for both boundary and 266 

promoter), suggesting that discriminating motifs have a skewed positional distribution that exhibits 267 

extreme enrichment very close to the HMB boundaries. 268 

 269 

Characterization of the most discriminating Transcription Factor motifs. 270 

Several TFs are directly involved in histone modification and several more TFs are otherwise known to 271 

interact with chromatin modification enzymes [23]. We assessed whether the TFs whose motifs are 272 

most discriminative of HMB boundaries are involved in chromatin modification, either directly or by 273 

interacting with a chromatin modification enzyme. We first compiled a set of 492 genes annotated as 274 

Chromatin Modification Enzymes (CME) from the ENSMBL database. For each of the 931 TransFac 275 

motifs, we obtained the Ensemble Gene ID for the corresponding TF protein and then obtained the set 276 
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of annotated proteins known to interact with the particular TF using the string-db R package, which is 277 

based on the STRING database of protein interactions [24]. For each pair of regions compared (say, HMB 278 

boundary versus Promoter), we assessed whether the most discriminating motifs and their interacting 279 

partners are enriched for CMEs. To do so we obtained the top 20, 25, 40, and 50 motifs according to 280 

Mean Decrease Accuracy (see Methods), and compared the prevalence of CMEs among these motifs 281 

and their interacting partners against the rest of the available TF proteins as background. For each 282 

comparison, we assessed enrichment using Fisher’s Exact test. We found that the most discriminating TF 283 

motifs (Supplementary Table 1-3) in HMB boundaries and their interacting partners were enriched for 284 

CMEs relative to all other regions (inside HMB, outside HMB, and promoter regions, Table 2). 285 

Encouragingly, the fold enrichment of CMEs increases monotonically as we restrict ourselves towards 286 

more significant TFs, from top 50 to top 20 motifs only. These results suggest that relative to inside and 287 

outside regions, the HMB boundaries not only harbor distinct motifs but these motifs could also be 288 

responsible for distinct epigenetic profiles at HMB boundaries.   289 

Supplementary Table 5 lists the 135 CMEs that interact with the top 20 enriched motifs in each of the 290 

three comparisons – boundary versus inside, outside, and promoter. Interestingly, these 135 CMEs 291 

include two DNA methyltransferases DNMT3A/B, and also P300, which is a well-known marker of 292 

regulatory enhancers. 293 

 294 

Hypo-methylated blocks may be informed by chromatin structure. 295 

Our analysis so far suggests that the HMB boundary regions possess distinguishing genomic and 296 

epigenomic characteristics which may underlie their role as nucleation or termination of the 297 

methylation alteration. In addition, it is likely that the spread and confinement of epigenomic alteration 298 

within HMBs may be informed by preexisting chromatin organization and structure. This is suggested by 299 

a previous study that showed a significant overlap between cDMRs and LADs [5].  300 

Based on Hi-C assay, which provides quantitative evidence of physical interactions between 301 

genomic loci, previous work has identified the so-called Topological Associating Domains (TAD), which 302 

are mega-base-sized genomic regions with a much greater interactions within the regions relative to 303 

across regions. TADs are relatively conserved across cell lines and species, and thus represent an 304 

underlying structural backbone of the chromatin. Based on 3,127 TADs reported in [16], we measured 305 

the proximity of each TAD boundaries to the closest HMB boundary, and compared the resulting 306 
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positional distribution with that for a control set of randomly selected genomic loci. TAD boundaries are 307 

significantly closer (~43kb) in genomic distances to a HMB boundary compared with the expected ~71kb 308 

(ratio of mean = 3.8, ratio of median = 1.7, Wilcoxon test p-value = 5.4e-55, Figure. 5a).  309 

Because TADs were identified based on a statistical overrepresentation of intra-region 310 

interaction, we also directly assessed using the Hi-C data, whether HMBs show an enriched intra-block 311 

interaction compared to inter-block interactions. Unfortunately Hi-C data is not available for human 312 

colon tissue. Based on the Hi-C data in hESC, and hIMR90 cell line (yuelab.org/hi-c/download.html), as 313 

shown in Figure 5b-c, we found a significantly greater interactions within HMBs compared to within 314 

random blocks controlled for length (For hESC: mean_HMB = 32, mean_Random = 27, Wilcoxon test p-315 

value = 3.2e-38. For hIMR90: mean_HMB = 21.8, mean_Random = 18.3, Wilcoxon test p-value = 4.1e-316 

34). 317 

Overall, these analyses suggest that long domains of altered methylation in colon cancer may in 318 

part be informed by the underlying chromatin structure of the normal cell. 319 

 320 

CTCF binding sites coincide with the H3K4me3 signal in HMB boundaries. 321 

Among its numerous roles, CTCF is known to act as insulator by restricting the spread of 322 

heterochromatin, and is also involved in the maintenance of three dimensional chromatin conformation 323 

in part by stabilizing long-distance interactions [25]. Consistent with the role of insulator, CTCF binding 324 

sites are enriched between TADs [16]. We assessed whether CTCF binding sites are enriched near HMB 325 

boundaries. We downloaded the in vivo CTCF binding sites for colon cancer tissue from CTCFBSDB 2.0 326 

database (insulatordb.uthsc.edu/). We found that HMBs were often bounded by CTCF binding sites. The 327 

frequency of CTCF in the 6 kb HMB boundaries (21%) was significantly higher than random blocks inside 328 

(14%) and outside (18%) HMBs, where the total number of regions was each set is ~20k. Moreover and 329 

interestingly, the HMB boundaries with a CTCF binding site had significantly higher levels of H3K4me3 330 

signal than the boudaries without a CTCF binding site (ratio of mean = 1.4, Wilcoxon test p-value = 3.7e-331 

24). Overall, this suggests that HMB boundaries are enriched for CTCF, as is expected for structural 332 

chromatin domains, but the presence of CTCF is in fact linked to the promoter-like characteristic of HMB 333 

boundaries. 334 

 335 

Discussion 336 
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In this study, we have characterized the regulatory landscape of large regions of methylation loss in 337 

colon cancer. We have found that the putative binding sites for specific TFs potentially involved in 338 

chromatin modification are distinguishing features of the DNA sequence at HMB boundaries. We also 339 

found that while activating histone marks common to promoters are enriched in HMB boundaries, HMB 340 

boundaries still show a distinct pattern of TF motif profile relative to known promoters. Finally, we 341 

found that the specific domains where HMBs occur are reflective of general chromatin organization of 342 

the normal cell. 343 

 344 

Based on our qualitative assessment, we found that TFs enriched in HMB boundaries include those 345 

involved in demethylation, cell proliferation and cell cycle, hallmarks of cancer. For instance, for the 346 

most discriminative motif Sp1, high expression of Sp1 is known to disrupt cell cycle. Sp1 deregulation 347 

might be beneficial for tumor cells and its overexpression is known to induce apoptosis of 348 

untransformed cells [26]. Other members of Sp TF family also play roles in metastasis and growth of 349 

different tumor types [27]. In our analysis, multiple TFs from this family were found to be enriched in 350 

HMB boundaries. Zfx presents another illustrative example, as it controls the self-renewal of embryonic 351 

and adult hematopoietic stem cells [28]. Zfx also controls BCR-induced proliferation and survival of B 352 

lymphocytes [29]. Another detected TF FoxO is central to the integration of growth factor signaling, 353 

oxidative stress and inflammation, and is involved in tumor suppression [30] and DNA demethylation 354 

process in B-cell development [31]. Finally, TF Zfp281 is known to play a role in cell pluripotency [32], 355 

chromatin remodeling [33], and inhibition of nanog auto-repression [34]. 356 

 357 

Loss of methylation in large domains has been identified as a consistent and stable mark in solid tumors 358 

[5, 35]. While the degree of methylation loss increases with tumor progression, intra-sample variability 359 

in DNA methylation and gene expression is greater within these domains [35]. These findings point to a 360 

general loss of epigenomic and transcriptomic stability that is essential to the normal behavior of the 361 

cell. The co-localization of these domains with lamin-associated domains [5], with TADs (as found in this 362 

study), and the enrichment of CTCF binding in the boundaries of these domains suggest that a loss of 363 

chromatin organization is concomitant with this loss of epigenomic and transcriptomic stability.  364 

 365 

We note a few limitations of our analyses. Our analyses are based on 6 kb region flanking the HMB 366 

boundary. This choice, while reasoned, is somewhat arbitrary. Although our analyses suggest that HMB 367 

formation is associated with specific genomic, epigenomic, and chromatin features, it does not clarify 368 
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the causality leading from TF binding to hypomethylation and ultimately to the previous observed 369 

aberrant gene expression in HMBs. While we observed specific patterns of certain epigenomic marks at 370 

HMB boundaries, these may be ultimately a reflection of the genomic characteristics [36]. Moreover our 371 

analysis is based on putative binding site and not based on in vivo binding data for the TFs, which are 372 

currently not available for a majority of TF.  Nevertheless, our analyses do suggest a potential link 373 

between specific genomic marks and HMB boundaries, which require future experimental studies of the 374 

underlying mechanisms. 375 

 376 

Conclusion 377 

Taken together, our analyses suggest that the overall architecture of HMBs is guided by pre-existing 378 

chromatin architecture, while their creation in cancers may be caused by aberrant activity of promoter-379 

like sequences at the boundary. Our results are consistent with a model where a loss of chromatin 380 

organization and a concomitant loss of epigenetic stability make previously inaccessible TF binding sites 381 

accessible for proteins involved in chromatin modification as well as cellular fate, whose binding sites 382 

are enriched within domains of inaccessible chromatin where HMBs reside. The binding of specific DNA 383 

binding factors at HMB boundaries may further participate in methylation loss.  384 

  385 
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Tables 386 

Table 1. Performance of Random Forest classifier for HMB boundaries relative to other genomic 387 

regions. ‘Inside’ and ‘outside’ refer to regions inside or outside HMBs, respectively. These regions were 388 

selected to match the length and CG content of HMB boundaries (see Methods). The last row contains 389 

the results of a Support Vector Machine classifier that was used to replicate the Random Forest result 390 

on the HMB boundary vs. Promoter region classification. In all cases, 70% of the data was used as 391 

training, and 30% was used for testing. Sensitivity, Specificity and F-measure were noted as the optimal 392 

F-measure.  393 

 Sensitivity Specificity F-measure AUC Size of Data Set 

Boundary vs. Inside 0.90 0.89 0.90 0.96 41,425 

Boundary vs. Outside 0.84 0.81 0.83 0.91 41,430 

Boundary vs. Promoter 0.98 0.97 0.98 0.99 31,051 

Boundary vs. Promoter (SVM) 0.97 0.97 0.97 0.99 31,051 

 394 

Table 2. Enrichment of chromatin modification enzymes among the most discriminating TF motifs and 395 

their interacting partners. Odds ratio (OR) and Fisher’s Exact test P-value for a chromatin modification 396 

enzyme enrichment test using the most discriminating (Top 20, 25, 40 or 50) TF binding site motifs for 397 

each classification task (as described in Table 1).  398 

Classification Top 20 Top 25 Top 40 Top 50 

OR P-Value OR P-Value OR P-Value OR P-Value 

Boundary-Inside 1.66 2.8e-9 1.57 6.1e-8 1.48 7.5e-7 1.46 7.8e-7 

Boundary-Outside 1.61 3.0e-8 1.53 3.5e-7 1.50 2.4e-7 1.45 1.4e-6 

Boundary-Promoter 1.64 7.6e-9 1.56 1.2e-7 1.44 3.9e-6 1.45 1.1e-6 

 399 

Figures  400 

Figure 1. Analysis pipeline. Starting with ~13,000 HMBs, we perform a number of tests to assess the 401 

association of HMBs and HMB boundaries with Topological Associating Domains, Physical interaction 402 

within and across HMBs, profiles of various epigenetic marks, and CTCF binding. In addition, we 403 

identified TF motifs enriched at the HMB boundaries relative to various controls and assessed the ability 404 

of a random forest model to distinguish HMB boundaries from other domains based on TF binding site 405 

motifs. Finally, we assessed the spatial profile and functions of enriched TF motifs and their interacting 406 

partners. 407 
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 408 

Figure 2. Histone modifications enriched near HMB boundaries. Mean normalized ChIP signal for (a) 409 

H3K4me3 and (b) H3K9ac as a function of genomic distance to HMB boundary. The dotted vertical line 410 

(pink) depicts the precise location where the HMB starts while the shaded (cyan) region is the 3kb HMB 411 

boundary region as defined in this paper. The solid vertical lines (pink) indicate inside (right) and outside 412 

(left) of HMBs. (c) Distribution of normalized H3K4me3 signal in HMB boundary regions and outside 413 

HMBs.  414 

 415 

Figure 3. ROC curves for classifiers distinguishing HMB boundaries and promoters based on TF binding 416 

site motifs. (a) Using Random Forest classifier, (b) Using Support Vector Machine classifier. Each ROC 417 

curve is based on predictions on a held-aside set of genomic regions (see Methods). 418 

 419 

Figure 4. Positional profile of binding sites for ZFX and SP1. Number of occurrences in 100 bp windows 420 

as function of genomic distance to HMB or promoter start site for TFs ZFX_01 (a) and SP1_Q6 (b). The 421 

dotted vertical line indicates the location of HMB and promoter respectively. ‘Outside’ and ‘inside’ 422 

correspond to 6kb sized genomic regions outside or inside HMBs respectively. 423 

 424 

Figure 5. Hypo-methylated blocks associate with topological domains in the chromatin structure. (a) 425 

Boxplot of genomic distance (in bases) between TAD boundary (obtained from hESC) to nearest colon 426 

cancer HMB boundary. Distances between TADs and random 6kb genomic regions are included as 427 

background. (b) Boxplots of average Hi-C interaction for bins within HMBs in hESC, with average 428 

interactions randomly generated genomic regions of similar size and GC content included as 429 

background. (c) same as (b) and  for IMR90 cell line.   430 
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Supplementary Figure 1. Pattern of histone marks near HMB boundaries: (a) H3K4me1, (b) 444 

H3K9me3, (c) H3K27me3, (d) H3K36me3. 445 

Supplementary Figure 2. ROC for HMB boundaries versus inside/outside for the test set. 446 

Supplementary Figure 3. Frequency plots for the TF motifs listed in Supplementary Table 4. 447 

2. Supplementary Tables1-5. Legends are provided along with the tables. 448 
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