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Abstract

Motivation: Combining P-values from multiple statistical tests is a com-
mon exercise in bioinformatics. However, this procedure is non-trivial for
dependent P-values. Here we discuss an empirical adaptation of Brown’s
Method (an extension of Fisher’s Method) for combining dependent P-
values which is appropriate for the correlated data sets found in high-
throughput biological experiments.

Results: We show that Fisher’s Method is biased when used on depen-
dent sets of P-values with both simulated data and gene expression data
from The Cancer Genome Atlas (TCGA). When applied on the same data
sets, the Empirical Brown’s Method provides a better null distribution and
a more conservative result.

Availability: The Empirical Brown’s Method is available in Python, R,
and MATLAB and can be obtained from https://github.com/IlyaLab/
CombiningDependentPvaluesUsingEBM.
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1 Introduction

In order to integrate the large and diverse datasets found in systems biology,
it is common to combine P-values from multiple statistical tests. The earliest
method to combine independent P-values is seen in the work of [Fisher, 1948].
[Brown, 1975] extended Fisher’s Method to the case where P-values are assumed
to be drawn from a multivariate normal distribution with a known covariance
matrix. [Kost and McDermott, 2002] further extended Brown’s Method ana-
lytically for unknown covariance matrices. Additional methods for combining
P-values have been developed for specific purposes, e.g. combining differently
weighted P-values [Whitlock, 2005], combining P-values across multiple hetero-
geneous data sources [Aerts et al., 2006], and restricting analysis to the tail of
the P-value distribution [Zaykin et al., 2002].

Of these methods, Brown’s most simply combines equally weighted depen-
dent P-values. However, Brown’s reliance on multidimensional numerical inte-
gration makes it impractical for use on large data sets due to the computational
resources needed to run the algorithm. Instead of using numerical integration,
our adaptation of Brown’s Method uses the empirical cumulative distribution
function derived from the data making our method dramatically more efficient
and suitable for large omics data.

2 Methods

2.1 Fisher’s and Brown’s Methods

Let there be k P-values, denoted P;, generated from k statistical tests based on
k normally distributed random variables. Fisher showed that for independent
P-values, the statistic ¥ = Zle —2log P; follows a chi squared distribution
with 2k degrees of freedom, ¥ ~ ng. Brown extended Fisher’s Method to the
dependent case by using a re-scaled x2 distribution.

R chgf. (1)

The constants f and c represent a re-scaled number of degrees of freedom and
a scale factor which is the ratio between the degrees of freedom of Fisher’s and
Brown’s methods. Brown calculated these constants by equating the first two
moments of ¥ and cxg  resulting in

E[V)? var[¥] k

d = = —, 2
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Furthermore, Brown showed that the expected value and variance of ¥ can be
calculated directly via numerical integration to find the covariance, respectively;

=

E[U] =2k and var[P] =4k + 2Zcov(—2 log P;, —2log P;). (3)
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Numerical integration is needed to find the covariance term [Kost and McDermott, 2002].

The combined P-value is then given by P, pined = 1.0 — ®25(¢)/c) where
P =2 Zle log P; and @y is the cumulative distribution function of x3 .

2.2 Empirical Brown’s Method

Our contribution is to calculate the covariance in Eq. 3 empirically. In prac-
tice, each individual P-value, P;, will be computed via a statistical test be-
tween a variable and a vector of samples from the raw data, Z;. We define the
transformed sample vector w; = —2log F(Z;) where F(Z;) denotes the empir-
ical cumulative distribution function calculated from the sample &;. A more
detailed explanation can be found in SI1. As a result, the covariance can also
be computed empirically

var[¥] = 4k + 2 cov (i, ;). (4)
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Figure 1: P-values from simulated data and TCGA data using the
Empirical Brown’s and Fisher’s Methods a) Line plot of histogram counts
of P-values from Fisher’s Method applied on simulated null data with varying
degrees of covariance as represented by a. The histogram was created by binning
the P-values in 20 bins of size 0.05 from 0 to 1. b) Similar to a but for P-
values derived with the Empirical Brown’s Method. ¢) A scatter plot comparing
pathway association P-values for the gene EGFR in the GBM dataset from
TCGA. Each circle represents one pathway. The radius is proportional to c,
which reflects the intra-pathway correlation.

2.3 Generating Simulated Null Data

We compared our method to Fisher’s Method on generated random data. We
generated these data by combining 20 P-values from the Pearson correlations
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between a sample of independent normal random variables with mean 0 and
variance 1 (n = 200) and a sample (n = 200) of data generated from a 20-
dimensional multivariate normal distribution centered around 0 with covariance
matrix ¥; 05 = 1 and 0;»; = a, i.e. diagonal elements of 1 and off-diagonal
elements of a. We calculated 100,000 combined P-values for each value of
a € {0.0,0.25,0.5,0.75}. We note that at least 100 data points are needed
for accurate convergence of this method (SI2).

2.4 Combining P-values based on TCGA expression data

Fisher’s and the Empirical Brown’s Methods were compared on the highly corre-

lated gene expression data of glioblastomas (GBM) from TCGA [Brennan et al., 2013].
Specifically, we derived combined P-values by associating the expression levels

of the gene EGFR with the expression levels of the genes in the curated can-

cer signaling pathways as defined by the Pathway Interaction Database (PID)
[Schaefer et al., 2009]. First, we computed P-values from pairwise Pearson cor-
relations between EGFR and all genes in a pathway. (If EGFR was a member

of the pathway, the correlation between EGFR and itself was excluded.) Then,

we combined these P-values for each of the pathways using both Fisher’s and

the Empirical Brown’s Methods. For more details see SI3.

3 Results and Discussion

3.1 Empirical Brown’s Method Conservative on Null Data

Combined P-values from randomly generated data should follow a uniform dis-
tribution. With Fisher’s Method, the number of extremely low and extremely
high P-values are inflated as the intra-correlation of the normally distributed
data set is increased (Fig. 1a). The inflation of low P-values results in a high
number of false positives even for modest coupling in the covariance matrix.
With the Empirical Brown’s Method, the distribution of P-values is slightly
inflated in the middle of the interval [0,1] and deflated towards the low and
especially the high values (Fig. 1b). This suggests that our method is a con-
servative estimate.

3.2 Our Method Corrects Fisher’s Bias on TCGA Data

As an example of combining dependent P-values generated from real intra-
correlated data, we compared Fisher’s and the Empirical Brown’s Methods on
associations between signaling pathways and FGFR using TCGA GBM gene
expression data. EGFR is frequently amplified, mutated and overexpressed in
GBM and is known to play an important functional role [Brennan et al., 2013].
It is therefore unsurprising that we observed many statistically significant associ-
ations between FGFR and the signaling pathways (Fig. 1c and SI4). However,
Fisher’s Method produced much lower P-values, especially for the pathways with
a high degree of intra-correlation, as quantified with the scale factor ¢ (Eq. 2).
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This is a clear indication that Fisher’s Method produces spuriously low P-values
when applied to correlated data. We also noted that Fisher’s Method produced
very similar sets of significant pathways when correlated against a variety of
genes other than FGFR (SI4). We interpret this as further evidence to suggest
that Fisher’s Method is highly sensitive to the internal correlation structure of
the data and detects significant associations in highly correlated sets of P-values
regardless of the actual association. As seen in Fig. 1c and SI4, the Empirical
Brown’s Method overcomes these biases.

4 Conclusion

On generated and real data, we show that the Empirical Brown’s Method over-
comes biases in Fisher’s Method with regards to the internal correlation struc-
ture of the data used to generate the P-values. We believe that our imple-
mentations and evaluation of the method will provide a valuable tool for the
bioinformatics community to combine P-values generated from statistically in-
terdependent data sets.

5 Funding

This project is supported by Award Number U24CA143835 from the National
Cancer Institute.
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6 Supplement SI1 Mathematical Explanation

Here we give a more detailed mathematical explanation of the Empirical Brown’s
Method. We begin by explaining Brown’s method [Brown, 1975] in more detail
largely following [Kost and McDermott, 2002]. Consider k normally distributed
random variables with means 0 and covariance matrix X,

X = N(0,%), (5)

where N(0, ) is an k-dimensional normal distribution. P-values can be derived
from X with with a cumulative distribution function,

P, =1-9(X,), (6)

where P; denotes the i*" P-value, X; denotes the i*" component of X, and ®
denotes the cumulative distribution function. Note that this follows because the
marginals of a multivariate normal distribution do not depend on the covariance.
We now consider the distribution of

k
U =>" —2logP, (7)

i=1

which we assume is proportional to a x? distribution with 2f degrees of freedom,
U~ cx%f. Brown showed that

_ B[P
= var|[¥] ®)
and ok
var
Assuming a x? distribution, E[¥] = 2k. Furthermore, define a new random

variable W; = —2log P, = —2log(1 — ®(X;)). Brown showed that,

var[U] = 4k + 2 Z cov(W;, Wy). (10)

1<j

This expression can be evaluated for each ¢ and j via numerical integration,
where
COV(VVi7 WJ) = E[Wle] - 4, (11)

E[WILW]] = / / w,»wjfwhwj (wi,wj)dwidwj, (12)
0 0

and fyw, w, denotes the joint distribution between W; and W;. Computation-
ally, the challenge occurs when a large number of P-values are being combined
- the number of numerical integrations scales with the square of the number of
P-values being combined. Although this problem is parallelizable, it can still be
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computationally cumbersome for large data sets. Initial tests with numerical in-
tegration (not shown) in Python revealed that combining roughly 2000 P-values
would take days with a single workstation, the bottleneck being these pairwise
integration steps. Instead, we took an empirical approach and attempted to
approximate cov(W;, W;) directly from the data. With this approach the com-
putation only took hours on a workstation. Let &; be a sample drawn from X;.
We can approximate a sample, w;, from W; by transforming the raw data using
the empirical right-sided cumulative distribution function F,

u_)’i = —210g F(J’_fl) (13)

The covariance between two variables W; and W; can then estimated from the
raw data using the well known definition of covariance,

cov(Wi, Wj) ~ E[(@; — E[w])(&; — E[w;])] (14)

Due to the efficiency of many existing implementations for calculating the em-
pirical cumulative distribution and the covariance, this method is practical for
use on large data sets.

7 Supplement SI2 Null Distribution Generation
and Convergence as a Function of Sample Size

To generate a single combined P-value, we combined k& = 20 P values computed
between k normally distributed random variables and k-dimensional vectors
sampled (n = 200) from a dependent k dimensional normal distribution with
covariance matrix given by

1 a a
a 1 DY a

=1 . . A (15)
a a --- 1

We computed 100,000 P-values for each value of a we considered; these data are
shown in Fig. 1la in the main text.

Additionally, we found that given n > 100 samples per data vector Z;,
our implementation produces relatively little variation for the values of f and
c. These tests were done by generating sample data from numerous example
covariance matrices with known actual degrees of freedom (Supp. Fig. 1).

8 Supplement SI3 TCGA Data Analysis

8.1 Pathway Definitions

The NCI Nature Curated Pathway Interaction Database (PID) database con-
sists of an ontology of pathways. In order to avoid additional unnecessary mul-
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Brown's Method Convergence with Generated Data (25 trials per n)
Sigma =[[1.1,1.0,0], (L 1, 1, 0,0L 01, 1,1, 0,01, [0.0,0,1,1L [0, 0. 0, 1, 1]]
T T T T

® o scale factor
® o degrees of freedom

10° 10* 102 103 10* 10°
n: number of data points

Supp. Fig. 1: Convergence of Empirical Brown’s Method as a function of the
sample size n when calculating ¢ and f. A 5 by 5 covariance matrix with
2 degrees of freedom (VU ~ x3) was used in this example. Error bars show
standard deviation across 25 different trials.
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P Value Dependence on ¢
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Supp. Fig. 2: Each dot represents the average -log P-value for a single path-
way. Notice the strong dependence on ¢ when combining P-values with Fisher’s
method. This dependence nearly vanishes when using our method.

tiple testing, we restricted our set of pathways to leaf pathways in the pathway
ontology tree [Schaefer et al., 2009].

8.2 Pathway Associations

In order to evaluate the Empirical Brown and Fisher’s Methods on TCGA
data, we first computed a pairwise correlation matrix between pairs of genes
based on their expression levels in glioblastoma samples (GBM) from TCGA
[Brennan et al., 2013]. We restricted ourselves to genes in PID. We precom-
puted the entire covariance matrix between transformed GEXP data for in-
creased efficiency. We then combined P-values on the pathway level. Let Cp
be the set of pairwise correlation P-values between gy and the genes in each
pathway, Cp = {pcor(90,9:); 9i € P,g0 # ¢i}, where P is the set of genes in a
pathway and pcor denotes the P-value from the Pearson correlation computed
via a two-tailed test of the t-distribution. The P-values in each set C'p were com-
bined using Fisher’s method and the Empirical Brown’s method. This analysis
was done for each of the genes in PID. In the main text we have only reported
on pathway associations with EGFR.
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8.3 Note on Transforming Combined P-values to Q-values

A common way to correct for multiple testing other than the Bonferroni correc-
tion is by transforming the P-value to a Q-value (or false discovery rate). The
two most common approaches to compute Q-values are Benjamini-Hochberg’s
approach [Benjamini and Hochberg, 1995] and Storey’s approach [Storey, 2002].
Importantly, we noted that Storey’s approach to compute Q-values (as imple-
mented in the R and Python packages [Storey et al., 2015]) is not directly ap-
propriate for significance testing in this case due to complications in estimating
the null hypothesis distribution. Specifically, the implementation of Storey’s
approach assumes a particular distribution on the P-values and estimates pa-
rameters to fit this distribution. The P-value distributions encountered in the
gene expression data were problematic in terms of estimating these parameters,
leading to nonsensical results. Benjamini-Hochberg’s non-parametric approach
does not suffer from this limitation.

EQ 1000 1500 2000

358 3

Empirical Brown's Method

o0 1500 2000
GEXP Features

Supp. Fig. 3: Each red dot represents a significant GEXP feature pathway
association. Pathways are sorted by their intra-pathway correlation, quantified
by ¢ from low to high

9 Supplement SI4 P-Value Dependence on c

Fisher’s method shows a strong bias towards more intra-correlated pathways.
The relative degrees of freedom between Fisher’s and the Empirical Brown’s
Method provides a good measure of the correlation within a pathway, because
this value quantifies the change percentage of degrees of freedom (in terms
of variables), which are statistically redundant due to correlations with other
variables. We can see this effect in two ways. First, Supp. Fig. 2 shows
that the average -log P-value in Fisher’s method across all genes is strongly
correlated with c¢. The Empirical Brown’s Method, on the other hand, does not

10
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show this statistical dependence. Second, the top occurring significant pathways
are frequently shared across genes. Supp. Fig. 3 shows genes (x-axis) and
pathways (y-axis) with significant associations in red. The pathways are sorted
by ¢ from low to high. Notice that pathways with higher values of ¢ tend to be
more red when using Fisher’s Method. Our method diminishes this bias.

10 Supplement SI5 Software Implementation

Our implementation of the Empirical Brown’s Method in Python uses the scipy,
numpy, and statsmodels libraries. This implementation is efficient and is easily
applicable to large scale genomics data. Let there be k data vectors denoted
XX i each with n samples. Our function takes for input a matrix of these
data vectors and a vector of k P-values, denoted P;...P, to be combined. The
works as follows:

e Transform the data to its normal coordinates - mean of 0 and unit variance
e Calculate the empirical cumulative distribution function (F) over the data

using the statsmodel package.

e Approximate the -2 log cumulative distribution vector, for each data vec-
tor; w; = —2log F(Z;).

e For each pair of indices (4, j) calculate the covariance cov(;, ;).
e Sum covariances to calculate var[¥], f and c.

e Calculate the combined statistic x = —2 Zle log P;.

e Compute a meta P-value using Brown’s re-scaled distribution: P,y 1in0q =
1—®(x3 s(z/c)), where ® denotes the cumulative distribution function.

Additionally, for flexibility of use each component of our code can be called
individually. This allows for the covariance matrix to be pre-computed and
Brown’s method to be applied on arbitrary subsets of the data (which is how
we carried out our TCGA analysis).

An efficient implementation is also available in R and Matlab. See https:
//github.com/Ilyalab/CombiningDependentPvaluesUsingEBM.
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