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ABSTRACT  
4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of 
interest (or “bait”) that can be important for gene regulation. However, analysis of 4C-Seq data is 
complicated by the many biases inherent to the technique. An important consideration when dealing with 
4C-Seq data is the differences in resolution of signal across the genome that result from differences in 
3D distance separation from the bait.  This leads to the highest signal in the region immediately 
surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-
Seq is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at 
which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to 
analyze data generated using different enzymes and to identify interactions across the entire genome. 
Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions 
located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length 
scales. In addition, some methods also fail in experiments where chromatin fragments are generated 
using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based 
analysis that identifies regions throughout the genome that interact with the 4C bait locus. In addition we 
incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected 
from different genotypes or experimental conditions. Adaptive window sizes are used to correct for 
differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several 
datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to 
reproducibly identify interaction domains at all genomic ranges with different resolution enzymes. 
 
 
Introduction 

Understanding the 3D organization of the genome and the intricacies of chromatin dynamics has 
been the focus of studies aimed at characterizing gene regulation in physiological processes and 
disease states [1, 2]. Microscopy based studies provided the first snapshots of nuclear organization, 
revealing that individual chromosomes occupy distinct territories with little intermingling between them [3, 
4]. The development of chromosome conformation capture (3C) transformed the field of nuclear 
organization enabling identification of chromatin interactions at the molecular level and at the same time 
opening the door to high-throughput, genome-wide techniques [5]. Hi-C, for example, captures all 
pairwise interactions in the nucleus and has revealed that chromosomes segregate into two distinct 
spatial compartments (A and B) depending on their transcriptional and epigenetic status [6]. These 
compartments are further subdivided into Topological Associated Domains (TADs), which are highly self-
interacting megabase scale structures [7-9]. To probe interactions between regulatory elements using Hi-
C requires a depth of sequencing that for many labs is cost-prohibitive [10]. 5C can circumvent these 
issues, but the interaction analysis is limited to the portion of the genome for which primers are designed 
[11]. Circular chromosome conformation capture combined with massive parallel sequencing (4C-Seq) is 
currently the best option for obtaining the highest resolution interaction signal for a particular region of 
interest. 

In 4C-Seq, an inverse PCR step allows for the identification of all possible genome wide 
interactions from a single viewpoint (the “bait”) and an assessment of the frequencies at which these 
occur. The sequencing coverage obtained by 4C near the bait region is extremely high and therefore 
enables precise characterization and quantification of regulatory interactions [12, 13]. By focusing on one 
locus at a time and thus only the interactions that this locus is engaged in, 4C can reproducibly identify 
long-range interactions on cis and trans chromosomes [14]. For example, 4C was used to demonstrate 
that genes controlled by common transcription factors tend to occupy the same nuclear space even 
when located on different chromosomes [15, 16]. 

There are many inherent biases specific to the 4C technique that has made detecting meaningful 
and reproducible interactions challenging. First, in accordance with the chromosome territory model, the 
majority of 4C signal is located on the bait chromosome. Secondly, coverage and signal strength are 
highest in the region around the bait and this decreases along the chromosome as a function of linear 
distance from the bait. Third, the restriction enzyme used for the first digest in the experiment is an 
important determinant of the resolution of the signal and the extent to which interactions can be detected. 
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Finally, as with most PCR-based techniques, 4C data includes PCR artifacts that manifest as a large 
accumulation of reads in particular locations.  

Current methods of analysis have addressed some of these issues, however there are still many 
hurdles to overcome. Specifically, existing methods do not properly account for the differences in 4C 
signal strength across the genome and therefore they are only able to either identify interactions in (i) 
regions where the signal is highest, i.e., near the bait or (ii) regions of low 4C signal (far-cis and trans). 
Thus there is no method that comprehensively identifies interactions across the genome. In addition, 
most methods were developed and tested using datasets generated with 6bp cutters and we show that 
they do not perform well with 4bp cutter generated libraries.  

The goal of 4C-ker is to address these weaknesses by: 1) identifying domains that interact most 
frequently with the bait across the genome in a given population of cells, and 2) detecting quantitative 
differences in 4C-Seq signal between conditions. Here we use a Hidden Markov Model to account for the 
polymer nature of chromatin, in which adjacent regions share a similar probability of interacting with the 
bait. In addition, to account for the variation in signal captured at different 3D distances we use a 
window-based approach. To determine the window size of analysis, we adapted a k-th nearest neighbor 
approach to account for the decrease in 4C-Seq coverage along cis and trans chromosomes. We used 
4C-ker to analyze numerous publically available 4C-Seq datasets as well as data generated in our own 
lab and compared this with other published methods. Our results demonstrate that 4C-ker can correct for 
multiple 4C-Seq biases and reproducibly detect genome wide interactions from the bait viewpoint. 
Importantly, 4C-ker is the only tool that can identify interactions with regions in near and far-cis as well as 
trans. 

 
 
Results 
 
Workflow of 4C-ker  

We developed 4C-ker to identify genome-wide interactions generated by 4C-Seq data and to 
quantitatively examine differences in interaction frequencies between conditions. The main components 
of the 4C-ker method are outlined in Fig 1. First, 4C-Seq reads are mapped to a reduced genome 
consisting of unique sequences adjacent to all primary restriction enzyme sites in the genome. Mapping 
to a reduced genome helps to remove spurious ligation events that do not result from crosslinking. The 
analysis of 4C-Seq is typically performed separately for cis and trans chromosomes because of the large 
differences in signal in these distinct locations. Additionally, we present the option for focusing the 
analysis on the region surrounding the bait, where 4C-Seq signal and resolution are highest. A window-
based approach is applied in order to take into account of differences in signal strength at different 3D 
distances and the dynamic nature and variability of chromosome interactions in a population of cells. 

One of the most challenging aspects of 4C-Seq is determining the window size at which the data 
should be analyzed. Adaptive window sizes that depend on the distance to the bait can adjust for 
differences in coverage of 4C-Seq signal in regions near the bait, far-cis and trans chromosomes. 4C 
signal is generally higher around the bait region and decreases in far-cis and trans. We developed a kth 
nearest neighbor method to build overlapping windows of adaptive sizes based on the 4C-Seq coverage 
of a given dataset at each location in the genome. With this approach the size of each window is 
determined by the amount of signal detected in each region. This will result in small windows near the 
bait and other regions where there is high coverage, versus larger windows further away from the bait 
where there is low coverage. 

Once the windows for a given dataset are determined, the counts at observed fragments within 
these windows are normalized using DESeq2 [17]. For the cis chromosome, the linear distance from the 
bait to the mid-point of each window is used to correct for the inverse relationship between counts and 
linear separation from the bait. The counts and distances are log transformed and are used as inputs 
(observed states) for the Hidden Markov Model (HMM). A separate model is used for cis and trans 
chromosomes (in the latter there is no effect of linear distance from the bait). A three-state HMM is used 
to partition the genome into windows that interact with the bait at (1) high frequency, (2) low frequency 
and (3) those that do not interact. Use of overlapping windows, allows us to more precisely define the 
regions of high interaction (for more detailed explanation of the workflow, refer to the methods section). 
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The resulting parameters for the model show higher probabilities for transitioning to the same state, 
correctly accounting for the polymeric nature of DNA on chromosomal interactions (Fig 1, 3-state HMM). 
Domains that are consistently found as interacting at a high frequency across several samples can be 
used for downstream quantitative analysis. Furthermore DESeq2 can be used to quantitatively compare 
interactions across conditions. The 4C-ker pipeline will be available as an R package (R.4Cker on github) 
along with the domains of interactions identified for all the datasets analyzed in this study.

  
Fig 1: Workflow of 4C-ker. The key features of the method are outlined in the figure. A more detailed explanation 
of each section can be found in the materials and methods section. 
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Use of 4Cker to identify close range interactions 
4C-Seq is commonly used to identify regulatory interactions that occur in close linear proximity to 

the bait. Therefore, we provide an option to focus the analysis only in this region, where the highest 
resolution interactions are identified. An important aspect of 4C-Seq library preparation is the choice of 
restriction enzyme used to digest cross-linked chromatin as the genome-wide frequency of enzyme 
recognition sites determines the resolution of the experiment.  Therefore, 4bp cutters such as DpnII or 
NlaIII, which cut the genome more frequently, provide a higher resolution profile of 4C interactions 
compared to 6bp cutters like HindIII (S1 Fig) [18]. To ensure that our method works with both types of 
restriction enzymes, we tested it using numerous datasets generated from our lab as well as all publically 
available datasets for which replicates are available (all of these datasets passed stringent quality control 
checks. See methods section and Supplementary Table 1 for details).  

The near-bait analysis was restricted to 10MB around the bait for 6bp cutters and 1MB for 4bp 
cutters as these are the regions that contain that the highest 4C signal in each case. As can be seen in 
Fig 2A and 2B, raw 4C-Seq signal is highest near the bait and decreases with increasing linear distance. 
As 4C-ker corrects for this decrease in signal it is able to detect interactions across the entire region 
analyzed. In addition, due to the adaptive windows, the size of interactions detected are smallest near 
the bait where coverage is highest and larger in regions separated from the bait by increasing linear 
distances where coverage is lower (Fig 2C and 2D). The resolution of domains identified by 4C-ker can 
be conveniently adjusted by using different values for the number of observed fragments used to 
generate the adaptive windows (S2A Fig). Here we used values ranging from 3-10 in the 2MB region 
around the bait. As the value of ‘k’ increases, we observe a consistent increase in the size of the 
domains as well as increased similarity between replicates (see methods section for details). The 
parameter k can be adjusted by the user depending on the biological question that is being addressed. 
For example, if the aim of the study is to identify interactions between enhancers and promoters, we 
suggest k=3-5.  In order to identify larger domains that coincide with broad regions encompassing 
chromatin with similar histone modifications, setting k=10 is a suitable choice. 

To assess the performance of 4C-ker we used existing methods to analyze the same datasets. 
There are currently four methods available in the community to detect significant interactions using 4C-
Seq datasets (fourSig, Splinter et al, r3CSeq and FourCSeq). Details of how we implemented these 
algorithms for comparison with the 4C-ker pipeline can be found in the methods section. Although the 
method developed by van der Werken et al (4cseqpipe) [13] does not identify significant interactions, it 
provides a good visualization tool for 4C-Seq signal near the bait (Fig 2A and 2B). The fourSig approach 
generates windows based on restriction enzyme fragments and compares the counts within each window 
against a random background distribution [19]. As fourSig does not take account of the impact of 
distance on 4C-Seq signal, it identifies most of this region as large interacting domains and this results in 
a high similarity index between replicates (S2B and S2C Fig). However, in contradiction to decreasing 
resolution of 4C-Seq signal with increased separation from the bait, the size of the domains identified by 
fourSig are largest near the bait and these decrease with increasing separation from the bait (Fig 2C and 
2D). The method described by Splinter et al [20], referred to here as the ‘de Laat method’ excludes the 
2MB region around the bait and only calls interactions in the rest of the genome based on enrichment of 
binary coverage in a given window, compared to a local background. As such, the de Laat method does 
not identify any interactions with 4bp cutters (Fig 2B, 2D). Moreover, using the 6bp cutter datasets it only 
identifies interactions in 2 out of 7 datasets in the 10MB region (S2B Fig). Together these findings reflect 
the limitations of this method in detecting 4C-Seq interactions in the region with highest coverage, where 
the majority of important regulatory interactions occur. The r3CSeq method uses reverse cumulative 
fitted values of the power law normalization and a background scaling method to correct for interactions 
near the bait [21]. This approach also provides the option to detect interactions at the fragment level or at 
the window level. In most datasets r3CSeq only identifies significant interaction near the bait as shown in 
Fig 2A, 2C and 2D and therefore have a high similarity index between replicates (S2B and S2C Fig). 
Although interactions further from the bait are identified (Fig 2B), they are not reproducible as measured 
by the similarity index (S2C Fig). The FourCSeq pipeline only has the option to analyze interactions at 
the fragment level. It is based on the DESeq2 method with an additional function that corrects for the 
effect of linear distance from the bait [22]. This method failed to identify any significant interactions for 
any of the datasets analyzed. If interactions between regulatory elements are being analyzed, the 
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majority will be identified in the region near the bait. Therefore, it is important that a 4C-Seq analysis can 
properly identify these interactions. Here we show that 4C-ker outperforms other methods and identifies 
interactions that correctly reflects the nature of high-resolution 4C-Seq signal in this region. 

 

 
Fig 2 4C-ker outperforms other methods in the region near the bait when the stability of interacting regions between 
replicates is examined for four methods. (A-B) Example datasets for 6bp and 4bp cutter experiments. Raw 4C-Seq 
reads are shown for a 10MB region around the bait in (A) and 2 MB in (B). Experiment in A was performed using 
activated B cells digested with HindIII and a bait near the Igh locus. Experiment in B was performed in double 
negative T cells digested with NlaIII and a bait near the Eβ enhancer of Tcrb. Significant interactions determined by 
each method for 2 replicates are shown below the raw 4C-Seq profile. Domainograms generated using 4cseqpipe 
are displayed for the same region. (C-D) Distance of the midpoint of the interacting domain to the bait is plotted 
against its size. Plots only contain domains that overlap by 50% between replicates.  

 
 
Identification of long-range interactions using 4C-ker  
 We next used 4C-ker for analysis of the entire bait chromosome using the same fourteen 
datasets described above. Due to lower 4C-Seq signal in regions distant from the bait (far-cis) the 
correlation between replicates decreases compared to near-bait regions (S3A Fig). This difference is 
more pronounced with 4bp cutter generated datasets. A potential explanation for this difference is that 
when 4bp cutters are used 4C-Seq coverage in windows distant from the bait decreases at a much faster 
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rate than when using 6bp cutters (S3B Fig). Based on these results, it is clear that when designing a 4C-
Seq experiment, the biological question should determine the choice of primary restriction enzyme. For 
example, to detect long-range interactions in cis and trans it seems preferential to use a 6bp cutter to 
achieve a more reproducible 4C profile. On the other hand, for characterization of short-range regulatory 
interactions, 4bp cutters provide a high-resolution map of near-bait interactions, as previously shown [18, 
23, 24]. 

With adaptive window sizes and consideration of distance separation from the bait, 4C-ker is able 
to reproducibly identify domains of interaction across the whole cis chromosome. As expected, 
interacting domains proximal to the bait are smaller in line with the fact that increased 4C-Seq signal 
allows for generation of smaller windows of analysis. In contrast, in regions located distal to the bait 
where the 4C-Seq signal is reduced, the window sizes for analysis are increased and 4C-ker identifies 
larger interacting domains (Fig 3A). To validate interactions identified by 4C-ker we used the Igh Cγ1 
HindIII dataset and performed 3D-FISH to analyze interactions with Igh. We selected three bacterial 
artificial chromosome (BAC) probes that hybridize to high, low and non interacting regions in close 
proximity to each other (4-7Mb), but separated from Igh by ~70Mb (S4A Fig). Of note, the selected non 
interacting region is in closer linear distance to Igh, and the highest interacting region is furthest away. 
Using differentially labeled BAC probes for these regions in conjunction with an Igh specific probe we 
found that in accordance with the 4C-ker output, the BAC in the high interacting domain is in closer 
spatial proximity to Igh than the BACs in the low and non interacting domains (S4A Fig and Fig 3C). 
According to the chromosome territory model most interactions occur between loci on the same 
chromosome. As such, inter-chromosomal interactions occur at low frequency. However, unlike other 
3C-based techniques, 4C-Seq can still detect these interactions. Nonetheless, since at least 40% of the 
signal is on the cis chromosome, the rest is spread out over all trans chromosomes  and is thus 
significantly reduced. As a result the 4C signal is less reproducible compared to interactions on the bait 
chromosome (S3A Fig). 4C-ker and the de Laat method outperform fourSig and r3CSeq in identifying 
trans interactions. Both 4C-ker and the de Laat method identify equivalently sized interaction domains 
across all fourteen (6bp and 4bp cutter) datasets (Fig 3D and 3E). In most cases 4C-ker outperforms the 
de Laat method in identifying reproducible interactions from 4bp cutter experiments, while the reverse is 
true for most  6bp cutter experiments 
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Fig 3. 4C-ker identifies the most reproducible interactions across the cis chromosome and exhibits stable 
performance for 4bp and 6bp cutters. (A) Example datasets of 6bp and 4bp cutter experiments. Raw 4C-Seq reads 
are shown for the entire bait chromosome. Experiment shown in the top panel in A was performed in activated B 
cells digested with HindIII using a bait near the Cd83 gene. Experiment shown in the bottom panel in A was 
performed in immature B cells digested with NlaIII using a bait near the MiEκ enhancer of Igk. Significant 
interactions determined by each method for 2 replicates are shown below the raw 4C-Seq profiles. (B) Similarity 
index between replicates in far-cis. Example datasets shown in A are denoted with an asterisk (*) (C) Boxplot of the 
size of domains identified in far-cis by each method using all fourteen datasets. (D) Similarity index between 
replicates for domains identified across all trans chromosomes. (E) Boxplot of the size of all domains in trans 
identified by the four methods. 
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Detecting significant changes in interaction profiles across multiple 4C experiments 
 One useful application of 4C-Seq is a quantitative comparison of interactions from a particular 
viewpoint across conditions or cell types. The highly interacting domains identified by 4C-ker for several 
conditions can be merged to generate a list of “Dataset-specific Interacting Domains” (DIDs). These 
domains represent regions that are interacting with the bait in at least one of the conditions. In general, 
4C-Seq counts follow a negative binomial distribution, which is suitable for differential DESeq2 analysis. 
We use raw counts for the dynamic windows that fall within DIDs and consider windows with an FDR 
adjusted p-value of < 0.05 as differentially interacting between conditions. 
 

 
Fig 4: Identification of differentially interacting regions (A) Windows located within Dataset-specific Interacting 
Domains (DIDs) are represented as small circles with the normalized read count for each condition. Large filled 
circles represent windows with an FDR adjust p-value smaller than 0.05 for the difference between the two cell-
types. The red arrow above the plots represents the bait region. (Fig 4A, 4B and 4C)  Detailed view of DIDs 
containing differentially interacting windows. Lines represent the average of the replicates for each window across 
the displayed region. Large filled circles represent windows with an FDR adjusted p-value smaller than 0.05 for the 
difference between the two cell-types.  
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To test this approach, we compared two datasets generated with NlaIII digested 4C template that have a 
bait on the Eβ enhancer of Tcrb in double negative (DN) and immature B (ImmB) cells. DIDs were 
generated for the bait chromosome (chromosome 6) for these two cell types. In Fig 4A, the normalized 
values for windows within DIDs are plotted across the entire bait chromosome. Windows that are 
significantly different in the two cell-types are represented as larger filled circles. It is clear from Fig 4B 
that the majority of differentially interacting regions are concentrated near the bait. This can be seen in 
detail for the interaction of the Eβ enhancer with the 5’ end of the Tcrb gene. In DN cells this locus is in a 
contracted conformation which brings distal Vβ genes into contact with the proximal DJCβ region for 
V(D)J recombination [25]. In contrast, the locus does not recombine in B cells and is not in a contracted 
form and the Vβ genes are found in less frequent contact with the bait. Interestingly, we found a 
differentially interacting DID in far-cis containing the Cd69 gene, which is a known T cell marker and 
interacts more frequently with Eβ in DN cells compared to Immature B cells. This is expected since both 
Cd69 and Tcrb are active in T cells and it has been shown that transcriptionally active regions come into 
frequent contact [15, 16]. Thus, the DIDs determined by 4C-ker can be used to detect quantitative 
interactions that correlate with functional processes. 
   
 
Long-range interacting regions have similar accessibility and transcriptional profiles to the bait 
 The ability to detect reproducible long-range interactions with 4C-ker enables us to assess the 
properties of these regions. Based on nuclear organization principles described by 3C-based studies [6, 
15, 16] we validated 4C-ker domains by assessing if they preferentially contact regions with the same 
transcriptional and epigenetic status as the bait. For this, we used 4C data generated with the Eβ 
enhancer bait in DN T cells and immature B cells. Using ATAC-Seq [38], a technique that identifies 
accessible regions of chromatin, we find that. as expected, the enhancer is active in T cells and inactive 
in B cells (Fig 5A). Conversely, a bait on the MiEκ enhancer of Igk is active in B cells and inactive in T 
cells (Fig 5A). Using 4C-ker we identified the highly interacting domains with each bait across the two 
cell types. Since we used NlaIII to generate the template we restricted the analysis to the bait 
chromosome. We then asked if the 4C interacting domains are enriched for ATAC-Seq peaks. Here, we 
define enrichment as the ratio of the sum of the size of ATAC-Seq peaks within interacting regions to 
those within a background generated by randomly repositioning these domains along the chromosome. 
In T cells, where the Eβ enhancer is active, we found a higher enrichment of ATAC-Seq peaks in 4C 
interacting domains compared to B cells (Fig 5B). The opposite is observed with the MiEκ 4C bait in B 
cells, where the enhancer is active and enrichment of ATAC-Seq peaks in 4C interacting domains is 
higher compared to T cells (Fig 5B). Thus, in line with previous studies using both HiC and 4C-Seq [15, 
16], active regions of the genome preferentially contact other active regions while inactive regions 
contact other inactive regions, and this pattern is consistent across lineages. 
 To determine the relationship between transcriptional status and accessibility, we next integrated 
RNA-Seq data with the output from 4C-ker. We first confirmed the transcriptional activity of both 
enhancers across lineages, as demonstrated by the transcriptional activity of theTcrb and Igk loci that 
are controlled by their respective enhancers (Fig 5C). The active Eβ enhancer selectively directs 
transcription of Tcrb in T cells, while MiEκ contributes to the high levels of Igk transcription that is found 
only in the B cell lineage. Next we compared the expression values of genes within the interacting 
domains across the different cell types. The genes within the Eβ-interacting domains in T cells show a 
higher transcriptional activity compared to genes within Eβ-interacting domains in B cells (Fig 5D). The 
reverse is observed in genes within MiEκ-interacting domains in B versus T cells (Fig 5D). Again, these 
results are in agreement with Hi-C studies, which show that regions with similar transcriptional activity 
occupy the same space in the nucleus [6, 15, 16]. 
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Fig 5: Regions with similar epigenetic and transcriptional status occupy the same nuclear space (A) 
Normalized ATAC-Seq signal across the Eβ and MiEκ enhancer in T and B cells. (B) Enrichment of ATAC-Seq 
peaks in 4C interacting domains (C) Normalized RNA-Seq data for the Tcrb gene and the 3’ end of the Igk gene. 
(D). DESeq2 normalized expression values (log10) of genes that overlap with 4C-ker identified domains of 
interaction for each cell type.  
 
Discussion 

Here we describe 4C-ker, a 4C-Seq analysis framework, that is unique in its ability to reproducibly 
detect short and long range-interactions on the same and across different chromosomes from a single 
viewpoint. Unlike other 4C-Seq pipelines, 4C-ker takes into account difference in coverage in regions 
proximal to the bait, far-cis and trans. As summarized in Table 1, 4C-ker outperforms all other methods 
in regions near the bait and in far-cis and performs comparably to the de Laat method for analysis of 
trans interactions. In addition, 4C-ker also has the option to perform differential analysis of cis 
interactions. 
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Table 1: Summary of method comparison 
 Near-bait Far-cis Trans Differential 

analysis 
4C-ker Good Good Fair Yes 
fourSig Majority of region called Fair Poor No 
de Laat Method NA Fair Fair No 
r3CSeq Restricted to the bait Poor Poor Yes 
FourCSeq NA NA NA Yes 
4cseqpipe Visualization NA NA No 
 
 

 4C-Seq can be used as an unbiased approach to identify short-range regulatory interactions that 
occur with the bait as well as long-range interactions that can provide insights into the global organization 
of chromatin in the nucleus. With 4C-ker, we validated long-range interactions from enhancer viewpoints 
and analyzed the epigenetic and transcriptional properties of interacting domains (where the validation 
includes reproducibility of results and experimental validation with FISH). This enabled us to demonstrate 
that the domains that 4C-ker calls have biological significance: active regions preferentially associate 
with active regions and inactive regions preferentially associate with inactive regions, as previously 
shown in Hi-C [6, 15, 16]. While Hi-C is limited in its ability to detect short-range interactions at low 
resolution, 4C-ker can identify both short and long-range interactions with higher resolution at lower 
sequencing depth. 
 One important consideration in 4C-Seq is to unravel how the profile of interactions generated in a 
population of cells relates to the physical constraints of chromosomes within the nucleus. For example, 
we need to better understand the implications of the differences in 4C-Seq profiles when an active or an 
inactive bait is used. Reduced interactions from an inactive bait likely reflect a less mobile compacted 
chromatin structure that could be embedded within the chromosome territory. To explore these 
relationships we need improved pipelines for integrating other genome wide techniques such as RNA-
Seq, ATAC-Seq, and ChIP-Seq with 3C-based data sets. Only then can we learn whether inactive 
regions of the genome interact with regions that share epigenetic modifications and are bound by 
common regulatory factors as has been shown for active regions that are co-regulated [26, 27]. 
 Although 4C-Seq only provides information on interactions from a single viewpoint, it can help to 
identify intricate loop structures at a finer resolution than Hi-C, and this in turn will provide a basis for 
understanding regulatory interactions. Furthermore, it can identify long-range interactions in cis and in 
trans that likely reflect inter-TAD interactions on the same or different chromosomes. These interactions 
need to be validated by FISH analysis, which in contrast to chromosome conformation capture, faithfully 
reflects the appropriate chromatin compaction state and recapitulates the findings from individual live 
cells (as opposed to averaging over populations) [28].  Furthermore, FISH analysis can provide 
information about whether a particular region is embedded within a chromosome territory or looped 
away, which can be reflective of gene activity or association with repressive pericentromeric 
heterochromatin [29].  

The 4C-ker pipeline can be adapted for analysis of data from new 3C-based techniques such as 
Capture-C [30], T2C [31] and CHi-C [32], that use oligonucleotides to enrich interacting fragments from 
multiple baits in a single experiment. Furthermore, the high resolution of 4C-Seq data can be used for 
determining the finer structure of domains identified with Hi-C. Finally, it should be pointed out that there 
is a great deal of variability between 4C-Seq experiments generated by different labs, and it is clear that 
the field would benefit from standardized protocols and quality control of datasets that lend themselves to 
comparisons between experiments from different sources. Going forward 4C-ker will provide a much-
needed tool for comprehensive analysis of 4C datasets derived from different experimental approaches. 
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Material and Methods 

Ethics Statement 
Animal care was approved by Institutional Animal Care and Use Committee. Protocols number is 
150606-01 (NYU School of Medicine). The authors have no conflict of interest. 
 
Mapping 4C-Seq reads to a reduced genome 
The sequence reads generated from a 4C-Seq experiment typically contain the primer sequence ending 
in the primary restriction enzyme followed by the interacting fragment captured by the bait. The portion of 
the read following the restriction enzyme sequence is mapped to a reduced genome — a set of unique 
sequences (with the same length as the interacting fragment sequenced) that are directly adjacent to all 
sites in the genome of the primary restriction enzyme used. We define these unique sequences as 
‘potential fragments.’ We used oligoMatch (from UCSC command line tools) to find all the primary 
restriction enzyme recognition sequences in the genome and a custom shell script (provided) was used 
to create the reduced genome. Reads were mapped to the reduced genome using Bowtie2 [32] 
(command-line options: -N=0, in addition -5 was used to trim the barcode and primer sequence). 
 We define the fragments in the reduced genome that have at least 1 read mapped to it as an 
‘observed fragment’. The read count at each observed fragment is extracted from the Bowtie output 
(SAM file) and transformed to a WIG file (4 columns with chr,start,end,count at each observed fragment) 
that can be uploaded to IGV for visualization. A custom shell script is provided to generate these WIG 
files. For paired-end sequencing experiments the read containing the bait and the primary restriction 
enzyme was mapped as single-end data.  
 
Dynamic window sizes to correct for coverage 
Adaptive window sizes were determined using the k-th nearest neighbor approach to account for the 
change in 4C-Seq coverage in different regions. The value of k determines the number of observed 
fragments to be analyzed within each window. The window size is determined for each observed 
fragment as the linear distance to the k-th nearest observed fragment, which will result in a larger window 
size in regions where few fragments are observed and vice versa. Window sizes are determined for each 
sample in a given dataset. Then a smooth spline (smooth.spline function in R with a smoothing 
parameter of 0.75) is fitted to the window sizes separately for each chromosome in order to get a window 
size at each position along the chromosome that can be used for the entire dataset.  

To build the final windows we use overlapping windows to more accurately identify the borders of 
interacting domains. Cis: Starting at the bait coordinate, the window size is predicted from the fitted 
spline. Adjacent windows start at the mid-point of the bait window and the size is again determined by 
the fitted spline. In this manner, overlapping windows are generated for the region near the bait or the 
entire chromosome and will be used to analyze interactions for all samples in the given experiment. For 
the analysis near the bait we used k=5 and, when analyzing the entire bait chromosome, k=10. Trans: 
Starting from the beginning of each trans chromosome, we predict the window size from the fitted spline. 
The next window starts from the mid-point of the first window and this process continues to the end of the 
chromosome. We used k=15 for all trans analysis using 6bp cutters and k=100 for 4bp cutters. 
 
Log10 transformation of normalized counts within windows and distance from the bait 
To reduce the effect of PCR artifacts, fragments with counts greater than the 75th quantile within a given 
window are trimmed to this value. The counts at observed fragments within each window are normalized 
across all samples in the dataset using the method described in the DESeq2 [17] R package where each 
window is considered as a feature (or gene). For windows in cis, the distance from the bait to the mid-
point of each window (in bp) is also calculated. A pseudo-count of 1 is added to the normalized window 
counts and the distance value followed by a log10 transformation of the values. The log-transformation of 
the data results in an approximately linear function that describes the decrease in counts as the distance 
from the bait increases. 
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Hidden Markov Model 
In order for 4C-ker to take into account conditional dependencies among neighboring genomic elements 
we propose to use a three-state Hidden Markov Model (HMM) where the hidden states represent 
genomic regions that show high frequency of interactions in the population (high interaction region-HI), 
low frequency (low interaction region-LI), and no significant frequency of interactions (no interaction-NI) 
with the bait. A separate model was learned for cis and trans chromosomes. We used the depmixS4 R 
package [33] to specify and train the described HMM. 
 
Near-bait and cis 
Parameters  
For cis interactions we propose a covariate-adjusted HMM. We denote the number of windows on the cis 
chromosome as T. The input data consists of the observed log-normalized counts 
𝐎!:! = 𝑂!,… ,𝑂! ,… ,𝑂!  where 𝑂! = (𝑜!!,… , 𝑜!! ,… , 𝑜!!), denotes the counts for window t from m biological 
replicates. The hidden states are denoted by 𝑆!:! = {𝑠!, 𝑠!,… , 𝑠! ,… , 𝑠!} . We use the log10-transformed 
distances from the mid-point of each window to the bait 𝐷!:! = 𝑑!,𝑑!,… ,𝑑! ,… ,𝑑!  as covariates. For the 
cis interaction three-state HMM the joint likelihood of observations and hidden states, given model 
parameters 𝜽 and covariates D, is  

𝑃!"# 𝐎!:! , 𝑆!:!    𝛉,𝑑!:!) = 𝜋  𝐛!! 𝑂! 𝑎!"

!!!

!!!

  𝐛!!!! 𝑂!!!|  𝑑!!!   

with the following components: 
1. Hidden states 𝑠! ∈ {1,2,3} (1=no interaction, 2=low interaction, 3=high interaction).  
2. The initial state distribution π with elements 𝜋! = 𝑃 𝑠! = 𝑖 , 1 ≤ 𝑖 ≤ 3. 
3. The state transition matrix 𝐴 = {𝑎!"} with unknown entries 𝑎!" = 𝑃 𝑠!!! =   𝑗   𝑠! = 𝑖],        1 ≤ 𝑖, 𝑗 ≤ 3. 
4. Emission probabilities (observation densities) are represented as vector 𝐛!!

    with elements 
𝑏!!(𝑑!) =   𝑃 𝑜!!      𝑠! = 𝑖,𝑑!],      1 ≤ 𝑖 ≤ 3    that model the conditional density of observations 𝑜!!    in 
window t in the kth replicate.  
We use the following linear model with a Gaussian response function to link count data and 
distance covariates 𝐷!:!  

𝑜!,!   = 𝛽!,! +   𝛽!,!𝑑!   + 𝜖!   ,      1 ≤ 𝑖 ≤ 3.  
We assume that counts 𝑜!,! in state i are normally distributed with unknown mean 𝜇! and variance 
𝜎!!:  

𝑜!,!   ~  𝒩 𝜇! ,𝜎!!  
The expected value of counts 𝜇! is thus a linear function of the distances, controlled by the 
parameters 𝛃! = (𝛽!,! ,𝛽!,!). 

The resulting cis model comprises a total of 21 parameters 𝛉 = 𝛑,𝐴,𝛃!,𝛃!,𝛃!,𝜎!,𝜎!,𝜎! .  
 
Synthetic training data and parameter estimation 
Training data: 4C-Seq signal can vary based on the activity of the bait, location on the chromosome, 
and possibly the species in which the experiment is being done. Therefore a different set of parameters 
is learned for each dataset. To simulate the unknown underlying population of 4C-Seq data we create 
input data 𝐎!:! for the cis model by generating bootstrap samples from the biological replicates. For each 
non-overlapping window along the cis chromosome we randomly draw a 4C-Seq signal from the m 
replicates. The synthetic samples then undergo the same normalization procedure as the original 
replicates to get the counts per window and the linear distance to the bait. This method of generating 
synthetic samples allows us to generate training data that have transitions different from the observed 
data (biological replicates).  
 
Consistency constraints: The overwhelming signal in the bait region can sometimes lead to unsuitable 
model parameter estimates that do not describe the three states correctly. To achieve state-consistent 
estimates of decrease in signal with increasing distance from the bait, we imposed the following set of 
linear constraints on the emission parameters:  

(𝛽!,! < 𝛽!,! < 𝛽!,!). 
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 𝜖! ≤   𝛽!,! − 𝛽!,! < ∞ 
 𝜖! ≤   𝛽!,! − 𝛽!,! < ∞ 
 −∞ ≤   𝛽!,! < 0 
 −∞ ≤   𝛽!,! < 0   
 −∞ ≤   𝛽!,! < 0 
These constraints ensure that (i) expected emission probabilities strictly decrease with distance from the 
bait and (ii) the non-interaction, low-interaction, and high-interaction states obey the correct ordering. We 
set the value of the slack variable 𝜖! = 0.1. 
 
Initial parameter values 𝛉!: In order to find reasonable starting values for the parameters 𝛉, we 
performed a parameter sensitivity analysis by fitting the HMM to the CD83 HindIII datatset using 1000 
random starting parameter values and determining the parameter region that resulted in reproducible 
results (S5 Fig). This analysis resulted in using 𝛑𝟎 = (!

!
, !
!
, !
!
) and initial transition probabilities 𝑎!! = 0.5  , 

𝑎!" = 0.25, 𝑖 ≠ 𝑗 (Fig 1). For the emission probabilities, we divide the chromosome into 30-window 
segments and separate the counts in each segment by those lower than the 60th quantile (no 
interaction), those between the 60th and 90th quantile (low-interaction) and those greater than the 90th 
quantile (high-interaction). These counts are then used to estimate the starting values for the emission 
probabilities. In order to ensure that the parameters are not close to the boundaries of the constraints, we 
set 𝛽!,! =   0.8 ∗ 𝛽!,! and 𝛽!,! =   0.5 ∗   𝛽!,!. The predicted counts from the estimated linear model for each 
state along the cis chromosome are plotted in S6A Fig.  
 
Maximum-likelihood estimation: A general nonlinear augmented Lagrange multiplier method solver 
(solnp function in R package Rsolnp) was used to find the maximum likelihood estimates of the 
parameters with the imposed linear constraints. The average estimated initial state and transition 
probabilities are shown in the HMM model in Fig 1. 
 
Defining domains that are in close proximity to the 4C-Seq viewpoint 
After model inference we use the Viterbi algorithm to assign the interaction states to each of the windows 
on the biological replicates. If adjacent overlapping windows are assigned to different states, we trim the 
window called as high-interaction region in order to retain the part of the window not in a conflicting 
region (S6B Fig). Overlapping windows called as highly interacting are merged to define large domains 
of interaction with the bait. The final set of highly interacting domains for a given 4C-Seq data set is the 
intersection of the trimmed windows across all replicates.  
 
Trans 
We learned one model for all trans chromosomes where the input to the HMM is the normalized counts 
for each window. Let 𝐎!:!! = 𝐎!:!! ,… ,𝐎!:!! ,… ,𝐎!:!!  represent the counts across all windows and 
replicates in all N trans chromosomes. For the trans model we used a three-state HMM without covariate 
adjustment. The joint likelihood of observations and hidden states, given model parameters 𝜽  thus reads   

𝑃!"#$% 𝐎!:!! , 𝑆!:!!    𝛉) = 𝜋  𝐛!! 𝑂! 𝑎!"

!!!!

!!!

  𝐛!!!! 𝑂!!!  

We again assume the normalized counts to be multivariate normal. The resulting trans model without 
covariate adjustment thus comprises18 parameters 𝛉 = 𝛑,𝐴, µμ!, µμ!, µμ!,𝜎!,𝜎!,𝜎! .  
  
Synthetic training data and parameter estimation 
A synthetic sample was built such that each chromosome was randomly selected from the pool of 
replicates. The following constraints were added to ensure that the parameter values are suitable to 
distinguish between the states.   
 𝜖! ≤ 𝜇! − 𝜇! < ∞ 
 𝜖! ≤ 𝜇! − 𝜇! < ∞ 
 𝜖! ≤ 𝜇! − 𝜇! < ∞ 
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We set the value of the slack variable 𝜖! = 0.05 and used the depmixS4 R package to specify and train 
the described HMM where again the general nonlinear augmented Lagrange multiplier method solver 
solnp was used to find the maximum likelihood estimates of the parameters with the imposed linear 
constraints. 
 
Quantitative analysis using DESeq2 
For multiple conditions with the same bait, a merged set of domains is generated that contains those 
called as highly interacting in at least one of the conditions - Dataset-specific interacting domains (DIDs). 
We can then obtain the raw window counts with each domain and use DESeq2 to perform a quantitative 
differential analysis. DESeq2 has been developed primarily to analyze RNA-Seq data but can also be 
applied to any count dataset that follows a negative binomial distribution. Therefore, we decided to use 
the method to look for quantitative differences between conditions in 4C-Seq.  
 
Similarity index 
Similarity index was calculated based on a previously described method for dealing with more than 2 
replicates [34].   

  𝐶!  ! =      !
!!!

!!"  !!! –   !_!"#!!!!!   !   !!"#$!!!!!!! ….
!!!

 , 

where m is the number of replicates in the dataset and 𝑎!" is the sum of the size of overlapping HI 
domains between replicate i and j and 𝑎!!  is the sum of the size of the merges HI domains from all 
replicates. Domains from both replicates were retained when 50% of the domains overlapped with the 
other replicates. When comparing with different number of replicates, we divide by m to get a score 
between 0-1. 
 
Comparison to other methods 
The interactions defined for each replicate by the four methods were used to calculate the similarity 
index.  
 
fourSig: 4C-Seq data was mapped to mm9 genome. A window size of 5 was used for the analysis near 
the bait, and a window size of 31 was used for far-cis and trans analysis with 1000 iterations and an FDR 
cut-off of 0.05 (liftOver was used to convert the results to the mm10 genome).  
 
The de Laat method: The input for this method was generated using our alignment pipeline. Domains 
were called based on the significant contacts.r file. 
 
r3CSeq: The program currently does not allow for analysis with the mm10 genome, therefore we 
mapped the 4C-Seq data to the mm9 genome. Since the workflow for “working with replicates” requires a 
control and condition experiment, each replicate was run through the “work without replicates” pipeline. 
The data was analyzed at the level of restriction fragments, 20Kb windows and 100kb windows. Only the 
results from the fragments analysis are shown as this was deemed to be the most optimal for high 
resolution and had more interactions called in far-cis and trans (liftOver was used to convert the results 
to the mm10 genome).  
 
FourCSeq: 4C-Seq data was mapped to the mm10 genome. No significant interactions were observed 
with an FDR cut off of 0.1. Although we were not able to identify any interactions with the datasets used 
in this study, we were able to reproduce their results with the example dataset provided.   
 
4C-Seq experiments 
Details of publically available datasets downloaded for this study can be found in S1 Table. We used 
datasets that had more than one replicate available in GEO and processed the FASTQ files using our 
pipeline. Datasets were further excluded if less than one million reads were available after removal of 
undigested and self-ligated 4C fragments. Samples were also required to have at least 40% of the reads 
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on the cis chromosome and 40 % coverage in the 2Mb region around the bait for 6bp cutters and 200kb 
for 4bp cutters as this is considered a standard quality control for a good 4C experiment [35]. Basic 
statistics for the datasets used can be found in S1 Table. 

The following datasets were generated from mouse cells for this study. Cd83, Igh-Cγ1 baits on 
activated mature B cells, Igk MiEκ, Tcr Eβ bait in double negative (DN) T cells and immature B cells. See 
S1 Table for details of primers and enzymes used for these experiments. 

The 4C-Seq protocol was performed as described previously [14] and libraries were sequenced 
using the HiSeq2500 Illumina platform. Splenic mature B cells were isolated and induced to undergo 
class switch recombination as previously described [14]. Cells were collected on day 2 of activation. DN 
T cells, and immature B cells were isolated as described before [29, 36] and pooled to obtain 10 million 
cells for each replicate at each developmental stage. 
 
FISH validation 
Activated mature B cells for FISH analysis were isolated as described above. 3D-FISH was performed as 
described previously [37]. Interphase cells were analyzed by confocal microscopy on a Leica SP5 AOBS 
system (Acousto-Optical Beam Splitter). Optical sections separated by 0.3µm were collected using Leica 
software and only cells with signals from both alleles (>95% of cells) were analyzed. Separation of alleles 
was measured in 3D from the center of mass of each signal using Image J software. 
 
ATAC-Seq  
DN T cells as well as immature B cell were isolated as described above. ATAC-Seq was performed in 
duplicate as described previously [38] with the following modifications: libraries were amplified with KAPA 
HiFi polymerase. Libraries were sequenced with HiSeq using 50 cycles paired-end mode. 50bp-paired-
end reads were mapped to mm9 using Bowtie2 with the following parameters: --maxins 2000, --very-
sensitive Reads with MAPQ score < 30 were filtered out with Samtools, and duplicate reads were 
discarded using Picard tools.  For each sample condition, biological replicates were merged with 
Samtools, and peaks were called using Peakdeck [39] with the following parameters: -bin 75, -STEP 25, 
-back 10000, -npBack 100000.  Peaks were further filtered to a raw p-value cutoff of 1E-4 (liftOver was 
used to convert the results to the mm10 genome).   A custom script was used to determine peak 
maxima, and maxima were extended by 50bp on either side to yield peaks of ~100bp. 
 
RNA-Seq  
DN and immature B cell were isolated as described above. RNA-seq libraries were prepared as 
previously described using the Ribo-Zero kit for depletion of ribosomal RNA [40]. Reads were mapped 
using Tophat version 2.0.6 [41]with the following parameters: --no-coverage-search -p 12 --no-discordant 
--no-mixed -N 1 --b2-very-sensitive. Number of reads per gene (RefSeq annotation) was calculated using 
HTSeq-count [42]. Normalization of counts per gene was done using DESeq2. 
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S1 Fig. Histogram of the distance between adjacent restriction enzyme sites in the mouse mm10 genome. NlaIII 
has the highest number of sites in the genome resulting in shorter distances between adjacent sites.  
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S2 Fig (A) Near bait analysis using different values of k for the 2MB region around the Eβ bait in DN cells. Domains 
called for the two replicates are shown and the similarity index below each value of k. (B-C) Similarity index 
between replicates for interacting domains identified in the region around the bait for 6bp and 4bp cutter datasets 
respectively. 

0.
0

0.
2

0.
4

0.
6

0.
8

4C-ker
fourSig
de Laat
r3CSeq

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7* 8 9 10 11 12 13 14*

raw 
4C-Seq 
reads

k=3 
(0.55)

k=4 
(0.61)

k=5 
(0.65)

k=6 
(0.75)

k=7 
(0.75)

k=8 
(0.82)

k=9 
(0.79)

k=10 
(0.86)

E`�(NlaIII - 4bp)

chr6:40496407-42497542 (2MB) 

B C

A

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2015. ; https://doi.org/10.1101/030569doi: bioRxiv preprint 

https://doi.org/10.1101/030569
http://creativecommons.org/licenses/by-nd/4.0/


	
   23 

 

S3 Fig. (A) Raw counts for different window sizes were used to calculate Spearman correlation across several 
datasets (listed in Supplementary Table1). The mean of pairwise correlations were plotted for datasets with greater 
than 2 replicates. (B) Ratio of observed fragments in 1 MB windows (up to 50MB away from the bait) against the 
observed fragments in the 1MB window encompassing the bait. 
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S4 Fig (A) Browser view of a far-cis region on chromosome 12 showing domains identified as High, Low and Non 
interacting states and the location of BACs chosen to label these regions as well as the distances separating them 
from each other and from Igh. These BACs, together with probes labeling the constant region of Igh were used for 
3D-FISH on activated B cells. (B) The distance from each BACs to Igh was measured and plotted as a cumulative 
frequency curve. A shift to the left represents closer proximity to Igh. The BAC representing the High interacting 
state is more frequently found closer to Igh than the BACs representing the Low and Non interacting states. This 
difference is statistically significant using a Fisher’s exact test at 1µm distance. The FISH example shows one Z 
plane where one chromosome 12 is visible. 
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Supplementary Fig 5: Results of parameter estimates using 1000 different starting values. Estimation was 
performed using the EM algorithm with no constraints. The set of parameters that resulted in Viterbi calls with a 
reproducibility of 60% or greater across replicates are colored in red. The probability of transitioning to the same 
state is always higher than transitioning to a different state. As expected, the distance covariate term (names here 
as dis) is always negative for the reproducible set of parameters, confirming the decrease in signal with increase 
linear distance from the bait.  
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Supplementary Fig 6: Results of the HMM. (A) Using the distance from the bait, the window counts were 
predicted from the estimated linear model for each of the HMM states. (B) Region of the bait chromosome showing 
the hidden states inferred by the Viterbi algorithm and the trimmed 4C-ker domains.  
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S1 Table: Description of datasets used for this study.  
 

 

 

 

 

GSE
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paired

Primary 
Enzyme

Secondary 
Enzyme Species Bait chr Bait pos For primer Rev primer

Total 
number of 

reads (>1e6)

Total 
number of 
observed 
fragments Reads in cis

% of reads 
in cis 

(>40%)

Observed 
fragments 

in cis

% of 
observed 

fragments in 
cis Reads in trans

% of 
reads in 

trans

Observed 
fragments 

in trans

% of 
observed 

fragments in 
trans

Coverage % 
in 1MB (for 

6bp)

Coverage % in 
200kb (for 

4bp)
CD83_1 new single HindIII DpnII mouse chr13 43773612 CCATGACTAACTAGAAGCTT GTTCCTCTCATCCCACCC 3,755,586 24326 1,909,026 50.83 5503 22.62 1,846,560 49.17 18823 77.38 56.65 71.68
CD83_2 new single HindIII DpnII mouse chr13 43773612 CCATGACTAACTAGAAGCTT GTTCCTCTCATCCCACCC 2,309,978 30409 1,106,680 47.91 6723 22.11 1,203,298 52.09 23686 77.89 59.51 69.91

Denholtz_dppa1_1 GSE50029 single HindIII DpnII mouse chr16 48294565 GCCTAGCAATCTCACAGAAAGCTT ttacaattgagtatccaaccaa 19,651,567 28946 9,902,307 50.39 5001 17.28 9,749,260 49.61 23945 82.72 49.5 60.87
Denholtz_dppa1_2 GSE50029 single HindIII DpnII mouse chr16 48294565 GCCTAGCAATCTCACAGAAAGCTT ttacaattgagtatccaaccaa 15,123,477 19666 8,159,771 53.95 3291 16.73 6,963,706 46.05 16375 83.27 44.63 61.59
Denholtz_dppa1_3 GSE50029 single HindIII DpnII mouse chr16 48294565 GCCTAGCAATCTCACAGAAAGCTT ttacaattgagtatccaaccaa 25,371,699 46333 13,097,529 51.62 9958 21.49 12,274,170 48.38 36375 78.51 57.19 61.59

Denholtz_pcdhb19_1 GSE50029 single HindIII DpnII mouse chr18 37483203 TCAAATGGAGGCACATAAAGCTT TCGTCATGAAGAGAGCAGTTG 16,353,091 22969 10,045,663 61.43 2229 9.7 6,307,428 38.57 20740 90.3 40.45 70.73
Denholtz_pcdhb19_2 GSE50029 single HindIII DpnII mouse chr18 37483203 TCAAATGGAGGCACATAAAGCTT TCGTCATGAAGAGAGCAGTTG 9,138,382 23312 5,732,280 62.73 2461 10.56 3,406,102 37.27 20851 89.44 44.23 69.51
Denholtz_pcdhb19_3 GSE50029 single HindIII DpnII mouse chr18 37483203 TCAAATGGAGGCACATAAAGCTT TCGTCATGAAGAGAGCAGTTG 12,902,785 25576 8,048,342 62.38 2217 8.67 4,854,443 37.62 23359 91.33 42.08 70.73

Denholtz_pou5f1_1 GSE50029 single HindIII DpnII mouse chr17 35504151 CCGCCAAGTTCACAAAGCTT AGGAGCAGACAGACAAACAC 8,951,846 37185 4,040,104 45.13 5749 15.46 4,911,742 54.87 31436 84.54 55.23 65
Denholtz_pou5f1_3 GSE50029 single HindIII DpnII mouse chr17 35504151 CCGCCAAGTTCACAAAGCTT AGGAGCAGACAGACAAACAC 5,914,073 40014 2,667,610 45.11 7283 18.2 3,246,463 54.89 32731 81.8 65.14 73.75

Gao_pou5f1_1 GSE32465 single HindIII DpnII mouse chr17 35504137 ATCTGCTATTGAGGAAGCTT GAAACAGATGTGCCCTAGCC 14,111,523 28328 10,309,718 73.06 6848 24.17 3,801,805 26.94 21480 75.83 71.68 71.25
Gao_pou5f1_2 GSE32465 single HindIII DpnII mouse chr17 35504137 ATCTGCTATTGAGGAAGCTT GAAACAGATGTGCCCTAGCC 8,760,478 22750 6,157,096 70.28 5242 23.04 2,603,382 29.72 17508 76.96 66.99 70

Igh_1 new single HindIII DpnII mouse chr12 113321402 GTTTCTGCTAAATTGAAGCTT CAGGAAGAGAAAGCCCAGTG 6,200,385 27638 3,268,091 52.71 4934 17.85 2,932,294 47.29 22704 82.15 54.46 72.16
Igh_2 new single HindIII DpnII mouse chr12 113321402 GTTTCTGCTAAATTGAAGCTT CAGGAAGAGAAAGCCCAGTG 6,065,263 33171 2,932,745 48.35 5799 17.48 3,132,518 51.65 27372 82.52 53.1 70.1

Igk_MiEk_DN_WT_1 new single NlaIII DpnII mouse chr6 70725203 ACATTCTTTTCAGTTCCATG CTTCTACCCCAAAGACATCA 10,385,689 146950 5,595,992 53.88 40821 27.78 4,789,697 46.12 106129 72.22 27.1 73.9
Igk_MiEk_DN_WT_2 new single NlaIII DpnII mouse chr6 70725203 ACATTCTTTTCAGTTCCATG CTTCTACCCCAAAGACATCA 5,927,709 214107 2,934,712 49.51 36570 17.08 2,992,997 50.49 177537 82.92 22.91 69.68

Igk_MiEk_ImmB_WT_1 new single NlaIII DpnII mouse chr6 70725203 ACATTCTTTTCAGTTCCATG CTTCTACCCCAAAGACATCA 7,062,852 104535 3,448,490 48.83 21087 20.17 3,614,362 51.17 83448 79.83 28.26 68.25
Igk_MiEk_ImmB_WT_2 new single NlaIII DpnII mouse chr6 70725203 ACATTCTTTTCAGTTCCATG CTTCTACCCCAAAGACATCA 5,980,713 180923 2,540,206 42.47 20962 11.59 3,440,507 57.53 159961 88.41 23.32 64.65

Tcrb_Eb_DN_WT_1 new single NlaIII DpnII mouse chr6 41553749 TGTGGATTGATTAAGCCATG TGAGCATTTCTTTCTCCTAGTGG 8,906,075 95089 5,038,747 56.58 22693 23.87 3,867,328 43.42 72396 76.13 36.42 64.89
Tcrb_Eb_DN_WT_2 new single NlaIII DpnII mouse chr6 41553749 TGTGGATTGATTAAGCCATG TGAGCATTTCTTTCTCCTAGTGG 26,425,730 319332 14,737,385 55.77 33516 10.5 11,688,345 44.23 285816 89.5 37.37 64.89

Tcrb_Eb_ImmB_WT_1 new single NlaIII DpnII mouse chr6 41553749 TGTGGATTGATTAAGCCATG TGAGCATTTCTTTCTCCTAGTGG 10,771,824 149888 5,495,787 51.02 45009 30.03 5,276,037 48.98 104879 69.97 40.13 71.89
Tcrb_Eb_ImmB_WT_2 new single NlaIII DpnII mouse chr6 41553749 TGTGGATTGATTAAGCCATG TGAGCATTTCTTTCTCCTAGTGG 35,635,579 504441 16,082,663 45.13 44714 8.86 19,552,916 54.87 459727 91.14 25.15 57.33

hoxa10_1 GSE60240 single DpnII Csp6I mouse chr6 52237162 GAGCCGTCCCTGTCTGGATC GAACACAGGAGTTCCACCTA 1,123,771 20917 613,730 54.61 3217 15.38 510,041 45.39 17700 84.62 24.15 51.37
hoxa10_2 GSE60240 single DpnII Csp6I mouse chr6 52237162 GAGCCGTCCCTGTCTGGATC GAACACAGGAGTTCCACCTA 2,229,462 32914 1,125,415 50.48 4770 14.49 1,104,047 49.52 28144 85.51 32.26 58.95
hoxa10_3 GSE60240 single DpnII Csp6I mouse chr6 52237162 GAGCCGTCCCTGTCTGGATC GAACACAGGAGTTCCACCTA 2,753,099 47205 1,634,649 59.37 6954 14.73 1,118,450 40.63 40251 85.27 43.09 73.89

Dileep_Ch16B30_PM_2hrs_1 GSE66579 single HindIII DpnII mouse chr16 30595178 CGGAAACTCAGCGGTAAAGCTT TTAGGCCCTGAATGTTGGTC 1,718,709 45508 1,127,703 65.61 15861 34.85 591,006 34.39 29647 65.15 72.29 76.85
Dileep_Ch16B30_PM_2hrs_2 GSE66579 single HindIII DpnII mouse chr16 30595178 CGGAAACTCAGCGGTAAAGCTT TTAGGCCCTGAATGTTGGTC 3,777,298 65498 2,517,601 66.65 21847 33.36 1,259,697 33.35 43651 66.64 79.11 78.7

Marin_Mouse_six1_E14_1 GSE66900 single DpnII Csp6I mouse chr12 73048310 GGAATCCCTTCTCTCACTTGGATC GGGGACTTATACGGGCTCTC 9,755,460 49079 6,361,120 65.21 7491 15.26 3,394,340 34.79 41588 84.74 23.78 60.9
Marin_Mouse_six1_E14_2 GSE66900 single DpnII Csp6I mouse chr12 73048310 GGAATCCCTTCTCTCACTTGGATC GGGGACTTATACGGGCTCTC 1,473,693 25059 1,253,647 85.07 6160 24.58 220,046 14.93 18899 75.42 22.23 55.42
Marin_Mouse_six2_E14_1 GSE66900 single DpnII Csp6I mouse chr17 85688105 CGACTCCTGAGTCACAACGATC CACTACATCGAGGCGGAGAAGC 5,872,342 34452 3,203,919 54.56 3825 11.1 2,668,423 45.44 30627 88.9 13.27 34.46
Marin_Mouse_six2_E14_2 GSE66900 single DpnII Csp6I mouse chr17 85688105 CGACTCCTGAGTCACAACGATC CACTACATCGAGGCGGAGAAGC 3,174,983 36722 1,790,738 56.4 5375 14.64 1,384,245 43.6 31347 85.36 19.3 48.94
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