










Figure S2 The geometry of quadratic programming, (related to Figure 3) (A) Tuning curves calculated for

a two neuron example using Equation 29. The tuning curve solution can be decomposed into three regions:

regionR1 where r̄1 = 0 and r̄2 ≥ 0, regionR2 where r̄1 ≥ 0 and r̄2 ≥ 0, and regionR3 where r̄2 = 0 and

r̄1 ≥ 0. In each region the firing rate solution is given by a different linear projection of x0 = (x,
√
β2rB),

where rB is the background firing rate. (B) The transformation from firing rate space to signal space is

given by a simple linear projection of firing rates onto the read-out vector w (for the signal x) and c (for

the background firing rate rB). Unlike the transformation from signal space to firing rate space in A, this

transformation is not region dependent.
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Figure S3 A taxonomy of tuning curve shapes (related to Figure 3) . Here, we explore the relationship

between tuning curve shape and the choice of parameters in our 1-d system. Specifically, we calculate

tuning curve shape using quadratic programming (Equation 4) for 12 distinct systems, each with different

parameter values. (A) The left column shows the read-out weights {wi} and cost terms {ci} for each system.

The right column shows the tuning curves calculated using quadratic programming (Equation 4). Each row

corresponds to a distinct neural population. In this panel, we increase the spread of read-out weights from

top to bottom (left column), and we find that the range of tuning curve slopes increase (right column). The

loss is approximately invariant to this modulation (right column, bottom). (B) Similar to A, except that we

modulate the cost terms from top to bottom (left column), and we observe that the range of tuning curve

intercept values increase (right column). Again, the loss is approximately invariant to this modulation (right

column, bottom). (C) Similar to A and B except that this time we reduce the magnitude of the cost terms

from top to bottom (left column), and we observe that the intercept values decrease, until tuning curves do

not overlap with each other (right column). This time, the loss increases marginally (right column, bottom).

This happens because the system is unable to represent the background task variable (see Methods). In this

figure, each system contain 16 neurons (some tuning curves overlap in A) and the biased quadratic cost term

as in all previous 1-d examples.
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Figure S4 Optimal Compensation in systems with a linear cost or a quadratic cost (related to Figure 3). (A)
Optimal tuning curves calculated using quadratic programming (Equation 4), but with a quadratic cost term,

instead of the biased quadratic cost term. In this system, tuning curves do not overlap, because there is no

term to bias the firing rates towards a background task variable rB . Therefore, this is a poor model of the

oculomotor system (Figure 5a). (B) We knock-out four neurons with negative read-out weights and calculate

tuning curves following optimal compensation using Equation 5. As before, the slopes of similarly tuned

neurons increase to compensate. (C) When all the neurons with negative read-out weights are knocked out,

optimal compensation is unable to recover signal representation (inset), because the system has crossed the

recovery boundary. (D–F) Similar to A–C, but for a system with a sparse coding linear cost instead of a

quadratic cost. (D) In this sparse representation, all neurons are silent, except for the neuron with the largest

positive read-out weight and the neuron with the largest magnitude negative read-out weight. These two

neurons represent the entire signal, because they can do so with the smallest firing rates, and hence, with the

smallest cost. (E) We knock-out four neurons with negative read-out weights, including the neuron that was

active in D, and we calculate tuning curves following optimal compensation. A single neuron compensates
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for neuron death. This is the neuron with the largest magnitude negative read-out weight (of the remaining

neurons). Note that signal representation without optimal compensation is especially poor compared to the

system with optimal compensation (inset). (F) When all the neurons with negative read-out weights are

knocked out, optimal compensation is unable to recover signal representation.
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Figure S5 Quadratic programming firing rate predictions compared to spiking network measurements. (A)
The impact of membrane potential noise σV on firing rate predictions is calculated by comparing quadratic

programming predictions and firing rate measurements in network simulations. We calculate the prediction

error of quadratic programming by taking the average absolute difference between quadratic programming

predictions and spiking network measurements (solid line) and by taking the standard deviation of these

measurements about the predictions (dashed line). Averages are calculated across neurons, stimuli and

time, using networks with tuning curve shapes similar to previous figures (Figure 4A). In the parameter

range used throughout this paper (indicated by a blue cross), the prediction error is small and robust to

changes in noise. As expected, the error increases when the noise is the same order of magnitude as the

mean spiking threshold, T ≡ ∑
i Ti/N . (B) Similarly, the prediction error increases as the size of the

decoder weights increase. Here, α is a scaling parameter that characterizes the magnitude of the decoder

weights (see Methods). We find that the error is small around the parameter range used throughout this

paper (α = 1). However, for larger values of α the quadratic programming prediction degrades. Again, this

is expected because α determines the resolution with which our spiking network can represent a signal. As

such, our predictions are most accurate in the very regime that we are most interested in - where optimal

coding is possible. Note that we must also scale the spiking cost and the membrane potential leak with α

so that the shape of tuning curves are preserved, allowing for a fair comparison across decoder scales (see

Methods). (C) The network size N has little influence on the prediction error. Again, read-out weights and

cost parameters are scaled so that tuning curve shape is invariant to changes in N (see Methods).
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Figure S6 Histograms of experimental responses to neuron silencing in V1, compared to theoretical predic-

tions using a range of different parameters. (A) Histogram of changes in the firing rate at preferred stimulus

orientations following GABA-ergic silencing. Firing rate change for neurons with tuning preferences that

are similar to the recorded neurons (iso-orientation inactivation) are counted separately to changes in neu-

rons with different tuning preferences (cross-orientation inactivation). These results are reproduced from

Crook and Eysel (1992). (B) Histograms of preferred compensation firing rate changes in positive sparse

coding neurons, again with iso-orientation and cross-orientation neurons counted separately. Each histogram

corresponds to the theoretical prediction obtained by knocking out different percentages of neurons (25%,

50%, 75% and 100%), across different ranges of preferred orientations (at 0o only, from −22.5o to 22.5o,

and from −45o to 45o). We explore the full parameter space of our model, because the exact amount of

neuron death in the experiments from Crook and Eysel (1992) is unknown. We find that when 50% or 75%

of neurons with preferred orientations at 0o are knocked out, the form of the predicted histogram is similar

to the experimentally recorded histogram, with a greater proportion of iso-orientation inactivations having

an impact on the firing rate at the preferred stimulus orientation, compared to cross-orientation inactivation.

In these calculations, we use the same sparse coding model for each histogram, with four times as many

neurons as stimulus dimensions.
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Figure S7 Optimal compensation in V1 models with different degrees of over-completeness (related to

Figure 8) (A) The visual cortex contains many more neurons than input dimensions. To investigate the

impact of this over-completeness, we calculate the average change in tuning curve shape following optimal

compensation in our sparse coding model of V1 for increasing degrees of over completeness (see Methods).

Here, the over completeness factor, M is given byM = N/d, where N is the number of neurons and d is the

signal dimension. The form of the tuning curve changes is unaffected by the degree of over-completeness,

but there are some fluctuations in the overall change. (B) As the degree of over completeness M increases,

the average change fluctuates moderately. These fluctuations are the result of inhomogeneities in our V1

model, which have a larger effect when the over-completeness factor is small. (C) Similar to A, but for the

2-d bump-shaped tuning curve model. We use the same model as before (Figure 6 G), but with a sparse

linear cost instead of a quadratic cost. For each value of M , we choose decoder weights that are evenly

spaced on the unit circle. This produces evenly spaced bump-shaped tuning curves. We knock out neurons

in this model and calculate the average change in tuning curve. In this case, we can easily calculate the

impact of optimal compensation for systems with high degrees of over-completeness, such as the visual

cortex because the dimensionality of the problem is much lower. (D) The impact of optimal compensation

fluctuates moderately for low values of M , as in the sparse coding model. However, as the degree of over

completeness increases, the average change in tuning curve shape converges, as the fluctuations average out.

The maximum and standard deviation of the average tuning curve change are calculated across all stimulus

orientations. In both the full sparse coding model and the 2-d model, we knock out neurons with preferred

orientations between −22.5o and 22.5o.
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