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Abstract 
Integrons recombine gene arrays and favor the spread of antibiotic resistance. 

However, their broader roles in bacterial adaptation remain mysterious, partly due to 

lack of computational tools. We made a program – IntegronFinder – and used it to 

identify integrons in bacterial genomes with high accuracy and sensitivity. Some key 

taxa, such as α-Proteobacteria, lacked integrons suggesting they constitute 

deleterious genetic backgrounds for these elements. Integrons were much more 

frequent in intermediate size genomes, suggesting selection for compact gene 

acquisition. We used comparative genomics to quantify the differences between 

mobile and persistent integrons. The use of a covariance model to identify and align 

attC sites showed higher intrinsic variability in mobile integrons and a correlation 

between attC sites homogeneity and the number of integron cassettes. Surprisingly, 

numerous arrays of attC sites lacked nearby integrases (or pseudogenes of 

integrases), included many novel cassettes, and exhibited very diverse attC sites. 

These attC0 elements might provide incoming mobile integrons with a large 

unexplored pool of novel cassettes in genomes that currently lack integrons. They 

might also represent an intermediate step of the process of horizontal gene transfer 

following integron-capture and preceding definitive stabilization by loss of genetic 

mobility.  
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Introduction 
Bacterial genomes can integrate exogenous genes at high rates (1). This ability is 

driven by the action of molecular systems facilitating the spread of genetic 

information (2,3). Integrons are gene-capturing devices playing a major role in the 

spread of antibiotic resistance genes (reviewed in (4-7)). Complete integrons have 

two main components (Figure 1). The first includes an integrase (intI) and its 

promoter (PintI), an integration site named attI (attachment site of the integron) and a 

constitutive promoter (Pc) for the gene cassettes integrated at the attI site. The 

second is an array of gene cassettes, varying in size, from 0 to around 200 cassettes 

(8). A gene cassette is defined by an open reading frame (ORF) surrounded by its 

recombination sites named attC (attachment site of the cassette). Integrons lacking 

cassettes are named In0 elements (9). By analogy, we will name the arrays of attC 

sites without nearby integrases as "attC0" elements. Recombination between two 

adjacent attC sites by the action of the integrase leads to the excision of a circular 

DNA fragment composed of an ORF and an attC site. The recombination of the attC 

site of this circular DNA fragment with an attI site leads to integration of the circular 

DNA fragment at the attI site (10,11). This mechanism allows integrons to capture 

cassettes from other integrons or to rearrange the order of their cassettes (12). The 

constitutive promoter of the integron drives the expression of the downstream genes 

(13). Cassettes may also carry their own promoters leading to the expression of 

genes that may be distant from the PC (14). The mechanism of the creation of new 

cassettes is unknown.  

The key features of integrons are thus the integrase (IntI) and the arrays of attC sites 

(Figure 1). Integrases are site-specific tyrosine recombinases closely related to Xer 

proteins (15). Contrary to most other tyrosine recombinases, IntI can� recombine�
nucleotide�sequences�of� low�similarity (16,17). The structure of the attC site, not its 

sequence, is essential for recombination by IntI (18). The sequence of IntI is 

distinguished from the other tyrosine recombinases by the presence of an additional 

~35 residue domain near the patch III region that is involved in the recombination 

reaction of single stranded DNA (19). The attC sites have well-characterized traits 

reflecting a secondary structure that is essential for recombination (20). The attC site 

is split upon integration at attI, producing chimeric attI/attC sites on one side and 
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chimeric attC/attC sites on the other side of the cassette. Hence, integrons include 

arrays of chimeric attC sites arising from recombination between sequences that can 

be very different, because their palindromic structure is similar. 

Previous literature often separates integrons between chromosomal (or super-) 

integrons carrying many cassettes, and five classes of so-called mobile integrons 

carrying few cassettes and associated with transposons (21�,22,23). The IntI 

sequences within classes of mobile integrons show little genetic diversity, suggesting 

that each class of mobile integrons has emerged recently from a much larger and 

diverse pool of integrons (24-27). These events were probably caused by ancestral 

genetic rearrangements that placed the integrons on mobile elements. The latter 

drive the characteristically high frequency of horizontal transfer of mobile integrons 

(28). Accordingly, prototypical class 1 integrons are often found on the chromosomes 

of non-pathogenic soil and freshwater β-Proteobacteria (29). Yet, some integrons are 

both mobile and chromosomal (30�,31), e.g., encoded in integrative conjugative 

elements (32�,33), and some chromosomal integrons have intermediate sizes (34). 

This challenges the dichotomy between short mobile and long stable chromosomal 

integrons (6,25). In fact, it might be more pertinent, from an evolutionary point of 

view, to split integrons in terms of the frequency with which they are lost and gained 

in bacterial lineages. This evolution-based classification might also facilitate the study 

of the molecular mechanisms leading to the generation of new cassettes, because it 

has been proposed that cassettes might originate in persistent integrons to be later 

spread by mobile integrons (35). This hypothesis was spurred by the presence of 

similar cassettes in Vibrio cholerae super-integrons and in mobile integrons 

suggesting recent transfer between the two. Furthermore, attC sites within the large 

integrons of Vibrio spp. showed higher similarity than between mobile integrons. It 

was thus suggested that cassettes were created by large chromosomal integrons 

and then recruited by mobile integrons (35).  

Many mobile integrons carry antibiotic resistance genes, whereas the Vibrio spp. 

super-integrons encode very diverse functions, including virulence factors, secreted 

proteins, and toxin-antitoxin modules (24). Metagenomic data shows that there is a 

vast pool of poorly sampled cassettes in microbial communities (36). Although 

antibiotic-resistance integrons are abundant in human-associated environments such 

as sewage (37-39), most cassettes in environmental datasets encode other functions 
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or genes of unknown function (40�,41). Hence, mobile integrons could facilitate the 

spread of a very large panel of potentially adaptive functions. Yet, the study of these 

functions has been hindered by the difficulty in identifying integron cassettes due to 

poor sequence similarity between attC sites. Approaches based on the analysis of 

sequence conservation have previously been used to identify these sites. The 

program XXR identifies attC sites in Vibrio super-integrons using pattern-matching 

techniques (24). The programs ACID (8) (no longer available) and ATTACCA (42) 

(now a part of RAC, available under private login) search mostly for class 1 to class 3 

mobile integrons. Since the structure, not the sequence, of attC sites is important for 

function, the classical motif detection tools based on sequence conservation identify 

attC sites only within restricted classes of integrons. They are inadequate to identify 

or align distantly related attC sites. 

Here we built a program named IntegronFinder (Figure 2) to detect integrons and 

their main components: the integrase with the use of HMM profiles and the attC sites 

with the use of a covariance model (Figure 3). Covariance models use stochastic 

context-free grammars to model the constraints imposed by sequence pairing to form 

secondary structures. Such models have been previously used to detect structured 

motifs, such as tRNAs (43). They provide a good balance between sensitivity, the 

ability to identify true elements even if very diverse in sequence, and specificity, the 

ability to exclude false elements (44). They are ideally suited to model elements with 

high conservation of structure and poor conservation of sequence, such as attC sites. 

IntegronFinder also annotates known attI sites, PintI and PC, and any pre-defined type 

of protein coding genes in the cassettes (e.g., antibiotic resistance genes). 

IntegronFinder was built to accurately identify integrases and attC sites of any 

generic integron. Importantly, we have made the program available through a 

webserver that is free, requires no login, and has a long track record of stability (45). 

We also provide a standalone application for large-scale genomics and 

metagenomics projects. We used IntegronFinder to identify integrons in bacterial 

genomes. This allowed the characterization of integron distribution and diversity. 

Finally, we assessed the within integron diversity of attC sites to understand their 

evolution. 
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Material and Methods 
Data. The sequences and annotations of complete genomes were downloaded from 

NCBI RefSeq (last accessed in November 2013, 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/). Our analysis included 2484 bacterial 

genomes. We used the classification of replicons in plasmids and chromosomes as 

provided in the GenBank files. Our dataset included 2626 replicons labeled as 

chromosomes and 2007 as plasmids. The attC sites used to build the covariance 

model and the accession numbers of the replicons manually curated for the presence 

or absence of attC sites were retrieved from INTEGRALL, the reference database of 

integron sequences (http://integrall.bio.ua.pt/) (46). We used a set of 291 attC sites to 

build and test the model. We used a set of 346 sequences with expert annotation of 

596 attC sites to analyze the quality of the predictions of the program. 

Protein profiles. We built a protein profile for the region specific to the integron 

tyrosine recombinase. For this, we retrieved the 402 IntI homologues from the 

Supplementary file 11 of Cambray et al (47). These proteins were clustered using 

uclust 3.0.617 (48) with a threshold of 90% identity to remove very closely related 

proteins (the largest homologs were kept in each case). The remaining 79 proteins 

were used to make a multiple alignment using MAFFT (49) (--globalpair --maxiterate 

1000). The position of the specific region of the integron integrase in V. cholerae was 

mapped on the multiple alignments using the coordinates of the specific region taken 

from (19). We recovered this section of the multiple alignment to produce a protein 

profile with hmmbuild from the HMMer suite version 3.1b1 (50). This profile was 

named intI_Cterm.  

We used 119 protein profiles of the Resfams database  (core version, last accessed 

on January 20, 2015 v1.1), to search for genes conferring resistance to antibiotics 

(http://www.dantaslab.org/resfams, (51)). We retrieved from PFAM the generic 

protein profile for the tyrosine recombinases (PF00589, phage_integrase, 

http://pfam.xfam.org/, (52)). All the protein profiles were searched using hmmsearch 

from the HMMer suite version 3.1b1. Hits with e-value smaller than 0.001 and 

coverage of at least 50% of the profile were regarded as significant.  

Construction and analysis of attC models. We built a covariance model for the 

attC sites. These models score a combination of sequence and secondary structure 
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consensus (43) (with the limitation that these are DNA not RNA structures). To 

produce the attC models, 96 attC sites (33%) were chosen randomly from 291 known 

attC (see Data). The alignments were manually curated to keep the known 

conserved regions of the R and L boxes aligned in blocks. The unpaired central 

spacers (UCS) and the variable terminal structure (VTS) were not aligned because 

they are poorly conserved in sequence and length. Gaps were inserted in the middle 

of the VTS sequence as needed to keep the blocks of R and L boxes aligned. The 

consensus secondary structure was written in WUSS format beneath the aligned 

sequences (Supplementary file 1). The model was then built with INFERNAL 1.1 (44) 

using cmbuild with the option �--hand�. This option allows the user to set the columns 

of the alignment that are actual matches (consensus). This is crucial for the quality of 

the model, because most of the columns in the R and L boxes would otherwise be 

automatically assigned as inserts due to the lack of sequence conservation. The R-

UCS-L sections of the alignment were chosen as the consensus region, and the VTS 

was designed as a gap region. We used cmcalibrate from INFERNAL 1.1 to fit the 

exponential tail of the covariance model e-values, with default options. The model 

was used to identify attC sites using INFERNAL with two alternative modes. The 

default mode uses heuristics to reduce the sequence space of the search. The Inside 

algorithm is more accurate, but computationally much more expensive (typically 104 

times slower) (44).  

Identification of promoters and attI sites. The sequences of the Pc promoters for 

the expression of the cassette genes, of the PintI promoters, and of the attI site were 

retrieved from INTEGRALL for the integron of class 1, 2 and 3 when available (see 

Table S1). We searched for exact matches of these sequences using pattern 

matching as implemented in Biopython v1.65 (53). 

Overview of IntegronFinder: a program for the identification of attC sites, intI 
genes, integrons, and attC0 elements. IntegronFinder receives as input a 

sequence of DNA in FASTA format (Figure 2). It first annotates the CDSs in the 

sequence using Prodigal v2.6.2 (54) using the default mode for replicons larger than 

200kb and the metagenomic mode for smaller replicons. In the present work, we 

omitted this part and used the NCBI RefSeq annotations because they are curated. 

The annotation step is particularly useful to study newly acquired sequences or 

poorly annotated ones. 
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The program searches for the two protein profiles of the integrase using hmmsearch 

from HMMER suite version 3.1b1 and for the attC sites with the default mode of 

cmsearch from INFERNAL 1.1 (Figure 1). Two attC sites are put in the same array if 

they are less than 4 kb apart on the same strand. The arrays are built by transitivity: 

an attC site less than 4 kb from any attC site of an array is integrated in that array. 

Arrays are merged when localized less than 4 kb apart. The threshold of 4kb was 

determined empirically as a compromise between sensitivity (large values decrease 

the probability of missing cassettes) and specificity (small values are less likely to put 

together two independent integrons). More precisely, the threshold is twice the size 

of the largest known cassettes (~2 kb (8)). The results of these searches are 

integrated to class the loci in three categories (Figure 1 - B, C, D). (1) Complete 

integrons have intI and at least one attC site. (2) In0 have intI but not attC. One 

should note that we do not strictly follow the original definition of In0, which also 

includes the presence of an attI (9). We do not use this constraint because the 

sequence of attI is not known for most integrons. (3) The attC0 have at least two attC 

sites and lack nearby intI.  

To obtain a better compromise between accuracy and running time, IntegronFinder 

re-runs INFERNAL with the Inside algorithm ("--max" option in INFERNAL), but only 

around elements previously identified ("--local_max" option in IntegronFinder). More 

precisely, if a locus contains an integrase and attC sites (complete integron), the 

search is constrained to the strand encoding attC sites between the end of the 

integrase and 4kb after its most distant attC. If other attC sites are found after this 

one, the search is extended by 4 kb in that direction until no more new sites are 

found. If the element contains only attC sites (attC0), the search is performed on the 

same strand on both directions. If the integron is In0, the search is done on 4kb of 

both strands around the integrase. For complete and In0 integrons, the program then 

searches for nearby promoters and attI sites. Finally, the program can annotate the 

cassettes of the integron (defined in the program as the CDS found between intI and 

200 bp after the last attC site, or 200 bp before the first and 200 bp after the last attC 

site if there is no integrase) with a database of protein profiles with the option "--

func_annot". For example, in the present study we used the ResFams database to 

search for antibiotic resistance genes. One can use any hmmer-compatible profile 

databases with the program. 
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The program outputs tabular and GenBank files listing all the identified genetic 

elements associated with an integron. The program also produces a figure in pdf 

format representing each complete integron. For an interactive view of all the hits, 

one can use the GenBank file as input in specific programs such as Geneious (55). 

Phylogenetic analyses. We have made two phylogenetic analyses. One analysis 

encompasses the set of all tyrosine recombinases and the other focuses on IntI. The 

phylogenetic tree of tyrosine recombinases (Figure S1) was built using 204 proteins, 

including: 21 integrases adjacent to attC sites and matching the PF00589 profile but 

lacking the intI_Cterm domain, seven proteins identified by both profiles and 

representative of the diversity of IntI, and 176 known tyrosine recombinases from 

phages and from the literature (15). We aligned the protein sequences with Muscle 

v3.8.31 with default options (56). We curated the alignment with BMGE using default 

options (57). The tree was then built with IQ-TREE multicore version 1.2.3 with the 

model LG+I+G4, which was identified as the best using the "��m TEST" option. This 

option computes the log-likelihood of different molecular evolution models, and 

chooses the model that minimizes the Bayesian Information Criterion (BIC). We 

made 10000 ultra fast bootstraps to evaluate node support (Figure S1, Tree S1). 

The phylogenetic analysis of IntI was done using the sequences from complete 

integrons or In0 elements (i.e., integrases identified by both HMM profiles). We 

added to this dataset some of the known integrases of class 1, 2, 3, 4 and 5 retrieved 

from INTEGRALL. Given the previous phylogenetic analysis we used known XerC 

and XerD proteins to root the tree. Alignment and phylogenetic reconstruction were 

done using the same procedure; except that we built ten trees independently, and 

picked the one with best log-likelihood for the analysis (as recommended by the IQ-

TREE authors (58)). The robustness of the branches was assessed using 1000 

bootstraps (Figure S2, Tree S2). 

Pan-genomes. We built pan-genomes for 12 species having at least 4 complete 

genomes available in Genbank RefSeq and encoding at least one IntI. It represents 

40% of complete integrons. Pan-genomes are the full complement of genes in the 

species and were built by clustering homologous proteins into families for each of the 

species (as previously described in (59)). We did not build a pan-genome for 

Xanthomonas oryzae because it contained too many rearrangements and repeated 

elements(60) making the analysis of positional orthologs inaccurate. Briefly, we 
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determined the lists of putative homologs between pairs of genomes with BLASTP 

and used the e-values (<10�4) to cluster them using SILIX (61). SILIX parameters 

were set such that a protein was homologous to another in a given family if the 

aligned part had at least 80% identity and if it included more than 80% of the smallest 

protein. IntI proteins were regarded as persistent if they were present in at least 60% 

of the genomes of the species. 

Pseudo-genes detection. To detect IntI pseudo-genes around attC0 elements, we 

translated the 6 frames of the region containing the attC0 element plus 10kb before 

and after the element. Then we ran hmmsearch from HMMER suite v3.1b1 with the 

profile intI_Cterm and the profile PF00589. We recovered hits with e-values lower 

than 10-3 and whose alignments covered more than 50% of the profiles. 

IS detection: We identified insertion sequences (IS) by searching for sequence 

similarity between the genes present 4kb around or within each genetic element and 

a database of IS from ISFinder (62). Details can be found in (63). 

Detection of cassettes in INTEGRALL: We searched for sequence similarity 

between all the CDS of attC0 elements and the INTEGRALL database using blastn 

from BLAST 2.2.30+. Cassettes were considered homologous to those of 

INTEGRALL if they had at least 40% identity in the blastn alignment.  
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Results 

Models'for'attC$sites''

We selected a manually curated set of 291 attC sites representative of the diversity 

of sequences available in INTEGRALL (see Methods). From these, we selected 96 

(33%) to build a covariance model of the attC site and set aside the others for testing. 

The characteristics of these sequences were studied in detail (Figure 3A), notably 

concerning the R and L boxes, the UCS, and the EHB (18). The AAC and the 

complementary GTT sequences from the aptly named Conserved Triplet were 

indeed highly conserved. Other positions were less conserved, but nevertheless 

informative for the model (Figure 3B and 3D). The VTS length was highly variable, 

between 20 and 100 nucleotides long, as previously observed (4). We then used the 

covariance model to search for attC sites on 2484 complete bacterial genomes. The 

genomic attC sites had some differences relative to those used to build the model. 

They showed stronger consensus sequences and more homogeneous VTS lengths 

(Figure 3C). The analyses of sensitivity in the next paragraph show that our model 

missed very few sites. Hence, the differences between the initial and the genomic 

attC sites might be due to our explicit option of using diverse sequences to build the 

model (to maximize diversity). They may also reflect differences between mobile 

integrons (very abundant in INTEGRALL) and integrons in sequenced bacterial 

genomes (where a sizeable fraction of cassettes were identified in Vibrio spp.). 

We tested the covariance model in two ways. Firstly, by searching for the 195 

remaining attC sites that were not used to build the model. We randomized bacterial 

genomes with varying G+C content (Table S2), where we integrated five attC sites at 

2�kb intervals. We searched for the attC sites and found very few false positives 

(~0.02 FP/Mb, Figure 4B), independently of the run mode (see Methods for details). 

The proportion of true attC actually identified (sensitivity), was 60 % for the default 

mode and 83% for the most accurate mode (with option local_max). We identified at 

least two of the attC sites in 98% of the arrays (with the most accurate mode). 

Hence, the array is identified even when some attC sites are not detected. The 

sensitivity of the model showed very little dependency on genome G+C composition 

in all cases (Figure 4). Secondly, we searched attC sites in 346 DNA sequences 

containing 596 attC sites annotated in INTEGRALL (Table S4). We found 571 attC 
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sites with the most accurate mode (96% of sensitivity). We missed 25 attC sites, 

among which 14 were on the integron edges, and were probably missed because of 

the absence of R� box on the 3� side. All the 57 sequences with integrons annotated 

as In0 in INTEGRALL also lacked attC site in our analysis. We found 246 attC sites 

missing in the annotations of INTEGRALL (0.71 FP/Mb). Importantly, more than 89% 

of these were found in arrays of two attC sites or more. If isolated attC sites were all 

false positives (and the only ones), then the false positive rate would be 0.072 

FP/Mb, i.e., less than one false attC site per genome. These two analyses indicated 

a rate of false positives between 0.02 FP/Mb and 0.71 FP/Mb. The probability of 

having arrays of two or more false attC sites (within 4 kb) given this density of false 

positives is between 4.10-6 and 3.10-9 depending on the false positive rate (assuming 

a Poisson process). Hence, the arrays of attC sites given by our model are extremely 

unlikely to be false positives.  

Identification'of'integrases''

Tyrosine recombinases can be identified using the PFAM PF00589 protein profile. To 

distinguish IntI from the other tyrosine recombinases, we built an additional protein 

profile corresponding to the IntI specific region near the patch III domain (19) 

(henceforth named intI_Cterm, see Methods). Within all complete genomes we found 

215 proteins matching both profiles. Only six genes matched intI_Cterm but not 

PF00589, and among the more than 19,000 occurrences of PF00589 not matching 

intI_Cterm, 47 co-localized with an attC site. Among the latter, 26 were in genomes 

that encoded IntI elsewhere in the replicon (Figure S3). The remaining 21 integrases 

were scattered in the phylogenetic tree of tyrosine recombinases, and only four of 

them were placed in an intermediate position between IntI and Xer (Figure S1). 

These four sequences resembled typical phage integrases at the region of the patch 

III domain characteristic of IntI. Furthermore, they co-localized with very few attC 

sites, (always less than three). This analysis strongly suggests that tyrosine 

recombinases lacking the intI_Cterm domain are most likely not IntI.  

Most intI genes identified in bacterial genomes co-localized with attC sites (73%, 

Figure S3). It is difficult to assess if the remaining intI genes are true or false, since 

In0 elements have often been described in the literature (9,64). We were able to 

identify IntI in the integrons of class 1 to class 5, as well as in well-known 

chromosomal integrons (e.g., in Vibrio super-integrons). We also identified all In0 
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elements in the Integrall dataset mentioned above. Overall, these results show that 

IntI could be identified accurately using the intersection of both protein profiles.   

We built a phylogenetic tree of the 215 IntI proteins identified in genomes (Figure 

S2). Together with the analysis of the broader phylogenetic tree of Tyrosine 

recombinases (Figure S1), this extends previous analyses (4,25,27,65): 1) The XerC 

and XerD sequences are close outgroups. 2) The IntI are monophyletic. 3) Within 

IntI, there are early splits, first for a clade including class 5 integrons, and then for 

Vibrio super-integrons. 4) A major split occurs between a clade including the classed 

4 and 2 on one side and most other integrons and especially classes 1 and 3 on the 

other. 5) A group of integrons displaying an integrase in the opposite direction 

(inverted integrase group) was previously described as a monophyletic class (25), 

but in our analysis it was clearly paraphyletic (Figure S2). Notably, a Class 1 integron 

present in the genome of Acinetobacter baumannii 1656-2 had an inverted integrase.  

Integrons'in'bacterial'genomes'

We build a program � IntegronFinder � to identify integrons in DNA sequences. This 

program searches for intI genes, attC sites, clusters them in function of their co-

localization, and then annotates cassettes and other accessory genetic elements  

(see Figure 2 and Methods). The use of this program led to the identification of 215 

IntI and 4543 attC sites in complete bacterial genomes. The combination of this data 

resulted in a dataset of 157 complete integrons, 58 In0 and 272 attC0 elements (see 

Figure 1 for their description). The frequency of complete integrons is compatible with 

previous data (25). While most genomes encoded a single integrase, we found 36 

genomes encoding more than one, suggesting that multiple integrons are relatively 

frequent (20% of genomes encoding integrons). Interestingly, while many of the 

integrons reported in the literature were encoded in plasmids, this is not the case in 

the dataset of complete genomes, where only one plasmid was found to encode an 

In0 integron (apart from those of class 1), in a set of 24 plasmids. 

The taxonomic distribution of integrons was very heterogeneous. Some clades 

contained many elements, e.g., 19% of the γ-Proteobacteria encoded at least one 

complete integron (Figure 5 and S4). This is almost 4 times as much as expected by 

chance alone (χ2 test in a contingency table, P < 0.001), since only 5% of the 

genomes were found to encode complete integrons. The β-Proteobacteria also 

encoded numerous integrons (~10% of the genomes). However, all the genomes of 
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Firmicutes, Tenericutes, and Actinobacteria lacked complete integrons. Furthermore, 

all genomes of α-Proteobacteria, the sister-clade of γ and β-Proteobacteria, were 

devoid of complete integrons, In0, and attC0 elements (no occurrence among 243 

genomes). Interestingly, much more distantly related bacteria such as Spirochaetes, 

Chlorobi, Chloroflexi, Verrucomicrobia, and Cyanobacteria encoded integrons (Figure 

5 and Figure S4). The complete lack of integrons in one large phylum of 

Proteobacteria is thus very intriguing.  

Which are the traits associated with the presence of integrons? In the literature 

integrons are often associated with antibiotic resistance. To quantify this association, 

we searched for determinants of antibiotic resistance in integron cassettes (see 

Methods). We identified resistance genes in 105 cassettes, i.e., in 3% of all cassettes 

from complete integrons (3470 cassettes). These cassettes were mostly found in 

class 1 to 5 integrons (90% of them), even though these classes of integrons 

accounted for only 4% of complete integrons� cassettes. This fits previous 

observations that integrons carrying antibiotic resistance determinants are rare in 

natural populations (29,36�).  

The association between genome size and the frequency of integrons has not been 

studied before. We binned the genomes in terms of their size and analyzed the 

frequency of complete integrons, In0, and attC0. This showed a clearly non-

monotonic trend (Figure 6). The same result was observed in a complementary 

analysis using only integrons from Gamma-Proteobacteria (Figure S5). Very small 

genomes lack complete integrons, intermediate size genomes accumulate most of 

the integrons, and the largest genomes encode few. Importantly, the same trends 

were observed for In0 and attC0. Hence, the frequency of integrons is maximal for 

intermediate genome sizes.  

Unexpected'abundance'of'attC0'elements'

The number of observed attC sites lacking nearby integrases is unexpectedly high 

and to the best of our knowledge has not been reported before. We found 432 

occurrences of isolated single attC sites among the total of 1649 identified attC sites 

without a nearby integrase. We decided to discard them for further analysis on attC0 

elements and keep only the 272 attC0 elements with two or more attC sites. If 

isolated single attC sites were all false, and were the only false ones, then the 

observed rate of false positives can be estimated at 0.047 FP/Mb. This is within the 
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range of the rates of false positives observed in the sensitivity analysis (between 0.02 

FP/Mb and 0.71 FP/Mb). We showed above that with these rates the probability that 

attC0 elements are false positives is exceedingly small. The attC0 resemble mobile 

integrons in terms of the number of cassettes: 86% had fewer than six attC sites and 

only 6.6% had more than 10 (Figure S6). On the other hand, they were remarkably 

different from mobile integrons in terms of the actual known genes encoded in 

cassettes: only 117 cassettes out of the 1649 cassettes were homologous to 

cassettes reported in INTEGRALL. Accordingly, we only found antibiotic resistance 

genes in 32 cassettes (2%) of the attC0 (to be compared with 70% among class 1 to 

class 5 integrons and to 0.3% among complete integrons not from class 1 to 5). 

Hence, attC0 are relatively small and have mostly unknown gene cassettes. 

The attC0 elements might have arisen from the loss of the integrase in a previously 

complete integron. Therefore, we searched for pseudogenes matching the specific 

IntI_Cterm domain less than 10kb away from attC0. We found such pseudo-genes 

near 22 out of 272 attC0 elements. Among the 22 hits, three matched integron 

integrases. These three cases correspond to IntI encoded more than 4kb away from 

the closest attC site (which is why they were missed previously). It is worth noting 

that out of the 22 hits, 15 pseudo-genes are also matched with the PF00589 profile, 

which is consistent with the idea that they previously encoded intI. Overall, our 

analysis showed that most attC0 (90%) are not close to recognizable IntI 

pseudogenes.  

Chromosomal rearrangements may split integrons and separate some cassettes 

from the neighborhood of the integrase, thus producing attC0 elements. Under these 

circumstances, an intI and the attC0 would be present in the same genome. To 

identify these cases, we searched for intI in the genomes with attC0. We found that 

half of the genomes with attC0 also had an intI. In some few cases IntI was actually 

encoded in another replicon (3.5% of attC0 elements). Hence, half of the attC0 

elements are in genomes lacking any intI.  

Insertion sequences (IS) may be responsible for the creation of some of the 

abovementioned attC0 elements by promoting chromosomal rearrangements in a 

previously complete single integron. We searched for IS near attC0 elements, In0 

and complete integrons (see Methods). We found that 16% of attC0 and 26% of the 

complete integrons encoded at least one IS within their cassettes. Upon IS-mediated 

rearrangements, the attC0 elements should be close to an IS. Indeed, 44% of the 
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attC0 had a neighboring IS. Furthermore, attC0 in genomes with distant intI were 

more likely to be close to an IS than attC0 in genomes lacking intI (P < 0.001, χ2 

contingency table). Hence, even if half of the attC0 elements are in genomes lacking 

intI, these results are consistent with the hypothesis that IS contribute to disrupt 

integrons and create attC0 elements.  

Divergence'of'attC'sites''

The covariance model that we defined for the attC sites allowed their alignment. This 

opened the possibility of assessing rigorously the sequence heterogeneity of attC 

sites in function of integron mobility to test the hypothesis that attC sites are less 

heterogeneous in persistent integrons. We made a preliminary classification of 

complete integrons and In0 using the species' pan-genomes (see Methods). 

Integrons from classes 1 to 5, those carried in plasmids, and those present in less 

than 60% of the genomes of a species were all classed as mobile.  As expected, 

mobile integrons had few cassettes: only two have more than six attC sites 

(respectively nine and fifteen cassettes) (Figure 7). The integrons present in more 

than 60% of the strains of a species carried many more cassettes, with some notable 

exceptions (e.g., in Xanthomonas campestris they had between 0 and 22 cassettes). 

Since large arrays of cassettes were not found in known mobile integrons, we built a 

dataset of persistent integrons including all the abovementioned integrons present in 

more than 60% of the strains of a species and those with more than 20 attC sites. 

This resulted in a set of 27 persistent integrons. With these criteria, around 67% of 

the chromosomal integrons were classed as mobile in the species with pan-

genomes, showing that the traditional separation between chromosomal and mobile 

integrons may be misleading. Both mobile and persistent integrons were found in the 

major clades of the IntI phylogeny (Figure S2).  

We then tested the hypothesis that persistent integrons have less diverse attC sites 

than mobile integrons. For this, we analyzed the identity between the R-UCS-L box of 

attC sites of mobile and persistent integrons while controlling for the effect of intra 

and inter-integron comparisons. Since attC sites are poorly conserved in sequence, 

we aligned them using the covariance model. As expected, attC sites were more 

similar within than between integrons, and more similar within persistent integrons 

than within mobile integrons (Figure 8A). Since some integrons have many more 

cassettes than others, we made a complementary analysis between mobile and 
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persistent integrons comparing the average value of attC similarity per integron. This 

analysis allowed to control for integron size and produced similar results (both P < 

0.05). Interestingly attC sites within attC0 elements were even less similar than those 

of mobile integrons (P<0.001). The length of the VTS sequences showed similar 

patterns: higher similarity between attC sites of the same integron, and especially 

within persistent integrons (Figure 8B). The difference remains significant when the 

analysis was done using the average variation in VTS per integron (P < 0.001). We 

then quantified the relationship between the number of attC sites in an integron and 

the average intra-integron sequence dissimilarity in attC sites. The sequence 

dissimilarity diminishes exponentially with an increasing number of attC sites (Figure 

9), i.e., the integrons carrying the longest arrays of cassettes are those with most 

homogeneous attC sites.  

 '
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Discussion 

IntegronFinder,'limitations'and'perspectives'

IntegronFinder identifies the vast majority of known attC sites and intI genes. With an 

observed accuracy of ~83% in the identification of individual attC sites, the probability 

of missing all elements in an array of four attC sites is less than 0.08%. The high 

accuracy of IntegronFinder allowed the identification of attC0 elements and many 

novel cassettes. Importantly, IntegronFinder is relatively insensitive to genomic G+C 

content. Hence, compositional biases are unlikely to affect the identification of 

integrons.  

In some circumstances, it may be necessary to interpret with care the results of 

IntegronFinder. For example, genome rearrangements resulting in the split of 

integrons will lead to the separate identification of an attC0 and an integron 

(eventually an In0 if the rearrangement takes place near the attI site). IntegronFinder 

accurately identifies these two genetic elements. However, these elements may 

remain functionally linked because cassettes from the attC0 may be excised by the 

integrase and re-inserted in the integron at its attI site. Overall, this reflects the 

dynamics of the integrons, but it is unclear if the two elements should be regarded as 

independent, as it is done by default, or as a single integron. One should note that 

such cases might be difficult to distinguish from alternative evolutionary scenarii 

involving the loss of the integrase in one of multiple integrons of a genome.  

Our analyses show that IntegronFinder detects few false positives. In this study we 

only analyzed the attC sites co-occurring in arrays and those neighboring intI. Given 

the specificity in the identification of attC sites these arrays are unlikely to be false 

positives. The function of the other 432 single attC sites observed in genomes is less 

clear. Many of these sites are likely to be false positives because their frequency in 

genomes is close to that observed for false positives in our validation procedure. 

However, one cannot exclude the hypothesis that they are associated with other 

functions or result from the genetic degradation of integron cassettes.  

IntegronFinder can be used to analyze diverse types of data. Our study was 

restricted to complete bacterial genomes to avoid the inference of the poor quality of 

some genome assemblies with the assessment of the program accuracy. However, 

IntegronFinder can be used to analyze draft genomes or metagenomes as long as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2015. ; https://doi.org/10.1101/030866doi: bioRxiv preprint 

https://doi.org/10.1101/030866
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

one is aware of the limitations of the procedure in such data. The edges of contigs of 

draft genomes often coincide with transposable elements. We have shown that a 

significant number of integrons have cassettes with IS. These elements induce contig 

breaks in the sequence assemblies. Hence, integrons with IS are split in the 

assembly process leading to the loss of the information on genetic linkage between 

their components. Under these circumstances, IntegronFinder will identify several 

genetic elements even if the genome actually encodes one single complete integron. 

Metagenomic data is even more challenging because it includes numerous small 

contigs where it is difficult to identify complete integrons. Yet, we showed that the 

models for attC sites and IntI are very accurate. They can thus be used 

independently to identify the occurrence of cassettes and integrases in assembled 

metagenomes. This might dramatically increase our ability to identify novel gene 

cassettes in environmental data.  

Determinants'of'integron'distribution'

Our analysis highlighted associations between the frequency of integrons and certain 

genetic traits. The frequency of attC0, complete integrons, and In0 is often highly 

correlated in relation to all of these traits, e.g., all three types of elements show 

roughly similar distributions among bacterial phyla and in terms of genome size. This 

strong association between the three types of elements is most likely caused by their 

common evolutionary history.  

Integrons have well-known roles in the spread of antibiotic resistance. Nevertheless, 

we identified very few known antibiotic resistance genes in complete integrons 

outside the class 1 to class 5 integrons. Interestingly, we also found few resistance 

genes in attC0 elements. This fosters previous suggestions that integrons carry a 

very diverse set of adaptive traits, beyond antibiotic resistance genes, in many 

natural populations (36).  

We found an under-representation of integrons in both small and large bacterial 

genomes. Since integrons are gene-capturing devices, one would expect a positive 

association between the frequency of integrons and that of horizontal transfer. Under 

this hypothesis, the lack of integrons in small genomes is not surprising since many 

of these bacteria are under sexual isolation, and they typically have few or no 

transposable elements, plasmids, or phages (66-68). However, the largest genomes 

have few integrons, but many mobile elements and are thought to engage in very 
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frequent horizontal transfer (69,70). We can only offer a speculation to explain this 

puzzling result. Integrons have been regarded as compact platforms of genetic 

recombination, which potentially have applications in synthetic biology (71). 

Horizontal transfer is often brought by mobile genetic elements of which some can be 

very large and costly (72). If there were selection for compact acquisition of adaptive 

traits by horizontal gene transfer, then one would expect that its intensity should 

scale with the inverse of genome size. This is because constraints on the size of 

incoming genetic material are expected to be less important for larger genomes. 

Hence, integrons might be under less intense selection in larger genomes. The 

combined effect of the frequency of transfer (increasing with genome size) and 

selection for compactness (decreasing with genome size) could explain the high 

abundance of integrons in medium-sized genomes.  

Most integrons available in INTEGRALL from known taxa are from γ-Proteobacteria 

(90%) (46). We found a more diverse set of phyla in our analyses. While most 

integrons were found in Proteobacteria, which represent around half of the available 

complete genomes, the frequency of integrons in β-Proteobacteria was almost as 

high as among γ-Proteobacteria. We also identified some complete integrons in 

clades distantly related from Proteobacteria, including one in Cyanobacteria. 

Surprisingly, the genomes from α-Proteobacteria had no integrons, even if they 

encoded many tyrosine recombinases involved in the integration of a variety of 

mobile genetic elements. The complete absence of integrons, In0, and attC0 in α-

Proteobacteria is extremely puzzling. It cannot solely be ascribed to the frequency of 

small genomes in certain branches of α-Proteobacteria, since our dataset included 

99 genomes larger than 4Mb in the clade. We also did not find complete integrons in 

Gram-positive bacteria. Transfer of genetic information between clades of 

Proteobacteria and between Proteobacteria and Gram-positive bacteria is well 

documented (73,74). Accordingly, many mobile genetic elements have spread 

among bacteria, e.g., conjugative elements have adapted to the diverse cell 

envelopes of all major bacterial phyla (75). Importantly, integrons have occasionally 

been identified in Firmicutes and α-Proteobacteria (46,76), and we have found attC0 

in Firmicutes and In0 in Actinobacteria. This shows that these elements are 

sometimes transferred to these bacteria. Their absence from the many complete 

genomes available for these phyla in our dataset suggests the existence of some 
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unknown mechanism hindering the stable establishment of integrons in these 

bacteria after transfer. It is well known that differences in the translation machinery 

hinder the expression of transferred genetic information from Proteobacteria to 

Firmicutes (e.g., the protein S1 (77)). However, these differences cannot explain the 

lack of integrons in α-Proteobacteria. 

The'evolution'of'integrons'

Our study sheds some new light on how integrons evolve, acquire new cassettes, 

and may eventually disappear. The use of the covariance model confirmed that attC 

sites are more similar within than between integrons. It also showed that mobile 

integrons have attC sites more heterogeneous in sequence and length than 

persistent integrons. A previous observation that Vibrio super-integrons had very 

homogenous attC sites spurred the hypothesis that they created the integron 

cassettes, which might be later spread by mobile integrons (35,78). Our results are 

compatible with this idea and with the more general view that persistent integrons are 

responsible for the creation of most cassettes whereas mobile integrons are 

responsible for their spread among bacteria. Importantly, we found a negative 

association between attC heterogeneity within an integron and the number of 

cassettes carried by the integron. This may indicate that the largest persistent 

integrons are those creating more cassettes.  

On the other extreme, many arrays of attC are not even associated with an integrase. 

Several previous works have identified IntI pseudo-genes in bacterial genomes 

(27,34). Here, we have found a surprisingly high number of attC0 elements, nearly 

half of which are found in genomes lacking intI genes or nearby pseudogenes of intI. 

AttC0 elements may have arisen in several ways. 1) By the unknown mechanism 

creating novel cassettes if this mechanism does not depend on IntI. 2) By integration 

of cassettes at a non-specific site by an integron encoded elsewhere in the genome 

(as described before (10)). 3) By loss of intI, even if most attC0 lacked neighboring 

pseudogenes of intI. 4) By genome rearrangements splitting a group of cassettes 

from the neighborhood of intI (as observed in (79)). The two last mechanisms are 

consistent with the presence of IS in nearly a fourth of complete integrons and might 

explain why nearly half of the attC0 are in replicons encoding IntI.  

Which integrons gave rise to attC0? The average number of attC sites in attC0 is 

close to that of mobile integrons. The within-element sequence identity of attC sites is 
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slightly lower in attC0 than in mobile integrons. These two observations might 

suggest that attC0 elements were derived from mobile elements having lost the 

integrase. Yet, this does not fit our observations that attC0 have very few cassettes 

homologous to those of mobile integrons and far fewer antibiotic resistant genes than 

mobile integrons. Hence, most attC0 do not derive from the well-known mobile 

integrons carrying antibiotic resistance genes. Instead, they may derive from other 

less well-characterized types of mobile integrons, or from partially deleted ancestral 

persistent integrons. Actually, some attC0 elements might be small and encode 

heterogeneous attC sites because they are not under selection for mobilization by an 

integron.  

The lack of an integrase in attC0 elements does not imply that these cassettes 

cannot be mobilized. We found many co-occurrences of complete integrons, In0, and 

attC0 elements in the same genomes. These co-occurrences facilitate the exchange 

of cassettes between elements. The integrases of mobile integrons have relaxed 

sequence similarity requirements to mediate recombination between divergent attC 

sites. It is thus tempting to speculate that integrons transferred into a genome 

encoding attC0 might be able to integrate attC0 cassettes in their own array of 

cassettes. If attC0 elements are frequently recruited by such incoming complete 

integrons, or In0 elements, then many genomes currently lacking integrons might be 

important reservoirs of novel cassettes.  

Independently, of the origin and transfer of attC0 elements, the genes they encode 

might be expressed and have an adaptive value. In fact, these genes might often be 

adaptive, since otherwise they would have been inactivated as the result of the 

accumulation of mutations that resulted in divergent attC sites in attC0 elements. 

AttC0 with very degenerate attC sites might thus represent an intermediate step 

between the acquisition of a gene by an integron and its definitive stabilization in the 

genome by loss of the IntI-based cassette mobilizing activity. 
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Availability'

The program was written in Python 2.7. It is freely available on a webserver 

(http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::integron_finder). The standalone 

program is distributed under an open-source GPLv3 license and can be downloaded 

from Github (https://github.com/gem-pasteur/Integron_Finder/) to be run using the 

command line. Supplementary materials include tables containing all integrons found 

at different level (Tables S4, S5 and S6). It includes the list of the 596 attC sites with 

their annotated position (Table S7a), and the corresponding file with observed 

position (Table S7b). We provide the covariance model for the attC site (File S1). 
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Figure Legends 

Figure 1. Schema of an integron and the three types of elements detected by 

IntegronFinder. (A) The integron is composed of a specific integron integrase gene 

(intI, orange), an attI recombination site (red), and an array of gene cassettes (blue, 

yellow and green). A cassette is composed of an ORF flanked by two attC 

recombination sites. The integron integrase has its own promoter (PintI). There is 

one constitutive promoter (Pc) for the array of cassettes. Cassettes rarely contain 

promoters. The integrase can excise a cassette (1) and/or integrate it at the attI site 

(2). (B) Complete integrons include an integrase and at least one attC site. (C) The 

In0 elements are composed of an integron integrase and no attC sites. (D) The attC0 

elements are composed of at least two attC sites (but no integrase). 

Figure 2. Diagram describing the different steps used by IntegronFinder to identify 

and annotate integrons. Solid lines represent the default mode, dotted lines optional 

modes. Blue boxes indicate the main dependency used for a given step. Green 

boxes indicate the format of the file needed for a given step. 

Figure 3. Characteristics of the attC sites. (A) Scheme of the secondary structure of 

a folded attC site. EHB stands for Extra Helical Bases. (B) Analysis of the attC sites 

used to build the model, including the WebLogo (80) of the R and L box and unpaired 

central spacers (UCS) and the histogram (and kernel density estimation) of the size 

of the variable terminal structure (VTS). The Weblogo represents the information 

contained in a column of a multiple sequence alignment (using the log2 

transformation). The taller the letter is, the more conserved is the character at that 

position. The width of each column of symbols takes into account the presence of 

gaps. Thin columns are mostly composed of gaps. (C) Same as (B) but with the set 

of attC sites identified in complete integrons found in complete bacterial genomes. 

(D) Secondary structure used in the model in WUSS format, colors match those of 

(A). 
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Figure 4. Quality assessment of the attC sites covariance model on pseudo-

genomes with varying G+C content and depending on the run mode (default and 

local_max). (Top) Table resuming the results. The mean time is the average running 

time per pseudo-genome on a Mac Pro, 2 x 2.4 GHz 6-Core Intel Xeon, 16 Gb RAM, 

with options --cpu 20 and --no-proteins. (Middle) Rate of false positives per mega-

base (Mb) as function of the G+C content. The same result is obtained for both 

modes (default and --local_max). (Bottom) Sensitivity (or true positive rate) as 

function of the G+C content. The red line depicts results obtained with the default 

parameters, and the blue line represents results obtained with the accurate 

parameters (--local_max option).  

Figure 5. Taxonomic distribution of integrons in clades with more than 50 complete 

genomes sequenced. The grey bar represents the number of genomes sequenced 

for a given clade. The blue bar represents the number of complete integrons, the red 

bar the number of In0, and the yellow bar the number of attC0. 

Figure 6. Frequency of integrons and related elements as a function of the genome 

size.  

 Figure 7. Histogram of the distribution of the number of attC sites per integron. 

Mobile integrons are depicted in dark orange; non-mobile integrons (persistent in 

more than 60% of the genomes of a species) are depicted in green; undetermined 

elements are depicted in grey. The largest mobile integron has 15 attC sites. 

Figure 8. Comparison of attC sites. A column represents comparisons of attC sites 

between (inter) or within (intra) element(s) (integron complete or attC0) depending on 

the type of complete integron (mobile or persistent) or attC0 element. (A) Distribution 

of the sequence distance between two R-UCS-L boxes of two attC sites. (B) 

Distribution of the difference in VTS size. Other-inter integron comparisons are 

shown in Figure S7. Mann-Whitney rank tests: ***: p < 10-6; **: p < 10-3; * : p < 0.05; 

ns: p > 0.05. ND: Not determined. 
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Figure 9. Relationship between the number of attC sites in an integron and the mean 

sequence distance between attC sites within an integron. The x-axis is in log10 

scale. The association is significant: spearman rho = -0.58, P < 0.001.  
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Figure S1 – Phylogenetic tree of tyrosine recombinases including the 21 proteins, 

which match the profile PF00589 but not intI_Cterm (red) and IntI from complete 

integron (blue).  
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Figure S2 - Phylogenetic tree of IntI. The tree was made using IQ-Tree on the 

multiple alignments of the integrases carrying the two profiles (intI_Cterm and 

PF00589) using XerC and XerD as outgroups  (see Methods for details). Bootstrap 

values are indicated if lower than 60%. The matrix on the right represents traits 

associated with the integron. Column (A) represents whether the corresponding 
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integron is on a plasmid (dark grey) or on a chromosome (grey). Lighter grey 

corresponds to integrons of classes 1 to 5, but whose replicon types are unknown 

(unavailable genomes). The column (B) represents whether the corresponding 

integron is persistent (green) or mobile (dark orange), or not determinable (grey). 

Column (C) represents the integrases associated with at least one attC site (grey). 

The column (D) represents the number of attC sites with a gradient of grey (the 

darker the more attC sites, with saturation from 20 attC sites). The column (E) 

represents the frequency of resistance genes among cassettes (darker blue indicates 

higher values). The last column (F) represents the integron with inverted integrase 

(red). The leaves of the tree are colored according to their clade. For the names 

corresponding to the colors, see Figure 5 and Figure S4. See Table S3 for full data. 

 

 
 

Figure S3 - Distribution of hits of PF00589 and intI_Cterm in function of each other 

and the existence of neighboring attC sites. The y-axis represents percentage in a 

log10 scale. Numbers on the bar represent the actual quantity for the underlying bar. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2015. ; https://doi.org/10.1101/030866doi: bioRxiv preprint 

https://doi.org/10.1101/030866
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46 

 
 
Figure S4 – Taxonomic distribution of integrons in clades with less than 50 genomes 

available in our dataset. The grey bar represents the number of genome sequenced 

for a given clade. The blue bar represents the number of complete integron, the red 

bar number of In0 and the yellow bar the number of attC0. 
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Figure S5 - Frequency of integrons and related elements as a function of the 

genome size when the analysis is restricted to Gammaproteobacteria.  
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Figure S6 - Histogram of the distribution of the number of attC sites in attC0 

elements.  

 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2015. ; https://doi.org/10.1101/030866doi: bioRxiv preprint 

https://doi.org/10.1101/030866
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

 

 
 

Figure S7 Comparison of attC sites. A column represents comparisons of attC sites 

between (inter) or within (intra) element(s) (integron complete or attC0) depending on 

the type of element (mobile or persistent). (A) Distribution of the sequence distance 

between two R-UCS-L boxes of two attC sites. (B) Distribution of the difference in 

VTS size. ***: p < 10-6; **: p < 10-3; * : p < 0.05; ns: p > 0.05, Mann-Whitney rank test. 
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Table S1 �  Sequence of the promoter of the integrase (Pint), the promoter of the 

cassette (Pc), and of the attI site in 3 classes of integron when available. Sequences 

were provided by INTEGRALL. Square brackets indicate that it can be one of the 

letters at that position. Curly brackets indicate that the square brackets before is 

repeated a number of times comprised between a minimum and a maximum.  

Class Pint Pc attI 

1 
TTGCTGCTTGGATGCCCGAGG

CATAGACTGTACA 

T[GT]G[AG][CT]ATAAGCCTGTT

CGGTT[CG]GT[AG]A[AG]CTGTA

ATCGCA 
TGATGTTATGGAGCAGCAACG

ATGTTACGCAGCAGGGCAGTC

GCCCTAAAACAAAGTT TTGTTATGACTGTTTTTTT[G-

]{1,4}[GT]ACA[GCA][AT] 

2 ND ND 
TTAATTAACGGTAAGCATCAGC

GGGTGACAAAACGAGCATGCT

TACTAATAAAATGTT 

3 ND 
TAGACATAAGCTTTCTCGGTCT

GTAGG[CA]TGTAATG 

CTTTGTTTAACGACCACGGTTG

TGGGTATCCGGTGTTTGGTCA

GATAAACCACAAGTT 
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Table S2 �  List of genome used to create the 6 pseudo-genomes with different GC% 

background composition. 

 

Genome Size (pb) %GC 

Mycoplasma hyorhinis GDL-1 837480 25.91 

Anaerococcus prevotii DSM 20548 1883067 36.07 

Bacilllus subtilis subsp. subtilis str. 168 4215606 43.51 

Escherichia coli str. K-12 substr. MG1655 4639675 50.79 

Arthrobacter aurescens TC1 4597686 62.34 

Clavibacter michiganensis subsp. michiganensis NCPPB 382  3297891 72.66 
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