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Abstract

Motivation: The alignment of sequencing reads to
a transcriptome is a common and important step in
many RNA-seq analysis tasks. When aligning RNA-
seq reads directly to a transcriptome (as is common
in the de novo setting or when a trusted reference
annotation is available), care must be taken to re-
port the potentially large number of multi-mapping
locations per read. This can pose a substantial com-
putational burden for existing aligners, and can con-
siderably slow downstream analysis.

Results: We introduce a novel algorithm, quasi-
mapping, for mapping sequencing reads to a tran-
scriptome. By attempting only to report the po-
tential loci of origin of a sequencing read, and not
the base-to-base alignment by which it derives from
the reference, RapMap— the tool implementing this
quasi-mapping algorithm — is capable of mapping
sequencing reads to a target transcriptome substan-
tially faster than existing alignment tools. The quasi-
mapping algorithm itself uses several efficient data
structures and takes advantage of the special struc-
ture of shared sequence prevalent in transcriptomes
to rapidly provide highly-accurate mapping informa-
tion.

Availability: RapMap is implemented in C++11

and is available as open-source software, under GPL
v3, at https://github.com/COMBINE- lab/RapMap.

1 Introduction

The bioinformatics community has put tremendous
effort into building a wide array of different tools to

solve the read-alignment problem efficiently. These
tools use many different strategies to quickly find
potential alignment locations for reads; for example,
Bowtie (Langmead et al., 2009), Bowtie2 (Langmead
and Salzberg, 2012), BWA (Li and Durbin, 2009) and
BWA-mem (Li, 2013) use variants of the FM-index,
while tools like the Subread aligner (Liao et al., 2013),
Maq (Li et al., 2008) and MrsFast (Hach et al., 2010)
use k-mer-based indices to help align reads efficiently.
Because read alignment is such a ubiquitous task,
the goal of such tools is often to provide accurate re-
sults as quickly as possible. Indeed, recent alignment
tools like STAR (Dobin et al., 2013) demonstrate that
rapid alignment of sequenced reads is possible, and
tools like HISAT (Kim et al., 2015) demonstrate that
this speed can be achieved with only moderate mem-
ory usage. When reads are aligned to a collection of
reference sequences that share a substantial amount
of sub-sequence (near or exact repeats), a single read
can have many potential alignments, and consider-
ing all such alignment can be crucial for downstream
analysis (e.g. considering all alignment locations for a
read being mapped against a transcriptome, or when
attempting to cluster de novo assembled contigs by
shared multi-mapping reads (Davidson and Oshlack,
2014)). However, reporting multiple potential align-
ments for a single read is a difficult task, and tends to
substantially slow down even very efficient alignment
tools.

Yet, in many cases, all of the information provided
by the alignments is not necessary. For example, in
the transcript analysis tasks mentioned above, sim-
ply the knowledge of the transcripts and positions
to which a given read maps well is sufficient to an-
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swer the questions being posed. In support of such
“analysis-oriented” computation, we propose a novel
algorithm, called quasi-mapping, implemented in the
tool RapMap, to solve the problem of mapping se-
quenced reads to a target transcriptome. This al-
gorithm is considerably faster than state-of-the-art
aligners, and achieves its impressive speed by exploit-
ing the structure of the transcriptome (without re-
quiring an annotation), and eliding the computation
of full-alignments (e.g. CIGAR strings). Further, our
algorithm produces mappings that meet or exceed
the accuracy of existing popular aligners under dif-
ferent metrics of accuracy. Finally, we demonstrate
how the mappings produced by RapMap can be used
in the downstream analysis task of transcript-level
quantification from RNA-seq data, by modifying the
Sailfish (Patro et al., 2014) tool to take advantage of
quasi-mappings, as opposed to raw k-mer counts, for
transcript quantification.

2 Methods

The quasi-mapping algorithm, implemented in the
tool RapMap, is a new mapping technique to allow
the rapid and accurate mapping of “short” fragments
to a target transcriptome. The quasi-mapping algo-
rithm exploits a combination of data structures — a
hash table, suffix array (SA), and efficient rank data
structure. It takes into account the special struc-
ture present in transcriptomic references, as exposed
by the suffix array, to enable ultrafast and accurate
determination of the likely loci of origin of a se-
quencing read. Rather than a standard alignment,
quasi-mapping produces what we refer to as read
mapping information. In particular, it provides, for
each query (fragment), the reference sequences (tran-
scripts), strand and position from which the query
may have likely originated. In many cases, this map-
ping information is sufficient for downstream analy-
sis. For example, tasks like transcript quantification,
clustering of de novo assembled transcripts, and fil-
tering of potential target transcripts can be accom-
plished with the mapping information provided by
the quasi-mapping procedure. However, this method
does not compute the base-to-base alignment be-
tween the query and reference. Thus, such map-
pings may not be appropriate in every situation in
which alignments are currently used (e.g. variant de-
tection).

Quasi-mapping Quasi-mapping makes use of two
main data structures, the generalized suffix array
SA[T ] (Manber and Myers, 1993) of the transcriptome
T , and a hash table h mapping each k-mer occurring
in T to its suffix array interval (by default k = 31).
Additionally, we must maintain the original text T
upon which the suffix array was constructed, and the
name and length of each of the original transcript
sequences. T consists of a string in which all tran-
script sequences are joined together with a special
separator character. Rather than designating a sepa-
rate terminator $i for each reference sequence in the
transcriptome, we make use of a single separator $,
and maintain an auxiliary rank data structure which
allows us to map from an arbitrary position in the
concatenated text to the index of the reference tran-
script in which it appears. We use the rank9b algo-
rithm and data structure of Vigna (2008) to perform
the rank operation quickly.

Quasi-mapping determines the mapping locations
for a query read r through repeated application of (1)
determining the next hashable k-mer that starts past
the current query position, (2) computing the maxi-
mum mappable prefix (MMP) of the query beginning
with this k-mer, and then (3) determining the next
informative position (NIP) by performing a longest
common prefix (LCP) query on two specifically cho-
sen suffixes in the suffix array.

The algorithm begins by hashing the k-mers of r,
from left-to-right (a symmetric procedure can be used
for mapping the reverse-complement of a read), un-
til some k-mer ki — the k-mer starting at position
i within the read — is present in h and maps to a
valid suffix array interval. We denote this interval as
I (ki) = [b, e). Because of the lexicographic order of
the suffixes in the suffix array, we immediately know
that this k-mer is a prefix of all of the suffixes ap-
pearing in the given interval. However, it may be
possible to extend this match to some longer sub-
string of the read beginning with ki. In fact, the
longest substring of the read that appears in the ref-
erence and is prefixed by ki is exactly the maximum
mappable prefix (MMP) (Dobin et al., 2013) of the
suffix of the read beginning with ki. We call this
maximum mappable prefix MMPi, and note that it
can be found using a slight variant of the standard
suffix array binary search (Manber and Myers, 1993)
algorithm. For speed and simplicity, we implement
the “simple accelerant” binary search variant of Gus-
field (1997). Since we know that any substring that
begins with ki must reside in the interval [b, e), we
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Figure 1: The transcriptome (consisting of transcripts t1, . . . , t6) is converted into a $-separated string, T ,
upon which a suffix array, SA[T ], and a hash table, h, are constructed. The mapping operation begins with
a k-mer (here, k = 3) mapping to an interval [b, e) in SA[T ]. Given this interval and the read, MMPi and
NIP(MMPi) are calculated as described in section 2. The search for the next hashable k-mer begins k bases
before NIP(MMPi).

can restrict the MMPi search to this region of the
suffix array, which is typically very small.

After determining the length of MMPi within the
read, one could begin the search for the next map-
pable suffix array interval at the position following
this MMP. However, though the current substring
of the read will differ from all of the reference se-
quence suffixes at the base following MMPi, the suf-
fixes occurring at the lower and upper bounds of the
suffix array interval corresponding to MMPi may
not differ from each other (See Figure 1). That
is, if I (MMPi) = [b′, e′) is the suffix array inter-
val corresponding to MMPi, it is possible that
|LCP (T [SA [b′]] , T [SA [e′ − 1]]))| > |MMPi|. In this
case, it is most likely that the read and the reference
sequence bases following MMPi disagree as the result
of a sequencing error, not because the (long) MMP
discovered between the read and reference is a spuri-
ous match. Thus, beginning the search for the next
MMP at the subsequent base in the read may not be
productive, since the matches for this substring of the
query may not be informative — that is, such a search
will likely return the same (relative) positions and set
of transcripts. To avoid querying for such substrings,

we define and make use of the notion of the next in-
formative position (NIP). For a maximum mappable
prefix MMPi, with I (MMPi) = [b′, e′), we define
NIP (MMPi) = |LCP (T [SA [b′]] , T [SA [e′ − 1]]))| + 1.
Intuitively, the next informative position of prefix
MMPi is designed to return the next position in the
query string where a suffix array search is likely to
yield a set of transcripts different from those con-
tained in I (MMPi). To compute the longest common
prefix between two suffixes when searching for the
NIP, we use the “direct min” algorithm of Ilie et al.
(2010). We found this to be the fastest approach.
Additionally, it doesn’t require the maintainence of
an LCP array or other auxiliary tables aside from
the standard suffix array.

Given the definitions we have explained above, we
can summarize the quasi-mapping procedure as fol-
lows (an illustration of the mapping procedure is pro-
vided in Figure 1). First, a read is scanned from
left to right (a symmetric procedure can be used for
mapping the reverse-complement of a read) until a
k-mer ki is encountered that appears in h. A lookup
in h returns the suffix array interval I (ki) corre-
sponding to the substring of the read consisting of
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this k-mer. Then, the procedure described above is
used to compute MMPi and ` = NIP (MMPi). The
search procedure then advances to position i+ `− k
in the read, and again begins hashing the k-mers it
encounters. This process of determining the MMP
and NIP of each processed k-mer and advancing to
the next informative position in the read continues
until the next informative position exceeds position
lr − k where lr is the length of the read r. The
result of applying this procedure to a read is a set
S = {(q0, o0, [b0, e0)) , (q1, o1, [b1, e1)) , . . . } of query
positions, MMP orientations, and suffix array in-
tervals, with one such triplet corresponding to each
MMP.

The final set of mappings is determined by a con-
sensus mechanism. Specifically, the algorithm reports
the set of transcripts that appear in every suffix ar-
ray interval appearing in S. These transcripts, and
the corresponding strand and location on each, are
reported as quasi-mappings of this read. These map-
pings are reported in a samtools-compatible format
in which the relevant information (e.g. target id,
position, strand, pair status) is computed from the
mapping. In the next section, we analyze how the
quasi-mapping algorithm described above compares
to other aligners in terms of speed and mapping ac-
curacy.

3 Mapping speed and accuracy

To test the practical performance of quasi-mapping,
we compared RapMap against a number of exist-
ing tools, and analyzed both the speed and accu-
racy of these tools on synthetic and experimental
data. Benchmarking was performed against the pop-
ular aligners Bowtie2 (Langmead and Salzberg, 2012)
and STAR (Dobin et al., 2013) and the recently-
introduced pseudo-alignment procedure used in the
quantification tool Kallisto (Bray et al., 2015). All
experiments were performed on a 64-bit linux server
with 256GB of RAM and 4 x 6-core Intel Xeon E5-
4607 v2 CPUs (with hyper-threading) running at
2.60GHz. Wall-clock time was recorded using the
time command.

In our testing we find that Bowtie 2 generally per-
forms well in terms of reporting the true read origin
among its set of multi-mapping locations. However,
it takes considerably longer and tends to return a
larger set of multi-mapping locations than the other
methods. In comparison to Bowtie 2, STAR is sub-
stantially faster but somewhat less accurate. RapMap
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Figure 2: The time taken by Bowtie2, STAR and
RapMap to process the synthetic data using varying
numbers of threads. RapMap processes the data sub-
stantially faster than the other tools, while providing
results of comparable or better accuracy.

achieves accuracy comparable or superior to Bowtie

2, while simultaneously being much faster than even
STAR. Though, for reasons stated below, we don’t
benchmark the runtime of pseudo-alignment directly,
we find that quasi-mapping and pseudo-alignment are
similar in terms of speed. In fact, for both of these
methods, simply writing the output to disk tends to
dominate the time required for large input files with
significant multi-mapping. This is due, in part, to the
verbosity of the standard SAM format in which results
are reported, and suggests that it may be worth de-
veloping a more efficient and succinct output format
for mapping information.

3.1 Speed and accuracy on synthetic
data

To test the accuracy of different mapping and align-
ment tools in a scenario where we know the true
origin of each read, we generated data using the
Flux Simulator (Griebel et al., 2012). This synthetic
dataset was generated for the human transcriptome
from an annotation taken from the ENSEMBL (Cun-
ningham et al., 2015) database consisting of 86, 090
transcripts corresponding to protein-coding genes.
The dataset consists of ∼ 48 million 76 base pair,
paired-end reads. The detailed parameters used for
the Flux Simulator can be found in Appendix A.2.

When benchmarking these methods, reads were
aligned directly to the transcriptome, rather than to
the genome. This was done because we wish to bench-
mark the tools in a manner that is applicable when
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the reference genome may not even be known (e.g. in
de novo transcriptomics). The parameters of STAR

(see Appendix A.1) were adjusted appropriately for
this purpose (e.g. to dis-allow introns etc.). Similarly,
Bowtie 2 was also used to align reads directly to the
target transcriptome; the paramters for Bowtie 2 are
given in Appendix A.1.

3.1.1 Mapping speed

We wish to measure, as directly as possible, just the
time required by the mapping algorithms of the differ-
ent tools. Thus, when benchmarking the runtime of
different methods, we do not save the resulting align-
ments to disk. Further, to mitigate the effect of “out-
liers” (a small number of reads which map to a very
large number of low-complexity reference positions),
we bound the number of different transcripts to which
a read can map to be 200. Finally, we choose not to
include Kallisto in the timing benchmarks for three
reasons. First, unlike all other methods tested here,
it is not multi-threaded. Second, it does not provide a
stand alone pseudo-aligner, and so the recorded time
would also include the time required for transcript-
level abundance estimation. Finally, we cannot ac-
count for “outlier” reads since it does not provide an
option to limit the number of multi-mapping loca-
tions.

As Figure 2 illustrates, RapMap out-performs both
Bowtie 2 and STAR in terms of speed by a substan-
tial margin, and finishes mapping the reads with a
single thread faster than STAR and Bowtie 2 with 10
threads. We consider varying the number of threads
used by RapMap and STAR to demonstrate how per-
formance scales with the number of threads provided.
On this data set, RapMap quickly approaches peak
performance after using only a few threads. We be-
lieve that this is not due to limits on the scalability
of RapMap, but rather because the process is so quick
that, for a dataset of this size, simply reading the in-
dex constitutes a large (and growing) fraction of the
total runtime (dotted line) as the number of threads
is increased. Thus, we believe that the difference in
runtime between RapMap and the other methods may
be even larger for datasets consisting of a very large
number of reads, where the disk can reach peak ef-
ficiency and the multi-threaded input parser (we use
the parser from the Jellyfish (Marçais and Kingsford,
2011) library) can provide input to RapMap quickly
enough to make use of a larger number of threads.
Since running Bowtie 2 with each potential number
of threads on this dataset is very time-consuming, we

only consider Bowtie 2’s runtime using 10 threads.

3.1.2 Mapping accuracy

Since the Flux Simulator records the true origin of
each read, we make use of this information as ground
truth data to assess the accuracy of different meth-
ods. However, since a single read may have multi-
ple, equally-good alignments with respect to the tran-
scriptome, care must be taken in defining accuracy-
related terms appropriately. A read is said to be cor-
rectly mapped by a method (a true positve) if the set
of transcripts reported by the mapper for this read
contains the true transcript. A read is said to be in-
correctly mapped by a method (a false positive) if it
is mapped to some set of 1 or more transcripts, none
of which are the true transcript of origin. Finally, a
read is considered to be incorrectly un-mapped by a
method (a false negative) if the method reports no
mappings (since each simulated read actually comes
from some reference transcript). Given these defini-
tions, we report precision, recall, F1-Score and false
discovery rate (FDR) in Table 1 using the standard
definitions of these metrics. Additionally, we report
the average number of “hits-per-read” (hpr) returned
by each of the methods. Ideally, we want a method
to return the smallest set of mappings that contains
the true read origin. However, under the chosen def-
inition of a true positive mapping, the number of re-
ported mappings is not taken into account, and a
result is considered a true positive so long as it con-
tains the actual transcript of origin. The hpr metric
allows one to assess how many extra mappings, on
average, are reported by a particular method.

As expected, Bowtie 2— perhaps the most com-
mon method of directly mapping reads to transcript-
moes — performs very well in terms of precision
and recall. However, we find that RapMap yields
very similar (in fact, slightly better) precision and
recall. STAR and Kallisto obtain similar precision
to Bowtie 2 and RapMap, but have lower recall. STAR
and Kallisto perform similarly in general, though
Kallisto achieves a lower (better) FDR than STAR.
Taking the F1-score as a summary statistic, we ob-
serve that all methods perform reasonably well, and
that, in general, alignment-based methods do not
seem to be more accurate than mapping-based meth-
ods. We also observe that RapMap yields very accu-
rate mapping results that match or exceed those of
Bowtie 2.
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Table 1: Accuracy of aligners/mappers under different metrics

Bowtie 2 Kallisto RapMap STAR

align 47579567 44774502 47677356 44711604
recall 97.41 91.53 97.62 91.35
precision 98.31 97.67 98.35 97.02
F1-score 97.86 94.50 97.98 94.10
FDR 1.69 2.33 1.65 2.98
hits per read 5.98 5.30 4.30 3.80

3.2 Speed and concordance on exper-
imental data

We also explore the concordance of quasi-mapping
with different mapping and alignment approaches us-
ing experimental data from the study of Cho et al.
(2014). These sequencing reads are derived from hu-
man lymphoblastoid cell line GM12878 (NCBI GEO
accession SRR1293902). The sample consists of ∼ 26
million 75 base-pair, paired-end reads sequenced on
an Illumina HiSeq.

Since, we do not know the true origin of each read,
we have instead examined the agreement between the
different tools (see Figure 3). Intuitively, two tools
agree on the mapping locations of a read if they align
/ map this read to the same subset of the reference
transcriptome (i.e. the same set of transcripts). More
formally, we define the elements of our universe, U ,
to be sets consisting of a read identifier and the set of
transcripts returned by a particular tool. For exam-
ple, if, for read ri, tool A returns alignments to tran-
scripts {t1, t2, t3} then eAi = {ri, t1, t2, t3} ∈ U . Sim-
ilarly, if tool B maps read ri to transcripts {t2, t3, t4}
then eBi = {ri, t2, t3, t4} ∈ U . Given a universe U
thusly-defined, we can employ the normal notions of
set intersection and difference to explore how different
subsets of methods agree on the mapping locations of
the sequenced reads. Using these definitions, we have
computed the sizes of the intersections of the results
of all tools Figure 3.

We have defined the intersections as is commonly
done when creating Venn plots (though we have cho-
sen not to to use a proportional Venn plot here since
it is, in general, not possible with > 3 sets). For
example, the set B corresponds only to those ele-
ments returned by Bowtie 2 that do not appear in
some other intersection (i.e. that are not in the set
returned by any other method). Thus, the bars cor-
responding to each individual method represent the
isolated elements where a method returns mapping
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Figure 3: Read agreement between Bowtie 2, STAR,
Kallisto and RapMap

results that do not agree with any other method.

Under this measure of agreement, quasi-mapping
and Kallisto appear to agree on the exact same
transcript assignments for the largest number of
reads. Further, quasi-mapping and Kallisto have
the largest pairwise agreements with the aligners
(STAR and Bowtie 2) — that is, the traditional align-
ers exactly agree more often with these tools than
with each other. It is important to note the main
reason that we see (seemingly) low agreement be-
tween Bowtie 2 and other methods is because the
transcript alignment sets reported by Bowtie 2 are
generally larger (i.e. contain more transcripts) than
those returned by other methods, and thus fail to
qualify under our notion of agreement. This occurs,
partially, because RapMap and Kallisto actually only
attempt to return multi-mapping locations that are
equivalently “best” (STAR seems to do this fairly of-
ten as well). However, unlike Bowtie 1, which pro-
vided an option to return only the best “stratum” of
alignments, there is no way to require that Bowtie

2 return only the best multi-mapping locations for a
read. We observe similar behavior for Bowtie 2 (i.e.
that it returns a larger set of mapping locations) in
the synthetic tests as well, where the average number
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of hits per read is higher than for the other meth-
ods (see Table 1). In terms of runtime, RapMap, STAR
and Bowtie 2 take 3, 26, and 1020 minutes respec-
tively to align the reads from this experiment using
4 threads. We also observed a similar trend in terms
of the average number of hits per read here as we did
in the synthetic dataset. The average number of hits
per read on this data were 4.56, 4.68, 4.21, 7.97 for
RapMap, Kallisto, STAR and Bowtie 2 respectively.

4 Application of quasi mapping
to RNA-seq quantification

While mapping cannot act as a stand-in for full align-
ments in all contexts, one problem where similar ap-
proaches have already proven very useful is transcript
abundance estimation. Recent work (Patro et al.,
2014; Zhang and Wang, 2014; Bray et al., 2015; Pa-
tro et al., 2015) has demonstrated that full align-
ments are not necessary to obtain accurate quan-
tification results. Rather, simply knowing the tran-
scripts and positions where reads may have reason-
ably originated is sufficient to produce accurate esti-
mates of transcript abundance. Thus, we have chosen
to apply quasi-mapping to transcript-level quantifi-
cation as an example application, and have imple-
mented our modifications as an update to the Sail-
fish (Patro et al., 2014) software, which we refer to
as quasi-Sailfish. Here, we compare this updated
method to the transcript-level quantification tools
RSEM (Li et al., 2010), Tigar2 (Nariai et al., 2014)
and Kallisto (Bray et al., 2015), the last of which
is based on the pseudo-alignment concept mentioned
above.

4.1 Transcript quantification

In an RNA-seq experiment, the underlying transcrip-
tome consists of M transcripts and their respective
counts. The transcriptome can be represented as a
set X = {(t1, . . . , tM ), (c1, . . . , cM )}, where ti denotes
the nucleotide sequence of transcript i and ci denotes
the number of copies of ti in the sample. The length
of transcript ti is denoted by li. Under ideal, uniform,
sampling conditions (i.e. without considering various
types of experimental bias), the probability of draw-
ing a fragment from any position of transcript ti is
proportional to its nucleotide fraction (Li et al., 2010)

denoted by

ηi =
cili∑M
j=1 cj lj

. (1)

If we normalize the ηi for each transcript by its
length li, we obtain a measure of the relative abun-
dance of each transcript called the transcript frac-
tion (Li et al., 2010), which is given by

τi =

ηi
li∑
j=1

ηi
li

. (2)

When performing transcript-level quantification, η
and τ are generally the quantities we are interested
in inferring. Since they are directly related, knowing
one allows us to directly compute the other. Below,
we describe our approach to approximating the es-
timated number of reads originating from each tran-
script, from which we estimate τ and the immediately
related metric of transcripts per million (TPM).

4.2 Quasi-mapping-based Sailfish

Using the quasi-mapping procedure provided by
RapMap as a library, we have updated the Sailfish
(Patro et al., 2014) software to make use of quasi-
mapping, as opposed to individual k-mer counting,
for transcript-level quantification. In the updated
version of Sailfish, the index command builds the
quasi-index over the reference transcriptome as de-
scribed in Section 2. Given the index and a set of
sequenced reads, the quant command quasi-maps the
reads and uses the resulting mapping information to
estimate transcript abundances.

To reduce the memory usage and computational re-
quirements of the inference procedure, quasi-Sailfish
reduces the mapping information to a set of equiva-
lence classes over sequenced fragments. These equiv-
alence classes are similar to those used in Nicolae
et al. (2011), except that the position of each frag-
ment within a transcript is not considered when defin-
ing the equivalence relation. Specifically, any frag-
ments that map to exactly the same set of transcripts
are placed into the same equivalence class. Follow-
ing the notation of Patro et al. (2015), equivalence
classes are denoted as C = {C1, C2, . . . }, and the
count of fragments associated with equivalence class
Cj is given by dj . Associated with each equivalence
class Cj is an ordered collection of transcript identi-
fiers tj = (tj1, tj2, . . . ) which is simply the collection
of transcripts to which all equivalent fragments in this
class map. We call tj the label of class Cj .
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4.2.1 Inferring transcript abundances

The equivalence classes C and their associated counts
are used to estimate the number of fragments origi-
nating from each transcript. The estimated count
vector is denoted by α, and αi is the estimated num-
ber of reads originating from transcript ti. In quasi-
Sailfish, we use the variational Bayesian expectation
maximization (VBEM) algorithm to infer the param-
eters (the estimated number of reads originating from
each transcript) that maximize a variational objec-
tive. Specifically, we maximize a simplified version of
the variational objective of Nariai et al. (2013).

The VBEM update rule can be written as a simple
iterative update in terms of the equivalence classes,
their counts, and the prior (α0). The iterative update
rule for the VBEM is:

αu+1
i = α0 +

∑
Cj∈C

dj

(
eγ

u
i 1
l̂i∑

tk∈tj e
γu
k

1
l̂k

)
, (3)

where

γui = Ψ(α0 + αui )−Ψ(
∑
k

α0 + αuk) (4)

and Ψ(·) is the digamma function. Here, l̂i is the ef-
fective length of transcript ti computed as in Li et al.
(2010). To determine the final estimated counts —
α — Equation (3) is iterated until convergence. The
estimated counts are considered to have converged
when no transcript has estimated counts differing by
more than one percent between successive iterations.

Given α, we compute the TPM for transcript i as

TPMi = 106

αi

l̂i∑
j
αj

l̂j

. (5)

Sailfish outputs, for each transcript, its name,
length, TPM and the estimated number of reads orig-
inating from it.

4.3 Performance comparison with
other quantification tools

We compared the accuracy of quasi-Sailfish (q-
Sailfish in Table 2) to the transcript-level quantifi-
cation tools RSEM (Li et al., 2010), Tigar 2 (Nar-
iai et al., 2014), and Kallisto (Bray et al., 2015)
using 6 different accuracy metrics and data from
two different simulation pipelines. One of the sim-
ulated datasets was generated with the Flux Simu-
lator (Griebel et al., 2012), and is the same dataset

used in Section 3 to assess mapping accuracy and
performance on synthetic data. The other dataset
was generated using the RSEM-sim simulator via the
same methodology adopted by Bray et al. (2015).
That is, RSEM was run on sample NA12716 7 of the
Geuvadis RNA-seq data (Lappalainen et al., 2013)
to learn model parameters and estimate true expres-
sion. The learned model was then used to generate
the simulated dataset, which consists of 30 million
75 bp paired-end reads.

We measure the accuracy of each method based on
the estimated versus true number of reads originating
from each transcript, and we consider 6 different met-
rics of accuracy; proportionality correlation (Lovell
et al., 2015), Spearman correlation, the true positive
error fraction (TPEF), the true positive median er-
ror (TPME), the mean absolute relative difference
(MARD) and the weighted mean absolute relative
difference (wMARD). We define the latter four met-
rics below, letting xi denote the true number of reads
originating from transcript i and yi denote the esti-
mated number of reads.

The relative error for transcript i (REi) is given by

REi =
xi − yi
xi

. (6)

The error indicator for transcript i (EIi) is given
by

EIi =

{
1 if |REi| > 0.1

0 otherwise
, (7)

and it is equal to 1 if the estimated count for this
truly expressed transcript (it is undefined, as is REi,
when xi = 0) differs from the true count by more than
10%. Given Equations (6) and (7), the aggregate true
positive error fraction (TPEF) is defined as

TPEF =
1

|X+|
∑
i∈X+

EIi. (8)

Here, X+ is the set of “truly expressed” transcripts
(those having at least 1 read originating from them in
the ground truth). Similarly, the true positive median
error is define as

TPME = median ({REi}i∈X+) . (9)

Finally, the absolute relative difference for tran-
script i (ARDi) is defined as

ARDi =

{
0 if xi + yi = 0
|xi−yi|

0.5(xi+yi)
otherwise

. (10)

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2015. ; https://doi.org/10.1101/029652doi: bioRxiv preprint 

https://doi.org/10.1101/029652
http://creativecommons.org/licenses/by-nc/4.0/


Table 2: Performance evaluation of different tools along with quasi enabled sailfish (q-Sailfish) with other
tools on synthetic data generated by Flux simulator and RSEM simulator

Flux simulation RSEM-sim simulation

Kallisto RSEM q-Sailfish Tigar 2 Kallisto RSEM q-Sailfish Tigar 2

Proportionality corr. 0.74 0.78 0.75 0.77 0.91 0.93 0.92 0.93
Spearman corr. 0.69 0.73 0.71 0.72 0.91 0.93 0.92 0.93
TPEF 0.77 0.96 0.61 0.59 0.53 0.49 0.52 0.50
TPME -0.24 -0.37 -0.10 -0.09 -0.00 -0.01 0.00 0.00
MARD 0.36 0.29 0.31 0.26 0.29 0.25 0.26 0.23
wMARD 4.68 5.23 4.47 4.35 1.00 0.88 1.02 0.94

Consequently, the mean absolute relative difference
(MARD) is defined as

MARD =
1

M

∑
i

ARDi (11)

and the weighted mean absolute relative difference
(wMARD) is defined as

wMARD =
∑

i∈ARD+

log (max (xi, yi)) ARDi

M
, (12)

where, ARD+ = {i|ARDi > 0}, and M is the total
number of transcripts.

Each of these metrics captures a different notion
of accuracy, and so we consider many different met-
rics to provide a more comprehensive perspective on
quantifier accuracy. The first two metrics — pro-
portionality and Spearman correlation — provide a
global notion of how well the estimated and true
counts agree, but are fairly coarse measures. The
true positive error fraction (TPEF) assesses the frac-
tion of transcripts where the estimate is different from
the true count by more than some nominal fraction
(in this case 10%). Unlike TPEF, the TPME metric
takes into account the direction of the mis-estimate
(i.e. is the estimate an over or under-estimate of
the true value?). However, both of these metrics are
assessed only on truly-expressed transcripts, and so
provide no insight into the tendency of a quantifier
to produce false positive estimates.

The absolute relative difference (ARD) metric has
the benefit of being defined on all transcripts as op-
posed to only those which are truly expressed. The
possible value of the ARD ranges from 0 to 2, where
0 represents perfect agreement between the true and
predicted values and 2 is the maximum possible dif-
ference. Since the values of this metric are tightly

bounded, the aggregate metric, MARD, is not domi-
nated by high expression transcripts. Unfortunately,
for this reason, it has limited ability to capture the
magnitude of mis-estimation. Finally, the wMARD
metric attempts to account for the magnitude of mis-
estimation, while still trying to ensure that the mea-
sure is not completely dominated by high expression
transcripts. This is done by scaling each ARDi value
by the logarithm of the expression.

Table 2, shows the performance of all 4 quanti-
fiers, under all 6 metrics, on both datasets we con-
sider. While all methods seem to perform reason-
ably well, some patterns emerge. RSEM seems to
perform very well in terms of the correlation met-
rics, but less well in terms of the TPEF, TPME, and
wMARD metrics (specifically in the Flux Simulator-
generated dataset). This is likely a result of the
lower mapping rate obtained by RSEM’s very strict
Bowtie 2 parameters on this data. Tigar 2 generally
performs very well under a broad range of metrics,
and produces highly-accurate results. However, it is
by far the slowest method considered here, and re-
quires over a day to complete on the Flux simulator
data and almost 7 hours to complete on the RSEM-
sim data given 16 threads (and not including Bowtie

2 alignment time). Finally, both quasi-Sailfish and
Kallisto perform well in general under multiple dif-
ferent metrics, with quasi-Sailfish tending to produce
somewhat more accurate estimates. Both of these
methods also completed in a matter of minutes on
both datasets.

One additional pattern that emerges is that the
RSEM-sim data appears to present a much simpler
inference problem compared to the Flux Simulator
data. One reason for this may be that the RSEM-
sim data is very “clean” — yielding concordant map-
ping rates well over 99%, even under RSEM’s strict
Bowtie 2 mapping parameters. As such, all meth-
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ods tend to perform well on this data, and there is
comparatively little deviation between the methods
under most metrics.

5 Discussion & Conclusion

In this paper we have argued for the usefulness of our
novel algorithm, quasi-mapping, for mapping RNA-
seq reads. More generally, we suspect that read map-
ping, wherein sequencing reads are assigned to refer-
ence locations, but base-to-base alignments are not
computed, is a broadly useful tool. The speed of tra-
ditional aligners like Bowtie 2 and STAR is limited by
the fact that they must produce optimal alignments
for each location to which a read is reported to align.

One area in which recent work has shown that tra-
ditional alignments are not necessary to produce ac-
curate results is transcript-level abundance estima-
tion. To apply quasi-mapping in this context, we
have updated the Sailfish software to make use of
the quasi-mapping information produced by RapMap,
rather than direct k-mer counts, for purposes of
transcript-level abundance estimation. This update
improves both the speed and accuracy of Sailfish,
and also reduces the complexity of its codebase. We
demonstrate, on synthetic data generated via two dif-
ferent simulators, that the resulting quantification es-
timates have accuracy comparable to state-of-the-art
tools.

However, RapMap is a stand-alone mapping pro-
gram, and need not be used only for transcript quan-
tification. We expect that mapping will prove a use-
ful and rapid alternative to alignment for tasks rang-
ing from clustering de novo assembled transcripts (as
in Davidson and Oshlack (2014)) to filtering large
read sets (e.g. to check for contaminants or the pres-
ence or absence specific targets) to more mundane
tasks like quality control (e.g. ensuring that a suf-
ficient fraction of reads map to the reference from
which they are derived) and, potentially, even to re-
lated tasks like metagenomic and metatranscriptomic
classification and abundance estimation.

In addition to the quasi-mapping procedure de-
scribed in this paper, RapMap also exposes an in-
dependent, multi-threaded re-implementation of the
concept of pseudo-alignment, as originally introduced
by Bray et al. (2015) in the Kallisto software. We
hope that the availability of RapMap, and the efficient
and accurate mapping algorithms it exposes, will en-
courage the community to explore replacing align-
ment with mapping in the numerous scenarios where

traditional alignment information is un-necessary for
downstream analysis.
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A Appendix

A.1 Parameters for mapping and alignment tools

When Bowtie 2 was run to produce alignment results, it was run with default parameters with the exception
of -k 200 and --no-discordant. When timing Bowtie 2 the the number of threads (-p) was set in
accordance with what is mentioned in the relevant text, and the output was piped to /dev/null. When
Bowtie 2 was used to produce alignment results for quantification with RSEM, RSEM’s Bowtie 2 wrapper
(with its default parameters) was used to generate alignemnts.

When producing alignment results, STAR was run with the following parameters:
--outFilterMultimapNmax 200 --outFilterMismatchNmax 99999 --outFilterMismatchNoverLmax

0.2 --alignIntronMin 1000 --alignIntronMax 0 --limitOutSAMoneReadBytes 1000000

--outSAMmode SAMUnosrted. Additionally, when timing STAR, it was run with the number of threads
(--runThreadN) specified in the relevant text and with the --outSAMMode None flag.

To obtain the “pseudo-alignments” produces by Kallisto, it was run with the --pseudobam flag.
When producing mapping results, RapMap was run with the option -m 200 to limit multi-mapping reads

to 200 locations. Additionally, when timing RapMap, it was run with the number of threads (-t) specified in
the relevant text and with the -n flag to suppress output.

A.2 Flux Simulator parameters

The Flux simulator dataset was generated using the folloing parameters:

REF_FILE_NAME Human_Genome

GEN_DIR protein_coding.gtf

NB_MOLECULES 5000000

TSS_MEAN 50

POLYA_SCALE NaN

POLYA_SHAPE NaN

FRAG_SUBSTRATE RNA

FRAG_METHOD UR

FRAG_UR_ETA 350

RTRANSCRIPTION YES

RT_MOTIF default

GC_MEAN NaN

PCR_PROBABILITY 0.05

PCR_DISTRIBUTION default

FILTERING YES

READ_NUMBER 150000000

READ_LENGTH 76

PAIRED_END YES

ERR_FILE 76

FASTA YES
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