New Results
A spectral analysis approach to detect actively translated open reading frames in high-resolution ribosome profiling data
Lorenzo Calviello, Neelanjan Mukherjee, Emanuel Wyler, Henrik Zauber, Antje Hirsekorn, Matthias Selbach, Markus Landthaler, Benedikt Obermayer, Uwe Ohler
doi: https://doi.org/10.1101/031625
Lorenzo Calviello
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
Neelanjan Mukherjee
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
Emanuel Wyler
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
Henrik Zauber
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
Antje Hirsekorn
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
Matthias Selbach
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
Markus Landthaler
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
Benedikt Obermayer
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
Uwe Ohler
1Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125 Berlin
2Departments of Biology and Computer Science, Humboldt University, 10099 Berlin

Article usage
Posted November 13, 2015.
A spectral analysis approach to detect actively translated open reading frames in high-resolution ribosome profiling data
Lorenzo Calviello, Neelanjan Mukherjee, Emanuel Wyler, Henrik Zauber, Antje Hirsekorn, Matthias Selbach, Markus Landthaler, Benedikt Obermayer, Uwe Ohler
bioRxiv 031625; doi: https://doi.org/10.1101/031625
A spectral analysis approach to detect actively translated open reading frames in high-resolution ribosome profiling data
Lorenzo Calviello, Neelanjan Mukherjee, Emanuel Wyler, Henrik Zauber, Antje Hirsekorn, Matthias Selbach, Markus Landthaler, Benedikt Obermayer, Uwe Ohler
bioRxiv 031625; doi: https://doi.org/10.1101/031625
Subject Area
Subject Areas
- Biochemistry (8815)
- Bioengineering (6519)
- Bioinformatics (23462)
- Biophysics (11789)
- Cancer Biology (9209)
- Cell Biology (13323)
- Clinical Trials (138)
- Developmental Biology (7436)
- Ecology (11409)
- Epidemiology (2066)
- Evolutionary Biology (15151)
- Genetics (10436)
- Genomics (14043)
- Immunology (9171)
- Microbiology (22154)
- Molecular Biology (8812)
- Neuroscience (47569)
- Paleontology (350)
- Pathology (1428)
- Pharmacology and Toxicology (2491)
- Physiology (3730)
- Plant Biology (8080)
- Synthetic Biology (2221)
- Systems Biology (6037)
- Zoology (1253)