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Figure 4. Demonstrative example of fitting model PCFs to the empirical PCF of a disk point
pattern
The empirical PCF of the point pattern in the left is calculated, and is fit to the theoretical PCFs
of various cluster processes. Fit results (κ̂, r̂t, ∆̂), ∆̂ being the value of the objective function for the
best fit parameters, called fit residual: Gaussian (38.11, .028, .418), disk (40.64, .052, .435), Cauchy
(21.55, .051, .284), varGamma (27.86, .040, .350)), whereas the true values of the disk point pattern
are (κ = 50, rt = R = .05). Note that r̂t is defined differently for different processes (Table 1). The
Cauchy distribution is found to have the best fitness, whereas the disk one — the true model —
has the worst. The p = ra/rt corresponding to disk distribution, with the estimated parameters
above is p̂ = 1.44. The maxima of L(r)− r is at r̂a = 0.072, providing a r̂t = r̂a/p = .05, equal to
the true R.
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a b

Figure 5. a Optimal Least Square Error fits for different models. For parameter values a = 1 and
d = 10, the PCFs corresponding to different models in Table 1 is plotted, with the parameters
scaled as per Table 3. For simplicity, only r ≥ 1 is shown. b Mean estimates of N (number of
points per cluster) from fitting the empirical PCF of Gaussian clustered point patterns with (1)
Gaussian PCF (2) the exponential approximation ga(r)(results from 20 simulations on a unit
square window). The results broadly agree with the theoretical prediction of l = 1.48, approaching
it with larger Ntrue. A plot with error bars can be seen in Supporting Material Figure 5.
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1 Derivation of f(p) = κr2
t and similar expressions for p

Here we derive the relation in the case of Neyman-Scott process with Gaussian shaped clusters. The
derivation in the case of other distributions are similar, starting from the expressions in Table 1, Main
Text.

We start from the K-function for Gaussian shaped clusters:

K(r) = πr2 +
1

κ
(1− exp(

−r2

4σ2
)). (1)

In the form K(r) = πr2 + 1
AH(r) as in Main Text, this corresponds to A = κ,H(r) = 1− exp(−r

2

4σ2 ) and

h(r) = r
2σ2 exp(−r

2

4σ2 ). Substituting in the equation

A =
h(ra)

2

4π(H(ra)− rah(ra))
(2)

from Main Text and rearrangement will give the relation as in Table 2, Main Text.

2 95% scale for various models

These were found by solving the CDF
∫ r

0 fpdf (r)dr = .95 for r, where fpdf (r) is the radial probability
density function for each model(1–3). In the case of Cauchy and varGamma models, marginal PDFs of r
in polar coordinates were obtained from the bivariate PDFs in cartesian coordinates by standard trans-
formation(multiplication by 2πr). The results are given in the following table, along with the 95% limits.
Kν(.) denotes the modified Bessel function of the second kind.

1
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Figure 1: Comparison of p = ra/rt from theory and simulations. Figure 1 in Main Text with error bars(σ).

Model fpdf (r) r.95 = u.95rt Lower bound for p.95

Gaussian r
σ2 exp

(
− r2

2σ2

)
2.448σ .914

disk 2r
R2 .975R 1.329

Cauchy r
ω2

(
1 + r2

ω2

)−3/2
4.469ω .568

VarGamma
4√2r3/4K− 1

4

(
r
η

)
η7/4Γ( 3

4)
3.547η .505

3 Radius of maximal aggregation in the case of K̃(r, n) of Lagache et al

Setting ∂K̃(r,n)
∂r = 0 for disk clusters as discussed in Main Text, followed by routine manipulations lead us

to the relation:

−
0.0210642p2

((
16 − 4p2

)
cos−1(0.5p) + p

√
4− p2

(
p2 − 4

)) (
6.0286m3 + 7.35489m2p− 18.9394mp2 + np3

)
p2 − 4

+ 0.00789906p
(
2.45163m2 − 12.6263mp+ np2

) (√
4− p2

(
p2 + 2

)
p− 8p2 cos−1

(p
2

)
− 8 sin−1

(p
2

))
+0.0317468

(
m3 + 1.22m2p− 3.14159mp2 + 0.165876np3

) (√
4− p2

(
p2 + 2

)
p− 8p2 cos−1

(p
2

)
− 8 sin−1

(p
2

))
= 0, (3)

where p = r̃a/R, m = side/R where A = side2, P = 4.side.
The contour plot of p vs m, based on this expression, is shown in the Main Text, for different values of

n.

2
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In the case of Gaussian clusters, the relation is simpler:

m3

(
p2 − 2e

p2

4 + 2

)
+m2p

(
1.22p2 − 3.66e

p2

4 + 3.66

)
+mp2

(
−3.14159p2 + 12.5664e

p2

4 − 12.5664

)
+ np3

(
0.165876p2 − 0.82938e

p2

4 + 0.82938

)
= 0, (4)

and the corresponding contour plot is provided in Main Text.

4 Derivation for bias in PCF based on Least Squared Error

We simply show the case for Ising model. Derivation for other models follow the same procedure. For
ga(r) = 1 + a exp(−r/d) and f(r) = 1 +Ar−1/4 exp(−r/D), the Least Squared Error criteria gives:

(â, d̂) = arg min
a,d

E = arg min
a,d

∫ rm

0
(f(r)− ga(r))2dr. (5)

We obtain: E = −1
2a

2d
(
−1 + e−

2rm
d

)
+

A2
√

π
2

√
rmErf[

√
2
√

rm
D ]√

rm
D

−
2aAr

3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
(

(d+D)rm
dD

)3/4

∂E
∂a = 0 =⇒ ∂E

∂a = −ad
(
−1 + e−

2rm
d

)
−

2Ar
3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
(

(d+D)rm
dD

)3/4 =0

∂E
∂d = 0 =⇒ ∂E

∂d = −1
2a

2
(
−1 + e−

2rm
d

)
− a2e−

2rm
d rm
d −

2aAdDe−
(d+D)rm

dD

(
rm
dD
− (d+D)rm

d2D

)
(d+D)r

1/4
m

+
3aAr

3/4
m

(
rm
dD
− (d+D)rm

d2D

)(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
2
(

(d+D)rm
dD

)7/4 =0

Solving both equations separately for a = â, we obtain:

â =
2Ae

2rm
d r

3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
d

(
−1+e

2rm
d

)(
(d+D)rm

dD

)3/4

and,

â =

4ADe
− (d+D)rm

dD r
3/4
m

d(d+D)
−

3Ar
7/4
m Γ[ 3

4 ]

d2
(

(d+D)rm
dD

)7/4
+

3Ar
7/4
m Γ

[
3
4 ,

(d+D)rm
dD

]
d2

(
(d+D)rm

dD

)7/4

−1+e−
2rm
d + 2e

− 2rm
d rm
d

Equating both the above expressions of â, simplifying, and setting m = d/D and k = rm/D, we get:

2e
2k
m (Γ( 3

4)−Γ( 3
4
,k(1+ 1

m)))

e
2k
m −1

+
me

k( 1
m−1)(4( km+k)

3/4−3Γ( 3
4)e

k
m+k+3e

k
m+kΓ( 3

4
,k(1+ 1

m))
)

(m+1)
(
m
(
e

2k
m −1

)
−2k

) = 0

Note that this equation does not contain the amplitude parameters a and A. A contour plot of this
equation is shown in Figure 2. For reasonably large values of rm (i.e., rm > 2D), m = d̂/D = .5. That is,
the correlation length parameter estimated by the approximate model is half of the correlation length of
the true model.

From these results, the parameter values k = 4,m = .5 (or any k > 2) can be substituted in the
expression for â, to obtain:

n =
a

A
= 2.15031D−1/4

3
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That is, the amplitude parameter of the approximate model is dependent on both the true amplitude
parameter as well as the correlation length. The relationship is shown in Figure 3. This parameter could
be n = .38 − 1.44 scaled from the true amplitude parameter for D = 5 − 1000nm, relevant scales for
membrane protein clusters.

Now, the average number of points per cluster:

NI = 1 + ρ

∫ ∞
0

(f(r)− 1)2πrdr ≈ 2πAD1.75Γ

(
7

4

)

Na ≈ 2πad2ρ = 3.3777AD1.75 = 0.584919NI

That is, the approximate model underestimates the average number of points per cluster by over 40%.

k=rm/D

Figure 2: Contour plot of k = rm/D vs m = d/D for Ising model. rm is the distance value to which the
Least Squares sum is taken. After ≈ rm > 2D, the m value is fixed at .5.

4
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Figure 3: Plot of D vs n = a/A, at k = 4,m = .5.
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Figure 4: Comparison of fitting empirical PCF of Gaussian clusters to (1) exponential PCF ga and (2)
theoretical PCF of Gaussian clusters, for different true cluster σ. Figure 5b in Main Text shown with error
bars(σ).

5 Case of power law PCF

In the case of the PCF g(r) = 1 + c
(
r0
r

)s
, assuming s 6= 1,

K(r) = πr2 +
2πc

2− s

(r0

r

)s
r2 (6)

5
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for s < 2.
A in (10) of Main Text will be A = 2−s

2πc . Using (10), we get:

p =
ra
r0

=

(
c(2− s)
2(s− 1)

)1/s

. (7)

A plot of this equation for different s is shown in Figure 5. It can be seen that p varies across orders
of magnitude based on values of s and c.

Figure 5: Ratio of radius of maximal aggregation to true cluster size parameter p = ra
r0

for power law PCF.
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