Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Quantifying the unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects

James Zou, Gregory Valiant, Paul Valiant, Konrad Karczewski, Siu On Chan, Kaitlin Samocha, Monkol Lek, Exome Aggregation Consortium, Shamil Sunyaev, Mark Daly, Daniel G MacArthur
doi: https://doi.org/10.1101/030841
James Zou
1Microsoft Research, One Memorial Drive, Cambridge MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory Valiant
2Computer Science Department, Stanford University, Palo Alto CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Valiant
3Computer Science Department, Brown University, Providence RI, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Konrad Karczewski
4Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
5Broad Institute or MIT and Harvard, Cambridge MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Siu On Chan
6Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kaitlin Samocha
4Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
5Broad Institute or MIT and Harvard, Cambridge MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Monkol Lek
4Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
5Broad Institute or MIT and Harvard, Cambridge MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
7Exome Aggregation Consortium (ExAC), Cambridge MA, USA
Shamil Sunyaev
5Broad Institute or MIT and Harvard, Cambridge MA, USA
8Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Daly
4Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
5Broad Institute or MIT and Harvard, Cambridge MA, USA
9Department of Medicine, Harvard Medical School, Boston MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel G MacArthur
4Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
5Broad Institute or MIT and Harvard, Cambridge MA, USA
9Department of Medicine, Harvard Medical School, Boston MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Article usage

Article usage: January 2018 to June 2023

AbstractFullPdf
Jan 201837016
Feb 20183404
Mar 201841015
Apr 201841011
May 20185609
Jun 201849014
Jul 20184107
Aug 20185607
Sep 201851014
Oct 201824014
Nov 20183207
Dec 201825018
Jan 20192407
Feb 201937116
Mar 201901528
Apr 2019068
May 201901012
Jun 20190114
Jul 20190319
Aug 20190127
Oct 201901219
Nov 2019057
Dec 201901012
Jan 2020057
Feb 20200219
Mar 20200128
May 20200118
Jun 2020026
Jul 20200112
Aug 20200410
Sep 2020004
Oct 20200011
Nov 2020096
Dec 2020066
Jan 20210611
Feb 2021044
Mar 2021043
Apr 2021043
May 2021026
Jun 2021035
Jul 2021021
Aug 2021053
Sep 2021036
Oct 20210327
Nov 20210532
Dec 2021041
Jan 2022027
Feb 2022022
Mar 2022015
May 20220213
Jun 2022005
Aug 2022003
Sep 2022009
Oct 2022002
Nov 20220010
Dec 2022001
Jan 2023005
Feb 2023011
Mar 2023010
Apr 2023003
May 2023035
Jun 2023010
Back to top
PreviousNext
Posted November 07, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Quantifying the unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quantifying the unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
James Zou, Gregory Valiant, Paul Valiant, Konrad Karczewski, Siu On Chan, Kaitlin Samocha, Monkol Lek, Exome Aggregation Consortium, Shamil Sunyaev, Mark Daly, Daniel G MacArthur
bioRxiv 030841; doi: https://doi.org/10.1101/030841
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Quantifying the unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects
James Zou, Gregory Valiant, Paul Valiant, Konrad Karczewski, Siu On Chan, Kaitlin Samocha, Monkol Lek, Exome Aggregation Consortium, Shamil Sunyaev, Mark Daly, Daniel G MacArthur
bioRxiv 030841; doi: https://doi.org/10.1101/030841

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4397)
  • Biochemistry (9625)
  • Bioengineering (7121)
  • Bioinformatics (24937)
  • Biophysics (12666)
  • Cancer Biology (9991)
  • Cell Biology (14396)
  • Clinical Trials (138)
  • Developmental Biology (7988)
  • Ecology (12146)
  • Epidemiology (2067)
  • Evolutionary Biology (16023)
  • Genetics (10951)
  • Genomics (14778)
  • Immunology (9903)
  • Microbiology (23733)
  • Molecular Biology (9506)
  • Neuroscience (51049)
  • Paleontology (370)
  • Pathology (1544)
  • Pharmacology and Toxicology (2692)
  • Physiology (4037)
  • Plant Biology (8693)
  • Scientific Communication and Education (1512)
  • Synthetic Biology (2404)
  • Systems Biology (6457)
  • Zoology (1349)