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Abstract 16	

The growth in genome-scale assays of gene expression for different species in publicly available 17	

databases presents new opportunities for computational methods that aid in hypothesis 18	

generation and biological interpretation of these data. Here, we present an unsupervised 19	

machine-learning approach, ADAGE (Analysis using Denoising Autoencoders of Gene 20	

Expression) and apply it to the interpretation of all of the publicly available gene expression data 21	

for Pseudomonas aeruginosa, an important opportunistic bacterial pathogen. In post-hoc positive 22	

control analyses using curated knowledge, the P. aeruginosa ADAGE model found that 23	

co-operonic genes often participated in similar processes and accurately predicted which genes 24	

had similar functions. By analyzing newly generated data and previously published microarray 25	

and RNA-seq data, the ADAGE model identified gene expression differences between strains, 26	

modeled the cellular response to low oxygen, and predicted the involvement of biological 27	

processes despite low level expression differences in directly involved genes. Comparison of 28	

ADAGE with PCA and ICA revealed that ADAGE extracts distinct signals. We provide the 29	

ADAGE model with analysis of all publicly available P. aeruginosa GeneChip experiments, and 30	

we provide open source code for use in other species and settings.  31	

 32	

Importance 33	

There has been a rapid increase in the availability of genome-scale data sets that examine RNA 34	

expression in diverse bacterial and eukaryotic species. Thus, we can greatly benefit from 35	

analytical methods that do not rely on existing biological knowledge for model construction. Our 36	

ADAGE method integrates such data without requiring gene class or experiment labeling, 37	

making its application to any large gene expression compendium practical. The Pseudomonas 38	

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 5, 2015. ; https://doi.org/10.1101/030650doi: bioRxiv preprint 

https://doi.org/10.1101/030650
http://creativecommons.org/licenses/by/4.0/


	

	 3	

aeruginosa ADAGE model was derived from a diverse set of publicly available experiments 39	

without any prespecified biological knowledge, and this model was accurate and predictive. The 40	

ADAGE results that we provide for the complete P. aeruginosa GeneChip compendium can be 41	

used by researchers studying P. aeruginosa and the provided source code will allow ADAGE to 42	

be applied to other species.  43	

 44	

Introduction  45	

Modern biomedical research routinely generates rich datasets measuring genome-wide gene 46	

expression, and advances in sequencing technology have dramatically reduced the cost and 47	

increased the use of genome-wide assays of gene expression (1–7). Many methods exist to 48	

identify important signals from data generated within a single experiment, e.g. clustering (8–10) 49	

or differential expression analysis (11), but integrative analyses across many datasets are more 50	

challenging, particularly in microbial systems in which many different conditions are assessed. 51	

In well-studied species, integrative analyses of gene expression often employ supervised 52	

methods that leverage prior knowledge to extract information from noisy data present in large 53	

publicly available datasets (12–14). In less well-studied organisms, the task of large-scale gene 54	

expression analysis is more challenging (15, 16) due to limited information about gene function 55	

and the absence of prior knowledge about the organism’s biology. As the accumulation of data 56	

exceeds curation, particularly in non-model organisms, new unbiased approaches to reveal 57	

biological patterns are required. 58	

 Deep learning algorithms have transformed how underlying explanatory factors are 59	

extracted from diverse large-scale unlabeled datasets (17). Denoising Autoencoders (DAs) (18), 60	

examples of one form of deep learning, extract important signals and construct representative 61	
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features, referred to as nodes, by training models to remove noise that is intentionally added to 62	

input data. DAs successfully recognize hand-written digits (18), spoken words (19), and the 63	

sentiment of Amazon reviews (20). Because the DA’s learning objective is defined entirely by 64	

the data, this algorithm can extract meaningful features without requiring prior knowledge, 65	

which makes DAs well suited to the challenge of data integration for non-model organisms.  66	

 Here, we report the development of an approach termed Analysis using Denoising 67	

Autoencoders of Gene Expression (ADAGE) capable of integrating diverse gene expression data 68	

to aid in the interpretation of existing and new experiments. Using an unsupervised machine 69	

learning approach, the community-wide Pseudomonas aeruginosa gene expression data were 70	

integrated to create an ADAGE model that captures patterns that correspond to biological states 71	

or processes in gene expression data. In our analysis, each dataset is interpreted in terms of the 72	

activity of fifty distinct nodes, with each node being influenced by different sets of genes. In 73	

positive control analyses, we found that co-operonic genes were preferentially linked to common 74	

nodes, and that genes with similar KEGG functions had similar gene-node relationships across 75	

the model. More interestingly, ADAGE extracts certain nodes representing recognizable 76	

identities with predictive value. Additionally, we show that ADAGE is capable of revealing 77	

subtle but biologically meaningful signals within existing datasets. We compared ADAGE with 78	

existing popular feature construction approaches including principal component analysis (PCA) 79	

and independent component analysis (ICA). The features captured by ADAGE were not fully 80	

extracted by either PCA or ICA. The unsupervised ADAGE approach can be applied to any large 81	

publicly available gene expression compendium or newly generated gene expression data to 82	

characterize genomic and transcriptional features. 83	

 84	
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Results  85	

Construction of an ADAGE Model for P. aeruginosa 86	

To build the ADAGE model for the analysis of P. aeruginosa gene expression, we focused on 87	

expression profiling performed using Affymetrix GeneChips because of the uniform gene 88	

nomenclature. All P. aeruginosa GeneChip expression data were downloaded from the 89	

ArrayExpress database (21), and this resulted in a compendium of 950 arrays from 109 90	

experiments (Supplemental File 1). We constructed an ADAGE model from the compendium by 91	

first adding random noise to the input data and then training a neural network with hidden nodes 92	

that were able to remove added noise to reconstruct the initial data (Figure 1, details in Methods). 93	

The process of adding noise improves the robustness of constructed features and consequently 94	

the resulting models (22, 23). The resultant network was designed to contain fifty nodes, and 95	

within each node all P. aeruginosa strain PAO1 genes were assigned weights that reflected the 96	

contribution of each gene to the activity of each node (weight vectors provided in Supplemental 97	

File 2). A model with 50 nodes was chosen to balance reconstruction error with the need to 98	

manually interpret the ADAGE model, and our subsequent analyses demonstrate that networks 99	

of this size are capable of adequately extracting major global transcriptional patterns (Figure 1).  100	

All genes were connected to each node by a weight vector, and the contributions, or gene 101	

weights, within a node were distributed symmetrically and approximately centered at 0. These 102	

weights approximately resembled a normal distribution in which a small proportion of genes 103	

provided high positive or high negative weights to that node (Figure 2A). We refer to genes that 104	

were outside of two standard deviations as high-weight (HW) genes for that node (red regions of 105	

Figure 2A). In the ADAGE model, 4029 genes (72.6% of the P. aeruginosa genome) are HW in 106	

at least one node (Figure 2B, outermost ring and Supplemental File 3), and 229 (4.1%) genes are 107	
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HW in ten or more nodes. It is important to convey that nodes differed in terms of the identities 108	

of the HW genes. The innermost rings of Figure 2B show the HW genes in two example nodes 109	

(node 42 and 30 respectively from outside to inside), which we identified as representative of 110	

anaerobic response and strain specificity as discussed in more detail below.  111	

 112	

Operonic co-membership and spatial proximity reflect gene-node relationships 113	

Bacterial operons, by definition, contain genes that are co-expressed, though genes within an 114	

operon may be transcribed by multiple promoters. To determine if genes within operons shared 115	

similar node relationships, Gene Set Enrichment Analysis of ADAGE weights using operon 116	

annotations from DOOR (24) were performed and results showed that, in total, 92.9% of 117	

co-operonic genes were significantly associated with at least one common node (Figure 2B, 118	

second to outermost circle; operons significantly associated with at least one node are colored in 119	

green and unassociated operons are in black). The operons significantly associated with each 120	

node are shown in Supplemental File 4. As an extension of the above analysis of operon-node 121	

relationships, we also predicted co-operonic genes would be HW to the same nodes (Figure 2C). 122	

To test this prediction, we fit a logistic regression model that predicted whether a gene was likely 123	

to be HW in a given node based on whether co-operonic genes were also HW to that node. As 124	

predicted, genes co-operonic with a HW gene had a 4.6 times higher odds of being HW in the 125	

same node. In addition, we determined if genes were more likely to be HW to the same node if 126	

they were spatially proximal (e.g. a small number of intervening genes) even if they were not 127	

co-operonic. Again, as expected, the odds of two adjacent genes being HW to the same node 128	

were higher for co-operonic genes than for non-co-operonic genes (Figure 2D). Interestingly, for 129	

both co-operonic and non-co-operonic genes, every additional intervening gene between two 130	
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genes decreased the odds of them being HW to the same node by a factor of 0.9 (Figure 2D) 131	

indicating links between proximity and co-expression. This trend could reflect that genes within 132	

a pathway are often physically close or that there are other regional factors that affect local gene 133	

expression in a coordinated way.  134	

 135	

Genes within a common KEGG pathway share node relationships 136	

To further test the biological relevance of the ADAGE model, we predicted that genes involved 137	

in the same pathway would have similar gene-node relationships. We tested this prediction using 138	

post hoc analysis of the ADAGE model via the Kyoto Encyclopedia of Genes and Genomes 139	

(KEGG) (25). To do so, we employed a straightforward algorithm in which a target gene is 140	

assigned the KEGG function of its closest “neighbor” based on ADAGE weights; the neighbors 141	

for each gene were determined by calculating the Euclidean distance between each gene’s 142	

connections to all nodes for every gene pair (Figure 2E). If a gene’s predicted KEGG functions 143	

based on the functions of its closest ADAGE model neighbor matched at least one of its actual 144	

KEGG annotations, it was considered a positive. If no KEGG annotations matched, it was 145	

considered a negative. We used this approach because our goal is to evaluate the model itself. 146	

Though more complex techniques would be likely to provide superior predictions of function, 147	

they would not be as useful for direct evaluation of the underlying model. We observed a high 148	

accuracy of gene-function assignment (45%) with the ADAGE model. As a control, the identical 149	

algorithm was applied to 1000 control models, where we randomly permuted gene identifiers. In 150	

these tests, the mean accuracy was 3% with no permuted model achieving greater than 5% 151	

accuracy (Figure 2F). We also evaluated a more stringent definition of correct assignment that 152	

requires all predicted and annotated functions to match and observed consistent results. In this 153	
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analysis, 34% of gene-function assignments were correct when the ADAGE model was used 154	

while less than 3% of assignments were correct when randomly generated models were used. 155	

These analyses suggest that ADAGE grouping of genes into nodes based on expression across 156	

the Pseudomonas Gene Chip compendium identified biologically-relevant relationships between 157	

genes. 158	

 159	

ADAGE Recognizes Genomic Differences between Strains 160	

We predicted that the HW genes within a node were likely grouped together because they were 161	

related in their expression patterns across many datasets in the compendium. Visual inspection of 162	

the lists of HW genes (Supplemental File 3) revealed that several nodes contained genes that are 163	

known to vary between strains (LPS, flagellin, pili, etc.) (26). Because the P. aeruginosa 164	

compendium includes experiments performed on different P. aeruginosa strains, we sought to 165	

determine if strain-specific signatures were represented in the ADAGE model. To do this, we 166	

isolated DNA from two well-studied strains of P. aeruginosa, PAO1 (27) and PA14 (28) and 167	

performed a DNA hybridization experiment. Hybridization to the Pseudomonas GeneChip 168	

yielded a profile in which a small number of ADAGE nodes were highly differentially active 169	

(Figure 3A). In the three most differentially active nodes (30, 33 and 25 in order of the difference 170	

magnitude), we found many genes that are known to associate with strain-to-strain differences 171	

within the species. We focused our further analyses on Node 30, which exhibited the largest 172	

difference in activity between PA14 and PAO1. A functional enrichment analysis by Gene 173	

Ontology (GO) (29) and KEGG (25) terms found that the HW genes in Node 30 included those 174	

associated with the surface exposed portions of type IV pili (pilA, pilC, pilV, pilW, pilY1, pilY2) 175	

and the flagellum (flgK, flgL, fliC, fliD) (Supplemental Table 1). Importantly, the ADAGE model 176	
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precisely identified specific genes within pili and flagellar gene clusters as contributing strongly 177	

to the identity of Node 30. For example, two genes involved in pili biosynthesis, pilA and pilC, 178	

were among the HW genes in Node 30 while the adjacent genes pilB and pilD were not (Figure 179	

3C for gene relationships). We performed an alignment and pairwise comparison of the pilABCD 180	

coding sequences from thirteen sequenced P. aeruginosa strains. This analysis revealed that pilA 181	

and pilC were strikingly more divergent than either pilB and pilD, or than other adjacent genes 182	

nadC and coaE (Figure 3C and 3D). In fact, pilA, had the highest weight in Node 30 and was the 183	

most divergent gene of those analyzed (Figure 3C and 3D). A similar trend was observed for the 184	

flagellum-associated genes; the five HW flagellar genes in Node 30 varied in sequence across 185	

strains (Figure 3C), but two adjacent genes, fleQ and fleS were highly conserved and were not 186	

HW in Node 30 (Figure 3C). In further support of the hypothesis that the activity of Node 30 187	

identifies strain differences, this node contains other strain-specific genes, including those 188	

involved in LPS biosynthesis (wbpA, wbpB ,wbpD, wbpE, wbpG, wbpH, wbpI, wbpJ, wbpK, 189	

wbpL,and wzz), a putative type I restriction/modification system (PA2730-PA2736), and 190	

pyoverdine biosynthesis. The genes encoding bacteriophage Pf4 (PA0717-PA0734), which is 191	

only found in certain strains of P. aeruginosa (30), as well as the highly strain-specific 192	

R-pyocins (PA0621-PA0648) (31), were also among the HW genes in Node 30. HW genes in the 193	

strain-differentiating nodes also included genes that were either unique to PAO1 (PA3501-3504) 194	

or only found in a subset of the P. aeruginosa strains with published genomes, such as PA0202-6, 195	

which encode putative transporter genes. 196	

 To determine if Node 30 activity differed in gene expression experiments that made 197	

comparisons across strains, we identified published experiments within the P. aeruginosa 198	

GeneChip compendium in which multiple strains were measured. This analysis found that Node 199	
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30 was indeed differentially active in experiments that included the comparison of different P. 200	

aeruginosa strains (E-GEOD-40461, E-GEOD-7704 (32), E-GEOD-8408 (33) in Figure 3B). In 201	

the dataset E-GEOD-7704, Node 30 clearly indicates the differences between lab strain PAO1 202	

and clinical Cystic Fibrosis (CF) strains. In contrast, Node 30 activity did not differ in a control 203	

experiment using the same strain (E-GEOD-8083 (34) in Figure 3B, the small range in color key 204	

indicates no difference among samples from the same strain.). In the discussion, we address the 205	

need for a community-wide allele nomenclature for variable genes to support these types of 206	

analyses across datasets and strains when presence/absence is not the read out for strain 207	

variation.  208	

 209	

ADAGE Node Activities Reflect Transcriptional Responses 210	

To further test whether the node-based ADAGE model identified biological states in gene 211	

expression data, we analyzed experiments in which P. aeruginosa wild-type cells were compared 212	

to cells that lacked the transcription factor Anr. Anr is active in low oxygen environments and 213	

regulates the cellular response to oxygen limitation (35) and other virulence related processes 214	

(36). We found that Node 42 was most significantly enriched for HW genes known to be 215	

regulated by Anr (FDR q value = 4.24e-31). The Anr regulated genes used in this analysis (36, 216	

37) are listed in Supplemental Table 2. To investigate whether ADAGE could reliably extract an 217	

Anr signal from the compendium, we built 100 ADAGE models with different random seeds and 218	

repeated the enrichment test. Across the 100 models, 80 contained nodes as significant or more 219	

significant than Node 42 in the current model. All 100 models contained a node significantly 220	

associated with Anr targets. This indicates that ADAGE robustly identified strong transcriptional 221	

patterns across independent applications of the algorithm. 222	
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    We examined the activity of Node 42 in two datasets that compared wild type and ∆anr 223	

strains (E-GEOD-17179 (37) and E-GEOD-17296 (38) in Figure 4A). Node 42 showed low 224	

activity (blue) in the anr mutant, even in low oxygen conditions that would otherwise be 225	

expected to activate Anr (grey). In addition, we also evaluated the activity of Node 42 in datasets 226	

where the responses to different oxygen concentrations were compared and found that again, the 227	

activity of Node 42 was modulated by oxygen availability (E-GEOD-33160 (39) and 228	

E-GEOD-52445 (40) in Figure 4A). E-GEOD-52445 is a high-time-resolution analysis of P. 229	

aeruginosa transiting from high oxygen tension to low oxygen tension and then reverse (40). 230	

Node 42 activity values gradually increased as oxygen levels decreased in the dataset 231	

E-GEOD-52445, and the restoration of oxygen was concomitant with a striking decrease in Node 232	

42 activity. The activity pattern for Node 42 in all of the datasets in the compendium can be 233	

viewed at the url: http://adage.greenelab.com/Paeruginosa-da/node42/index.html.  234	

    To evaluate the ADAGE model’s robustness in terms of the relationship between Anr 235	

activity and the activity of Node 42, we performed an independent experiment in which P. 236	

aeruginosa wild type and ∆anr mutant cells were grown in association with CF bronchial 237	

epithelial (CFBE) cell monolayers (Figure 4B). This experiment differed from the majority of 238	

those in the P. aeruginosa gene expression compendium in which the bacteria were grown as 239	

planktonic cultures. ADAGE analysis of the genome-wide expression measurements for mRNAs 240	

from both P. aeruginosa wild type and ∆anr, with three biological replicates per strain, 241	

confirmed that Node 42 reflected the absence of anr. This demonstrated that ADAGE not only 242	

described the patterns in data within the array experiments used to build the model, but was also 243	

able to detect these patterns in experiments performed in environments not well represented in 244	

the training dataset. ADAGE analysis also revealed that in this condition, the deletion of anr 245	
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significantly impacted 19 other nodes (t test with FDR threshold of 0.05) consistent with the 246	

observation that Anr impacts the direct and indirect expression of many pathways in surface 247	

associated cells (41).  248	

    Since Pseudomonas GeneChip data were used to build the ADAGE model, and the 249	

validation experiments above employed additional microarray data, we next assessed the use of 250	

ADAGE for interpretation of RNA-Seq data. We applied the TDM (Training Distribution 251	

Matching) method described by Thompson et al. (42) to normalize RNA-Seq data to a 252	

comparable range before ADAGE analysis. Using a recently published dataset in which gene 253	

expression was analyzed in two strains and their Anr derivatives grown as colonies in an 1% 254	

oxygen atmosphere (41), we found that ADAGE’s Node 42 differed (FDR q value of 0.05 in 255	

PAO1 strain and 0.10 in J215 strain) when the wild type and ∆anr mutant strains were compared 256	

(Figure 4C). This demonstrates that ADAGE can also be used to interpret RNA-Seq data, and 257	

our goal is for future iterations of ADAGE to be built using both microarray and RNA-Seq data.  258	

 259	

ADAGE Reveals Subtle Patterns Contained in Existing Experiments 260	

Using another previously published dataset in which P. aeruginosa was grown in association 261	

with CFBE cells in culture, we demonstrate that the ADAGE model can reveal important 262	

patterns associated with low magnitude gene expression changes. In this analysis, we reexamined 263	

the response of P. aeruginosa biofilms to challenge with either the antibiotic tobramycin or with 264	

vehicle control for thirty minutes (E-GEOD-9989, (43)). In this dataset, Nodes 39, 16, and 29 265	

were most differentially active (Figure 5A). KEGG pathway enrichment analysis of HW genes in 266	

Nodes 16 and 29 revealed enrichment of genes involved in siderophore biosynthesis and ATPase 267	

activity, respectively (Figure 5B), and differential expression of genes in pathways upon 268	
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tobramycin-treatment was evident in the array data (siderophore biosynthetic transcripts and 269	

transcripts involved in energy generation were decreased 2-29 fold and 3-20 fold respectively in 270	

response to the antibiotic treatment (see Supplemental Table 4 in Anderson et al. (43)). The third 271	

node with differential activity between tobramycin-treated and untreated cells was Node 39 272	

(Figure 5A), and the HW genes in Node 39 were most enriched in genes associated with T3SS 273	

(Figure 5B). A standard microarray analysis approach did not detect a strong expression 274	

difference in genes involved in T3SS; among 775 differentially expressed genes (log2 fold 275	

change >1 and adjusted p value <0.05 after fitting a gene-wise linear model using the limma R 276	

package (44)), only 2 out of 18 genes in the T3SS KEGG pathway were differentially expressed 277	

(Figure 5C). However, the authors did observe a difference in T3SS-dependent cytotoxicity, and 278	

a subsequent study by the same authors demonstrated that a tobramycin-induced transcript, mgtE, 279	

(see Supplemental Table 3 in Anderson et al. (43)), represses exsA, the transcriptional activator 280	

of the T3SS (45). Thus, we propose that ADAGE can indicate meaningful differences in biology 281	

even when the transcriptional difference is low. Small differences in transcript levels associated 282	

with a differentially-active process can result from expression analysis at a time point that does 283	

not capture maximal differential expression, differential expression in only a subset of the 284	

population, or other inherent gene expression properties for transcripts of interest. Because each 285	

ADAGE node represents a multi-gene pattern that was learned from analyzing the entire 286	

expression compendium, ADAGE node-based analyses may be particularly capable of detecting 287	

subtle patterns.  288	

The ability to identify meaningful small but consistent changes in gene expression is also a 289	

characteristic of GSEA analysis (46) and GSEA did identify the T3SS pathway as the 12th most 290	

significant pathway (Figure 5D). However, GSEA relies on curation to group genes together in a 291	
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pathway, while ADAGE directly learns biological features from the data even in the absence of 292	

annotation. In well-studied species like P. aeruginosa, we were readily able to predict 293	

modulation of the T3SS pathway by looking at the identities of the HW genes of Node 39. In less 294	

well-studied species, the knowledge of genes in differentially active nodes would provide the 295	

basis for hypothesizing on the nature of involved pathways based on analysis of co-regulated 296	

genes, bioinformatics analysis of genes, and targeted genetic and biochemical studies.  297	

 298	

Comparison with PCA and ICA 299	

PCA (47, 48) and ICA (49, 50) are two frequently used feature construction methods in 300	

bioinformatics that have also been applied to the analysis of gene expression data. To compare 301	

ADAGE extracted features to those from these methods, we performed analyses with each that 302	

were parallel to our ADAGE analysis. To compare with the 50 node ADAGE model, we 303	

analyzed the first 50 components in PCA and ICA applied to the expression compendium used to 304	

create ADAGE. These components explained >80% of variance in the compendium. For analysis 305	

of the DNA hybridization experiment of PAO1 and PA14 strains, we found PC4, PC5 in PCA 306	

and IC26, IC18 in ICA as the two most differentially active components in each approach 307	

(Supplementary Figure 1A). With ADAGE we analyzed only the most differentially active node, 308	

but we evaluated the top two components for PCA and ICA to avoid missing potential signals in 309	

the second most differentially active component. While many of the genes that were different in 310	

the genome hybridization comparison of strain PA14 and strain PAO1 were HW genes in PC4, 311	

PC5, IC26, and IC18, these components failed to accurately capture strain variations in other 312	

datasets (Supplementary Figure 1B). In the dataset E-GEOD-7704, P. aeruginosa RNA from the 313	

CF sputum was analyzed directly and RNA was harvested from the same set of sputum-derived 314	
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stains after growth ex vivo. While ADAGE Node 30 differentiated the samples comprised of 315	

clinical strains from samples containing only strain PAO1, the samples containing clinical strains 316	

were heterogeneous and not uniformly different from the PAO1 samples with respect to PC4 317	

(Figure S1) indicating that strain differences were not reliably captured by this component. 318	

Inspection of HW genes for PC4 revealed that it not only contained strain-specific genes but also 319	

a significant number of Anr-regulated genes (FDR q value = 1.0e-42), so the differential activity 320	

of PC4 is also likely to be influenced by oxygen availability; the increased activity of PC4 in the 321	

clinical strain samples from the lung samples in comparison to clinical strain samples grown in 322	

the laboratory is consistent with the finding that P. aeruginosa is in an oxygen limited state in the 323	

CF lung (51) (Supplementary Figure 1B). Because PCA seeks to find the direction of the largest 324	

variance, each component can become a mixture of highly variable processes that are not 325	

biologically related. While ICA decomposes data into independent signals and does not have this 326	

property, we found that the activities of strain-associated components extracted by ICA were not 327	

consistent within the replicates of individual datasets. 328	

    As in our ADAGE analyses, we also evaluated PCA and ICA components representing 329	

oxygen abundance and Anr activity. PC4 (FDR q value = 1.0e-42), PC7 (FDR q value = 4.5e-46), 330	

IC14 (FDR q value = 3.2e-20), and IC49 (FDR q value = 1.1e-19) were the components most 331	

enriched in Anr-regulated genes. While these PCA and ICA components were able to identify 332	

trends in which Anr-regulated genes were differentially expressed in response to oxygen, the 333	

resolution of the Anr signal was notably better when the ADAGE model was used when all of 334	

the experiments were considered (Supplementary Figure 2). For example, PC7 was comparable 335	

to ADAGE Node 42 in many experiments, Node 42 outperformed PC7 in the analysis of the 336	
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Anr-microarray dataset, because PC7 contains other processes that also changed between wild 337	

type and anr mutant. 338	

    Finally, we compared the results from the analysis of E-GEOD-9989, which compared the 339	

effects of tobramycin on CFBE-associated P.aeruginosa, using ADAGE, PCA, and ICA. PCA 340	

agreed with ADAGE in terms of identifying changes in F-type ATPase-associated genes and 341	

transcripts associated with siderophore biosynthesis. In the ADAGE model, the node with the 342	

greatest mean difference between tobramycin-treated and untreated cultures (Node39) was most 343	

enriched in T3SS related genes (Figure 5) and this was consistent with the T3SS-dependent 344	

phenotype reported by the authors (43, 45). A similar analysis performed by PCA and ICA did 345	

not indicate changes in the T3SS pathway in the most strongly differentially active components 346	

(Supplementary Figure 3). 347	

    In summary, our comparisons with PCA and ICA showed that the biological features 348	

extracted by ADAGE were not captured clearly by either of these algorithms. While we expect 349	

that PCA and ICA captured certain other biological signals more effectively than ADAGE, our 350	

results demonstrate that ADAGE complemented these methods by identifying distinct signals. 351	

 352	

ADAGE Model Availability 353	

Based on our own usage, we anticipate that our ADAGE model would provide a useful starting 354	

point for biological discovery. We have provided two example ways to leverage the model. One 355	

mode of analysis that we have demonstrated begins with the identification of differentially active 356	

nodes in a relevant dataset (e.g. the genome hybridization experiment in Figure 3 and the 357	

response to tobramycin experiment in Figure 5). By analyzing HW genes and gene pathways 358	

associated with differentially active nodes, we gained a better understanding of differences 359	
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between samples and revealed the detection of subtle but consistent signals. Heatmaps showing 360	

differential node activities among samples in each experiment in the P. aeruginosa gene 361	

expression compendium were generated and are available at 362	

http://adage.greenelab.com/Paeruginosa-da/activity_heatmaps/index.html.  363	

Another mode of analysis by ADAGE that we demonstrated begins with an 364	

investigator-curated list of genes related to a specific process or pathway (e.g. the Anr regulon). 365	

By examining nodes associated with the process, researchers may be able to identify novel genes 366	

associated with the process as well as other datasets in which the process is different. To 367	

facilitate such analyses, the HW genes for each node are provided in Supplementary File 3. The 368	

complete ADAGE model, for application to newly performed experiments, is available in 369	

Supplementary File 4. Software implementing ADAGE and performing all of the analyses 370	

described in this manuscript is available from https://github.com/greenelab/adage. 371	

 372	

Discussion 373	

Our ADAGE method identifies biological signals (represented by nodes) by intentionally 374	

integrating noise into gene expression data prior to the data reconstruction process and model 375	

building. Thus, this method is well suited to the analysis of heterogeneous gene expression data 376	

generated in different labs, from experiments with different strains and different growth 377	

conditions. The ADAGE methodology differs from other analyses of genome-wide gene 378	

expression across large collections, which have generally been performed on homogenous 379	

collections (52, 53) or through supervised algorithms that can use known aspects of biology to 380	

separate biological signal from noise (12, 54). The P. aeruginosa ADAGE model, created 381	

without the use of any information on genome structure or gene functions, found that 382	
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co-operonic genes and adjacent non-co-operonic genes were significantly more likely to be 383	

involved in similar processes. Furthermore, genes with similar gene-node relationships were 384	

much more likely to share KEGG function than would occur by chance. Because the building 385	

phase of ADAGE does not require any pre-specified knowledge, we anticipate that ADAGE will 386	

find use in organisms with well-curated genomes as well as in organisms for which genome 387	

curations are lacking. In organisms without curation, the ADAGE model may guide researchers 388	

towards gene sets of interest for analysis using additional computational and experimental 389	

analyses. 390	

Analysis of existing and newly generated gene expression data using the ADAGE model 391	

found expression signatures that correlate with the comparison of different strains, and the 392	

response to low oxygen. Many genes contribute to the activity scores of each node, thus node 393	

activities can represent patterns resulting from direct or indirect aspects of a given process and 394	

may be useful in identifying patterns that are apparent in only a subset of cells in a population. 395	

Extracting these subtle but consistent changes from single experiments is difficult or impossible 396	

and requires integrative analyses leveraging information from the entire compendium.  397	

Techniques like ADAGE, allow multi-process membership, which means that genes can be 398	

assigned to multiple distinct processes simultaneously and these processes can differ in activity 399	

independently, as is often the case in biology. In this way, ADAGE is distinct from clustering- or 400	

biclustering-based techniques such as cMonkey (55), which identify subsets of genes 401	

co-regulated in subsets of experiments. ADAGE is comparable to PCA and ICA, as each gene 402	

contributes to nodes via weight, and all nodes have a specific activity in each sample. Through 403	

comparison with PCA and ICA, we confirmed that ADAGE extracts signals distinct from these 404	

two commonly used feature construction methods. We found that PCA grouped multiple 405	
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biological sources of variability into top components. Though ICA extracts independent signals, 406	

it was not able to capture the same key features of the data captured by ADAGE (strain variation 407	

and oxygen abundance). The comparison of ADAGE to PCA and ICA found that ADAGE was 408	

superior in grouping replicate samples in the same dataset, and this may reflect ADAGE’s 409	

strength in dealing with noisy measurements. We propose that both PCA and ADAGE are 410	

complementary analytical tools for the unsupervised analysis of large-scale collections of gene 411	

expression data. PCA may be preferred for a quick overview of the major sources of variations in 412	

a dataset, while ADAGE may excel in extracting differentially active biological processes.  413	

As next generation sequencing facilitates the creation of large gene expression compendia in 414	

many organisms, algorithms capable of converting those data into insights about the underlying 415	

biological system will be required. In order to capitalize on the wealth of knowledge in large 416	

community datasets, communities need to agree upon standardized gene nomenclature for alleles 417	

across species. Alternatively, methods to extract allele information for use when two different 418	

strains are compared must be developed. In addition, the inclusion of detailed experimental 419	

information upon the deposition of gene expression data into public databases will improve the 420	

ability for community-wide data to be used by many to understand pathways and processes of 421	

interest.   422	

We demonstrated the biological relevance of a 50-node ADAGE model, and expect that 423	

increasing node number will allow for the further separation of distinct processes with 424	

independent transcriptional signatures. Denoising autoencoders and other deep learning based 425	

methods allow for a stacked representation that maps well to layers of biological regulation. 426	

Future work will focus on building larger and deeper networks to better model complex 427	

biological systems and on incorporating multiple data types into a single model. As reviewed by 428	
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leaders in the field, unsupervised use is likely to be the future of deep learning (56) and we 429	

anticipate that ADAGE and other unsupervised deep learning based approaches will continue to 430	

complement traditional feature extraction methods such as PCA and ICA in this context. We 431	

anticipate that the collection of new data, particularly data measuring new environments and 432	

genetic perturbations, will continue to refine and improve the P. aeruginosa ADAGE model over 433	

time.  434	

 435	

Materials and Methods 436	

Construction of a Gene Expression Compendium for P. aeruginosa.  437	

We downloaded a complete collection of P. aeruginosa gene expression datasets measured on 438	

the Affymetrix platform GPL84 with available supplemental CEL files from the ArrayExpress 439	

Archive of Functional Genomics Data (21) on 02/22/2014. This resulted in a collection of 109 440	

distinct datasets covering 950 individual samples with measurements for 5549 genes. We first 441	

combined these samples generated by different laboratories into one large expression 442	

compendium using the rma function with quantile normalization provided in Bioconductor’s affy 443	

package in R (57) and the resulting expression measurements are in log2 scale. For autoencoder 444	

construction, we linearly transformed the expression range of each gene to be between 0 and 1. 445	

Validation datasets from the Pseudomonas GeneChip platform were processed concurrently 446	

through the rma function and linearly zero-one normalized using the same expression range as 447	

the compendium.  448	

For RNA-Seq datasets, we retained genes intersecting with those existing in the 449	

compendium. The expression values of genes contained in the compendium but not measured by 450	

RNA-Seq were set to zero. To address the dynamic range differences between microarray and 451	
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RNA-Seq platform, we applied the Training Distribution Matching (TDM) method to normalize 452	

RNA-Seq data and make them comparable to microarray data (42). As with the microarray 453	

validation sets, a linear zero-one normalization was performed after TDM. 454	

 455	

Training the ADAGE Model  456	

We constructed a denoising autoencoder to summarize the P. aeruginosa gene expression 457	

compendium covering diverse genetic and environmental perturbations. We used the Theano (58) 458	

Python library to implement DA training. To train one sample, we randomly corrupted a 459	

percentage of the genes (termed the corruption level) by setting their input values to 0 (18). The 460	

corrupted sample x serves as input to the DA. By multiplying the corrupted sample x with a 461	

weight matrix W, we calculated the activity vector A (Formula 1). This activity vector 462	

represented the activities of each hidden node without considering the hidden bias vector b or the 463	

sigmoid transformation. To calculate the hidden representation y, we added the activity vector to 464	

b and applied a sigmoid transformation (Formula 2). Next, we computed the reconstructed input 465	

z by multiplying y with the transpose of the weight matrix W’ and adding visible bias vector b’ 466	

(Formula 3). Accurately reconstructing the input value thus represented a problem of fitting 467	

appropriate weight matrix and bias vectors to minimize the cross-entropy L
H between the initial 468	

input and the reconstructed input (Formula 4). To accelerate the training process, we trained the 469	

DA in batches of samples, and the number of samples in each batch was termed the batch size. 470	

The reconstruction error was optimized through stochastic gradient descent with the weight 471	

matrix W and bias vectors b, b’ being updated in each batch. The magnitudes of weight and bias 472	

changes were controlled by a specified learning rate. Training proceeded through epochs, and in 473	

each epoch training used sufficient batches to include all training samples. Training stopped once 474	

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 5, 2015. ; https://doi.org/10.1101/030650doi: bioRxiv preprint 

https://doi.org/10.1101/030650
http://creativecommons.org/licenses/by/4.0/


	

	 22	

the specified number of epochs (termed the epoch size) was reached. A detailed description of 475	

training for denoising autoencoders has been provided by Vincent et al (18). 476	

(1)	𝐴	 = 𝑊𝑥	477	

(2)	𝑦	 = 𝑠 𝐴 + 𝑏 	478	

(3)	𝑧	 = 𝑠 𝑊0𝑦	 + 𝑏0 	479	

(4)	𝐿3(𝑥, 𝑧) 	= 	− [𝑥7𝑙𝑜𝑔𝑧7 	+	 1 − 𝑥7 𝑙𝑜𝑔(1 − 𝑧7)]
<

7=>

	480	

 To allow the manual interpretation of nodes, we fixed the number of nodes at 50 and named 481	

them “Node##” based on the order in which they appear. We used the parameters identified as 482	

suitable for a gene expression compendium by Tan et al. (59): a batch size of 10 over 500 483	

training epochs with a corruption level of 0.1 and a learning rate of 0.01. 484	

 After the DA was fully trained and the weight matrix was fixed, we calculated the activity 485	

value for each specific node for each specific sample in the training pool by computing the dot 486	

product of the row vector for that node in the weight matrix and the gene expression vector of the 487	

sample. We calculated the activity values of samples in newly generated validation experiments, 488	

which were not included in the training pool, in the same manner.  489	

 490	

Identification of High-weight Genes for each ADAGE Node 491	

Each gene was connected to each node through a value in the weight matrix, W. For each node, 492	

this learned vector of weights connected that node to each gene. We calculated the standard 493	

deviation of each node’s weight vector and defined a set of high weight (HW) genes for the node 494	

that had weights two or more standard deviations away from the mean. This set of HW genes 495	

summarized the genes with the strongest influence on the node’s activity. 496	
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 497	

Association of P. aeruginosa Operons with Specific ADAGE Nodes 498	

To associate a specific set of operons to a node, we carried out a Gene Set Enrichment Analysis 499	

(GSEA) (46) for weight vectors. The weight vector corresponding to each constructed node was 500	

used as the weighted gene list. The curated operon information was downloaded from the 501	

Database of prOkaryotic OpeRons (DOOR) (24). We considered operons consisting of three or 502	

more genes as potential target gene sets in GSEA, and we used a false discovery rate threshold of 503	

0.05 to identify significant associations. We calculated the overall coverage of operons as the 504	

ratio of the number of operons significantly associated with at least one node to the total number 505	

of operons curated in DOOR. Operons significantly associated with each node are provided in 506	

Supplemental File 4. 507	

 508	

Evaluation of the Association Between Gene Positions and ADAGE Weights 509	

Bacterial genes are grouped by function in the genome. We tested the ADAGE model’s ability to 510	

capture such relationships in the learned weight matrix. We fitted a logistic regression model 511	

(Formula 5) with the goal of predicting whether or not a gene would be HW for a node based on 512	

two factors: the number of genes between the pair of genes (d) and whether or not it is 513	

co-operonic with a HW gene in the same node (c). We also included an interaction term between 514	

d and c in the model. We considered d values in the range from 1 to 10 and disregarded genes 515	

that were more than 10 genes away from the gene in question. We tested the significance of the 516	

coefficients on d, c, and the interaction term to assess the extent to which each indicated a 517	

relationship with a gene’s likelihood of being HW in a node. 518	

(5)	𝐻𝑊	 = 𝑑	 + 𝑐 + 𝑑×𝑐 519	

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 5, 2015. ; https://doi.org/10.1101/030650doi: bioRxiv preprint 

https://doi.org/10.1101/030650
http://creativecommons.org/licenses/by/4.0/


	

	 24	

 520	

Gene Function Assignment with the ADAGE Weight Matrix 521	

We assessed the extent to which the ADAGE model captured genes’ functions. We employed a 522	

simple 1-nearest-neighbor classifier to assign the function of a gene. Each gene was connected to 523	

nodes through a vector of 50 weights (for a 50 node ADAGE model). For a target gene, we 524	

calculated the Euclidean distance between that gene’s weight vector and the weight vectors of all 525	

other genes. We considered the nearest neighbor to be the gene with the smallest distance. We 526	

assigned the KEGG function or functions of this closest neighbor to the target gene. To evaluate 527	

this assignment, we used KEGG pathways as the gold standards for gene function. Because one 528	

gene could be annotated with multiple KEGG pathways, we used two assessment criteria. In the 529	

first, we considered a function assignment to be correct as long as there existed an overlap 530	

between the assigned pathway and the gene’s annotated pathways. As a second evaluation, we 531	

used a more stringent definition of a correct assignment that required all of the predicted and 532	

annotated pathways to match. To evaluate the extent to which the ADAGE weight matrix 533	

captured gene functions, we compared observed accuracies with the performance of 1000 weight 534	

matrices with randomly permuted gene labels. These matrices preserve the overall weight 535	

distributions for each node but eliminate the relationship between genes and their weights. The 536	

distribution of the prediction accuracy using permuted weight matrices was plotted. 537	

 538	

Analysis of Sequence Divergence and Gene Expression using Affymetrix P. aeruginosa Gene 539	

Chips.  540	

To compare P. aeruginosa wild type and ∆anr on airway epithelial cells, P. aeruginosa biofilms 541	

were grown on airway epithelial cells homozygous for the CFTR∆F508 mutation (CFBE41o−) 542	
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(60) as described previously (43, 61). Data were comprised of 3 biological replicates each for 543	

wild type PAO1 and the ∆anr mutant. Briefly, stationary phase cultures of P. aeruginosa grown 544	

in LB shaken at 37 °C were washed x2 and resuspended in minimal essential media (MEM) at an 545	

OD600=0.5. These suspensions were applied to confluent CFBE41o− cells grown in 24-well 546	

plastic dishes (MatTek Corp., Ashland, MA) and incubated at 37 °C, 5% CO2 for 1 h, at which 547	

point planktonic cells were aspirated away and media was replaced. After an additional 90 min, 548	

planktonic cells were removed again, and the monolayer was washed x2 with PBS. Epithelial 549	

cells and attached bacterial biofilms were treated with lysozyme, and RNA was harvested using 550	

an RNeasy kit (Qiagen). RNA samples were treated with RQ1 DNAase from Promega to remove 551	

contaminating DNA, and a MICROBExpress Bacterial mRNA Enrichment Kit (Life 552	

Technologies) was used to deplete eukaryotic RNA from the samples. 553	

 For each RNA sample, cDNA samples were synthesized with Super-script III reverse 554	

transcriptase (Invitrogen, Carlsbad, CA) and NS5 primers instead of random hexamers. The 555	

cDNAs were terminally labeled with biotin-ddUTP (Enzo Bio-Array terminal labeling kit, 556	

Affymetrix) and hybridized to Affymetrix Pseudomonas GeneChips according to the 557	

manufacturer’s instructions with the GeneChip fluidics station 450 (Affymetrix). GeneChips 558	

were scanned with the GeneChip Scanner 3000 7G (Affymetrix) in the Dartmouth Genomics 559	

Shared Resource laboratory. The BioConductor Affy library was used to process CEL files as 560	

described above for the compendium. Data have been uploaded to GEO and are available under 561	

GSE67006. 562	

 For the genome hybridization analysis of P. aeruginosa strains PA14 and PAO1, genomic 563	

DNA was isolated, digested using DNAse I, denatured at 100˚C for ten minutes, then labeled as 564	

described above. The GeneChips were processed as described above. Data have been uploaded 565	
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to GEO and are available under GSE67038. 566	

 567	

Node Interpretation with GO and KEGG 568	

We used the experimentally-derived annotations in Gene Ontology (GO) (29, 62) and KEGG 569	

pathways (25) of P. aeruginosa to identify the biological features captured by each node. Only 570	

terms that had more than 5 genes but fewer than 100 genes were considered. We calculated an 571	

odds ratio that indicated how over-represented each GO/KEGG term was in each node’s HW 572	

genes. Top 10 enriched pathways for some selected node are listed in Supplemental Table 1 and 573	

the full list for all 50 nodes can be downloaded from the online repository 574	

(https://github.com/greenelab/adage/blob/master/Node_interpretation/GO_KEGG_enrichment.tx575	

t). 576	

 577	

Sequence alignment and comparison across strains 578	

The DNA sequences of 13 strains that have been sequenced before were obtained from the 579	

Pseudomonas Genome Database (63). Orthologous genes across 13 strains were aligned using 580	

Clustal Omega (64) via the EMBL-EBI webserver (65), and the alignment results including 581	

percent identity matrices and phylogenetic trees were downloaded. The phylogenetic trees in 582	

Figure 3D were drawn using Tree Graph 2 (66). 583	

 584	

Principal Component Analysis and Independent Component Analysis 585	

PCA and ICA were performed in R using prcomp function and fastICA function from the 586	

fastICA package (67). For PCA we used the matrix of variable loadings as an analog to 587	

ADAGE’s weight matrix. For ICA, we used the product of the pre-whitening matrix and the 588	
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estimated un-mixing matrix as the weight matrix, which first projects data onto the first 50 589	

principal components and then projects them onto the independent components. HW genes for 590	

each component were defined in the same manner as with ADAGE: genes outside of two 591	

standard deviations of each method’s weight distribution. 592	

 593	

ADAGE Model and Source Code Availability 594	

To facilitate the use of ADAGE by the P. aeruginosa research community, we have generated an 595	

ADAGE analysis of all of the publically-available P. aeruginosa gene expression experiments 596	

included in our compendium (Supplemental File 5) and provide open-source code to perform 597	

construction of ADAGE models and their application to newly generated data 598	

(https://github.com/greenelab/adage ). 599	
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Figure legends 892	

Figure 1: Analysis using Denoising Autoencoders of Gene Expression (ADAGE). For one 893	

sample in the expression compendium (one column in the figure with red or green colors 894	

representing expression values of various genes), random noise is first added to the expression 895	

value. The corrupted expression values are then encoded into 50 nodes through a gene-to-node 896	

weight matrix, which connects each gene to each node. A red solid line represents a high-weight 897	

relationship between a gene and a node, indicating that gene has a stronger influence on the 898	

node’s activity than other genes (connected by black dotted lines). Node activities derived from 899	

this sample are decoded back into reconstructed expression values through the same weight 900	

matrix. Samples in the compendium are trained through the encoding and decoding steps with 901	

the goal of minimizing differences between initial expression values and reconstructed 902	

expression values. The resulting ADAGE model constructs nodes from genomic measurements 903	

that can be interpreted as biologically meaningful features such as genome divergence among 904	

strains and transcriptional responses to oxygen abundance. 905	

 906	

Figure 2: ADAGE weights reflected gene’s common regulatory and process features. (A) 907	

HW genes defined in ADAGE. The distribution of edge weights that connect genes to each node, 908	

e.g. Node 42 shown here, is approximately normal. HW genes in a node were defined as genes 909	

whose weights were more than two standard deviations from the mean (shown in red). (B) The 910	
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contributions of individual genes and operons to the ADAGE model. The outermost ring shows 911	

those genes that are HW within at least one node. The color intensity reflects how many nodes 912	

(ranging from 1 to 21) a gene was connected to at a high weight. The second to outermost circle 913	

shows operons that were significantly associated with at least one node (green bars) and those 914	

that were not significantly associated with any of the 50 nodes (black bars). The inner two circles 915	

represent the HW genes in nodes 42 and 30 (outside to inside). The labeled genes are those 916	

identified in Trunk et al. (37) and Jackson et al. (36) as regulated by Anr and they are colored in 917	

red among HW genes of nodes 30 or 42. The HW genes in Node 42 overlapped extensively with 918	

Anr regulated genes, which suggested that Node 42 captured the regulatory signature of Anr. (C, 919	

D) ADAGE captured principles of bacterial genome organization. (C) In the bacterial genome, 920	

genes are arranged into operons, which the ADAGE model recognized by connecting 921	

co-operonic genes to a shared node. (D) The regulatory role of genome positioning in P. 922	

aeruginosa was captured by ADAGE. A logistic regression analysis revealed that co-operonic 923	

genes (blue line shows model; bars show observed) were more likely to be co-HW genes than 924	

non-co-operonic genes (red). As the number of genes between two genes on the chromosome 925	

increased, they were less likely to be co-HW. The black dotted line represents the background 926	

frequency of HW genes across all nodes. (E, F) ADAGE captured gene’s functional features. (E) 927	

We found the closest neighbor of a target gene based on the Euclidean distance between the 928	

weight vectors connecting each gene to 50 nodes and assigned the closest neighbor gene’s 929	

function to the target gene. (F) The accuracy of gene function assignment using ADAGE model 930	

(45%, pointed by the red arrow) was much higher than the accuracies achieved with 1000 931	

randomly permuted control models (distribution shown in blue). Here we considered a function 932	
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assignment as positive if one or more functions assigned by the closest neighbor gene match the 933	

target gene’s annotations.  934	

 935	

Figure 3: ADAGE extracted features that represent sequence differences between strains. 936	

(A) ADAGE node activity heatmap analysis of the genome hybridization of P. aeruginosa 937	

strains PA14 and PAO1 to Affymetrix Pseudomonas GeneChip. The	heatmap	shows	the	938	

ADAGE	activity	differences	of	each	node	in	each	strain	when	the	genome	hybridization	data	939	

were	analyzed. The activity values of Node 30 most strongly differentiated strains PAO1 and 940	

PA14. (B) Analysis of mean centered Node 30 activity values clearly distinguished strain PAO1 941	

from other P. aeruginosa strains (HM4, E601) or uncharacterized CF strains in RNA expression 942	

experiments. For each heatmap, the complete range of mean-centered node activities is used to 943	

generate the color range. The range of activity values in experiments that compare strains is at 944	

least 40 (-20 to 20) where as the range of Node 30 activities was much less in a dataset in which 945	

only PAO1 or its derivatives were analyzed. (C) Pair-wise percent sequence identities between 946	

orthologous genes from 13 P. aeruginosa strains. Two operons that contain the top 5 HW genes 947	

in Node 30 are analyzed. HW genes are colored in red. (D) Phylogenetic trees of pilA (most HW 948	

gene) and nadC (pilA’s immediate neighbor). The two trees share the same distance per branch 949	

length unit and the longer branch represents more genetic changes. 950	

 951	

Figure 4: Node 42 reflected Anr activity in both existing and new experiments. (A) 952	

Mean-centered activity heatmaps of Node 42 for four datasets grown in liquid culture that 953	

examined anr mutants or altered oxygen levels. In E-GEOD-17179 and E-GEOD-17296, the low 954	

activity value (blue or grey in anaerobic condition) of Node 42 corresponded to anr deletion, and 955	
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similar effects were not observed for dnr or roxSR mutants. In E-GEOD-17179 and 956	

E-GEOD-33160, the oxygen bar represents whether or not P. aeruginosa is in an aerobic or 957	

anaerobic environment. E-GEOD-52445 is a high-time-resolution experiment transiting from 958	

high oxygen tension to low oxygen tension, which is then reversed. The activity value of Node 959	

42 was negatively correlated to the oxygen abundance in the microbes’ living environment. 960	

These results reflected Anr’s role as a transcriptional activator in the context of low 961	

environmental oxygen. (B) We performed a validation experiment in which P. aeruginosa wild 962	

type and anr mutant cells were grown as microcolonies on CF airway epithelial cell monolayers. 963	

Although the validation set presents a distinct experimental system from the liquid culture based 964	

experiments in A, Node 42 activity reflected the anr mutant, indicating the robustness of the 965	

ADAGE model. (C) We assessed the ADAGE model on two RNA-Seq datasets both with anr 966	

mutant and wild type P. aeruginosa. Node 42 again differed (FDR q value of 0.05 in PAO1 967	

strain and 0.10 in J215 strain) when the wild type and anr mutant strains were compared in both 968	

strains. 969	

 970	

Figure 5: Re-analysis an existing experiment using ADAGE. (A) Node activity heatmap for 971	

the dataset E-GEOD-9989. Node 39, 16, 29 are the three nodes that most strongly differentiate 972	

control samples from those challenged with tobramycin. (B) KEGG pathway analysis of 973	

differentially active nodes. Top 5 most enriched KEGG pathways (including ties) based on odds 974	

ratios are shown for each node. Nodes 39, 16, 29 each represent a cellular process being 975	

influenced in the experiment (in red), especially Node 39, which captures the subtle change in 976	

the T3SS pathway. (C) Volcano plot showing differentially expressed genes in E-GEOD-9989. 977	

The horizontal dotted red line indicates adjusted p value cutoff of 0.05 and the two vertical lines 978	
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correspond to log2 fold change of -1 and 1. Genes in the KEGG T3SS pathway 979	

(KEGG-Module-M00332) are highlighted in red. Although only two genes pass both the 980	

significance cutoff and fold change cutoff, genes in the pathway show consistently lower 981	

expression values in tobramycin treated samples. (D) Gene Set Enrichment Analysis of the T3SS 982	

pathway. GSEA also captured the consistent differential expression pattern of T3SS, which it 983	

ranked as the 12th most significantly enriched pathway. 984	

 985	

Supplemental Material 986	

Supplementary Figure 1: Comparison of PCA and ICA with ADAGE for the DNA 987	

hybridization experiment and extraction of strain-specific features. (A) In ADAGE, Node30 988	

most differentiated PAO1 strain from PA14 strain. PC4 and PC5 in PCA and IC26 and IC18 in 989	

ICA were the components that differed the most between two strains. Top two components in 990	

PCA and ICA, as opposed to the top one component for ADAGE, were evaluated to give each 991	

method the benefit of the doubt. (B) Node30 from ADAGE clearly separates PAO1 strain from 992	

other strains in three independent datasets. PC4, PC5, IC26, and IC18 do not effectively capture 993	

the strain variations across the three datasets. 994	

 995	

Supplementary Figure 2: Comparison of PCA and ICA with ADAGE for the 996	

transcriptional signal of Anr and oxygen abundance. Node42 from ADAGE robustly reflects 997	

Anr activity in varying conditions including aerobic/anaerobic environment, 998	

exponential/stationary growth phase, anr knockouts grown on CFBE, and anr knockouts in 999	

PAO1 and clinical isolate (J215). PC4 does not capture Anr activity in E-GEOD-17179 and 1000	

E-GEOD-17926. PC7 does not capture anr mutant P. aeruginosa grown on CFBE (the color 1001	
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key’s small range indicates PC7 cannot differentiate anr mutant from wild-type). IC14 and IC49 1002	

exhibit non-Anr patterns in multiple experiments. 1003	

 1004	

Supplementary Figure 3: Analyzing dataset E-GEOD-9989 with PCA and ICA. (A) A 1005	

heatmap representing principal component values shows that PC9, 1, 20, and 4 (in order of 1006	

absolute difference in mean activities between two conditions) are the PCs most differentially 1007	

active between samples challenged with tobramycin and controls. KEGG pathway analysis of the 1008	

four PCs identified pathways known to be influenced in the dataset, such as F−type ATPase, 1009	

prokaryotes and chloroplasts and Biosynthesis of siderophore group nonribosomal peptides, but 1010	

did not reveal the subtle changes in the T3SS pathway. (B) A heatmap representing independent 1011	

component values shows that IC11 is strongly differentially active in E-GEOD-9989. However, 1012	

it also lacked an association with the T3SS pathway. 1013	

 1014	

Supplemental Table 1: Top 10 associated GO terms and KEGG pathways for each node 1015	

mentioned in the paper. 1016	

Supplemental Table 2: Anr-regulated gene list used to identify nodes significantly enriched of 1017	

genes regulated by Anr. 1018	

Supplemental File 1: Psuedomonas	 aeruginosa	 gene	 expression	 compendium.	 This	 file	1019	

covers	 all	 samples	 in	 publically	 available	 datasets	 collected	 before	 Feb.	 2nd	 2014.	 They	1020	

were	 combined	 uisng	 the	 rma	 function	 with	 quantile	 normalization	 provided	 in	1021	

Bioconductor's	affy	R	package.	Only	transcripts	with	PA	IDs	were	maintained.	1022	

Supplemental File 2: ADAGE	weight	matrix.	This	file	stores	each	gene's	weight	contribution	1023	

to	each	node.	1024	
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Supplemental File 3: HW	genes	for	each	node	and	their	corresponding	weights	in	that	node.	1025	

Each	column	in	this	 file	either	stores	the	 list	of	high-weight	genes	that	are	outside	of	two	1026	

standard	 deviations	 in	 the	 node's	 weight	 distribution	 or	 stores	 the	 list	 of	 genes’	1027	

corresponding	weights.	High-weight	gene	columns	are	ordered	by	weight.	1028	

Supplemental File 4: Operon-node	 association	 in	 the	 ADAGE	model.	 Significance	 for	 the	1029	

association	of	 co-operonic	genes	with	a	given	node	 indicating	 that	 co-operonic	genes	are	1030	

likely	to	have	similar	high	weights	in	a	node.	Only	significant	node-operon	relationships	are	1031	

listed.	Association	with	a	node	in	this	analysis	does	not	imply	that	the	genes	in	the	operon	1032	

are	necessarily	HW	(outside	of	2	std)	in	that	node.	 	1033	

Supplemental File 5: ADAGE	node	activities	for	each	sample.	The	node	activity	is	calculated	1034	

as	the	dot	product	of	the	sample's	expression	vector	and	the	node's	weight	vector.	 	1035	
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