
  

  

We present a type of agent-based model that uses off-lattice 
spheres to represent individual cells in a solid tumor. The 
model calculates chemical gradients and determines the 
dynamics of the tumor as emergent properties of the 
interactions between the cells. As an example, we present an 
investigation of cooperation among cancer cells where 
cooperators secrete a growth factor that is costly to synthesize. 
Simulations reveal that cooperation is favored when cancer 
cells from the same lineage stay in close proximity. The result 
supports the hypothesis that kin selection, a theory that 
explains the evolution of cooperation in animals, also applies to 
cancers. 

I. COOPERATION AMONG CANCER CELLS  

It has long been hypothesized that tumors represent 
complex societies of mutualistically-interacting cell types[1, 
2]. Recent research shows that many of the malignant 
phenotypes of tumours known as the `hallmarks of cancer'[3, 
4] represent population-level behaviors. Experiments reveal 
that tumor growth may be driven by a subpopulation of tumor 
cells[5] and that tumorigenesis may require the participation 
of distinct phenotypic subpopulations[6]. Such interactions 
constitute a potential mechanism for clonal interference and 
provide an explanation for experimentally observed 
intratumoral heterogeneity[7, 8]. 

In addition to heterogeneity within the cancer cell 
population giving rise to synergistic interactions, the tumor 
microenvironment is populated by non-transformed host 
tissue and immune cells, which play important roles in 
determining tumor progression[9, 10] and treatment 
response[11]. Feedback in tumor-microenvironment 
interactions leads to the co-evolution of cancer cells and their 
environment[12]. As with many dynamical systems involving 
feedback interactions, the output of tumor-microenvironment 
interactions can potentially be chaotic and unpredictable, as 
can consequences of attempts to perturb the system with 
conventional or targeted treatments. 

Given the complex multi-scale organization of the tumor 
ecosystem, mathematical modeling can be a powerful tool to 
understand how the dynamics of the cellular ecosystem drive 
tumor progression and the consequences of perturbing this 
system with traditional or targeted therapy. In particular, 
applying mathematical frameworks derived from ecology and 
evolutionary theory allows the cancer biologist to leverage 
existing methods to analyze the collective behavior, 
population dynamics, and evolutionary dynamics of cellular 
systems in a way that is robust with respect to the constantly 
shifting genetic and molecular background within and 
between tumors[8, 13]. 
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II. AN APPLICATION OF AGENT-BASED MODELS 

Individual cells within each subpopulation may experience 
different microenvironmental conditions or stochastic 
fluctuations, and consequently display different phenotypes 
and behaviors. In this case, the population output integrates, 
through interactions between individuals, these individually 
noisy stimuli-response calculations. 
 
Many models simulating the population level behavior as 
emergent from varying individual cell activities fall under 
the general category of agent-based models (ABM)[14]. 
These models, constituting a `bottom up' simulation 
approach, have an additional advantage of being integrable 
with a continuum representation of diffusible chemical 
gradients, for example of cytokines or glucose. Such 
integrated models are sometimes referred to as hybrid 
discrete-differential (HDD) models[15]. Between the 
discrete-space representation of cells and their spatial 
organization, and the continuum representation of chemical 
species, HDD models have the potential to simulate the 
aggregate output of a multitude of regulatory mechanisms 
and interactions. 
 
ABMs are useful for exploring the effect of spatial structure 
on population and evolutionary dynamics. In microbial and 
tissue systems, diffusive substances such as nutrients and 
growth factors often have a decisive effect on population 
dynamics. The spatial distribution of resources and 
individuals thus determine the dynamics of the ecosystem, 
possibly in ways that contradict the predictions of mean-
field models. For instance, spatial structure can explain the 
emergence and maintenance of public-goods cooperative 
behavior in evolving populations if cooperative individuals 
aggregate and the public good is spatially limited[16]. This 
is readily demonstrated in agent-based spatial simulations 
for the example of bacterial colonies[17]. 
 
Using a variant of this bacterial model, it is also possible to 
show the emergence of a cooperative subclone in a two-
dimensional spherical tumour (Fig. 1). Conversely, the 
emergence of spatial structure can be evidence of 
interspecific interactions [18]. The presence of intricate 
spatial structure and nonuniform distribution of cell types 
within tumors[19, 20] may point to the dominance of 
interspecific effects within tumor cell populations. 

III. METHODS 

For the simulations shown in Fig 1. we used an ABM where 
every cell is represented by an independent agent (a ‘virtual 
cell’) with a defined size and location represented in spatial 
continuous coordinates. The behavior of each agent is 
determined by a set of rules that mimics the behavior of real 
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Figure 1. Agent based models reveal that cooperation between cancer cells can persist if cooperators are in close proximity so that they share cooperative 
secretions with each other. The simulation is initiated with one non-cooperative (‘cheater’) tumor cell at the center of the simulation space. Growth 
signal is initially uniformly distributed throughout the space, but gradients emerge as the signal is consumed by growing cells. Stochastic emergence of a 
cooperative subtype, which expresses the growth signal at a cost to its own growth, at the edge of the expanding tumor leads to a locally high 
concentration of growth signal and overall acceleration of cell growth. The emergent spatial structure—aggregation of cooperators and consequent 
segregation of public goods—stabilizes the cooperative subpopulation.  

cells: cells grow, divide, move due to mechanical 
displacement and forces applied by other cells, consume 
nutrients and secrete signaling molecules and growth factors 
that enhance growth of neighboring cells. Importantly, the 
kinetic rates for each of the processes are determined by the 
local microenvironment that each cell experiences. 
 
The microenvironment, i.e. the local concentrations of 
each�solute such as nutrients and growth factors, is 
determined by solving a system of coupled partial-
�differential equations (PDEs) that take into account 
diffusion�and reaction (i.e. production and consumption) of 
each solute. 
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In equation 1, Ci(x,y,z) represents the concentration of solute 
i at location (x, y, z) in space, Di is the diffusivity coefficient 
of that solute and ri is the net biochemical reaction rate for 
that solute (ri>0 if solute ‘i’ is being produced, which can be 
the case for growth factors, and ri<0 if solute ‘i’ is being 
consumed, as in the case of nutrients). The solute species 
can be any relevant chemical species such as oxygen and 
glucose that are consumed by the cells, but also substances 
that are produced by the cells such as growth factors or 
metabolic waste products such as lactate. The framework 
allows any number of solute substances to be included. 
 

Other applications for this model 

The true power of agent-based models comes from their 
generality. The particular framework described here was first 

developed to model bacterial communities[21]. It has been 
applied to a range of systems, from modeling wastewater 
treatment reactors[22], to investigating mechanisms of 
biofilm dispersal[23] to the study of bacterial 
cooperation[24]. More recently, these agent-based models 
have been applied to investigate tumor-stromal interactions 
and in particular the emergence of spatial structure in tumor-
associated macrophages[18]. 
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