
 

1 

 

Contribution of spatial heterogeneity in effective population sizes 

to the variance in pairwise measures of genetic differentiation 

 

 

Running title: Spatial heterogeneity in Ne 

 

Word count (including references, tables and figure legends): 8105 (7717 when excluding title page and 

Supporting Information, pp. 1 and 27) 

 

Jérôme G. Prunier
1*

, Vincent Dubut
2
, Lounès Chikhi

3,4
, Simon Blanchet

1,3
 

 

1
 Station d'Écologie Théorique et Expérimentale (UMR 5371), Centre National de la Recherche Scientifique 

(CNRS), Université Paul Sabatier (UPS), 2 route du CNRS, 09200 Moulis, France; 
2
 Institut Méditerranéen de 

Biodiversité et d‟Ecologie Marine et Continentale (UMR 7263), Aix-Marseille Université, CNRS, Institut de 

Recherche et du Développement, Avignon Université, Centre St-Charles, 3 place Victor Hugo, 13331 Marseille 

Cedex 3, France; 
3
 Laboratoire Evolution & Diversité Biologique (UMR 5174), UPS, CNRS, Ecole Nationale de 

Formation Agronomique, 31062 Toulouse cedex 4, France ;
 4

 Instituto Gulbenkian de Ciência, Rua da Quinta 

Grande, n°6, 2780-156 Oeiras, Portugal. 

 

* Corresponding author. Email: jerome.prunier@gmail.com 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 22, 2017. ; https://doi.org/10.1101/031633doi: bioRxiv preprint 

https://doi.org/10.1101/031633


 

2 

 

Summary 

1. Pairwise measures of neutral genetic differentiation are supposed to contain information about past and on-

going dispersal events and are thus often used as dependent variables in correlative analyses to elucidate 

how neutral genetic variation is affected by landscape connectivity. However, spatial heterogeneity in the 

intensity of genetic drift, stemming from variations in population sizes, may inflate variance in measures of 

genetic differentiation and lead to erroneous or incomplete interpretations in terms of connectivity. Here, 

we tested the efficiency of two distance-based metrics designed to capture the unique influence of spatial 

heterogeneity in local drift on genetic differentiation. These metrics are easily computed from estimates of 

effective population sizes or from environmental proxies for local carrying capacities, and allow us to 

introduce the hypothesis of Spatial-Heterogeneity-in-Effective-Population-Sizes (SHNe). SHNe can be 

tested in a way similar to isolation-by-distance or isolation-by-resistance within the classical landscape 

genetics hypothesis-testing framework.  

2. We used simulations under various models of population structure to investigate the reliability of these 

metrics to quantify the unique contribution of SHNe in explaining patterns of genetic differentiation. We 

then applied these metrics to an empirical genetic dataset obtained for a freshwater fish (Gobio occitaniae). 

3. Simulations showed that SHNe explained up to 60% of variance in genetic differentiation (measured as 

Fst) in the absence of gene flow, and up to 20% when migration rates were as high as 0.10. Furthermore, 

one of the two metrics was particularly robust to uncertainty in the estimation of effective population sizes 

(or proxies for carrying capacity). In the empirical dataset, the effect of SHNe on spatial patterns of Fst was 

five times higher than that of isolation-by-distance, uniquely contributing to 41% of variance in pairwise 

Fst. Taking the influence of SHNe into account also allowed decreasing the signal-to-noise ratio, and 

improving the upper estimate of effective dispersal distance. 

4. We conclude that the use of SHNe metrics in landscape genetics will substantially improve the 

understanding of evolutionary drivers of genetic variation, providing substantial information as to the actual 

drivers of patterns of genetic differentiation in addition to traditional measures of Euclidean distance or 

landscape resistance. 

 

Keywords: dispersal; evolutionary forces; genetic drift; landscape genetics; population genetics; variance 

partitioning 
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Introduction 

The maintenance of effective dispersal capacities among demes is of tremendous importance for the 

viability of spatially structured populations (Wiens 1997). Given the technical challenges of directly monitoring 

individual movements, landscape genetics has emerged as an efficient way of assessing functional landscape 

connectivity (Tischendorf & Fahrig 2000), i.e. the influence of landscape configuration on effective dispersal 

between populations (i.e., gene flow; Barton & Bengtsson 1986), by combining methods from population 

genetics, landscape ecology and spatial statistics (Manel et al. 2003).  

One of the main assets of landscape genetics is that it allows assessing functional landscape connectivity 

without the need for the quantitative inference of dispersal parameters (dispersal rate, dispersal distance or 

effective numbers of migrants; see Broquet & Petit 2009 for a review). Pairwise measures of neutral genetic 

differentiation (or “genetic distances”) such as F-statistics (e.g. Fst; Wright 1943) are supposed to contain 

information about past effective dispersal events (Slatkin 1987; Jaquiéry et al. 2011) and are thus considered a 

proxy for gene flow. The direct use of F-statistics as a proxy for gene flow ensues from the seminal work by 

Wright (1943) who showed that, under the specific assumptions of the island model, gene flow (the product of 

effective deme size Ne and immigration rate m) between two populations could be derived from a measure of 

neutral genetic variance, following Fst = 1/(4Nm+1). Genetic distances are thus often used as dependent 

variables in correlative analyses to elucidate how neutral genetic variation is affected by landscape configuration 

(Storfer et al. 2007; Holderegger & Wagner 2008; Guillot et al. 2009). When carried out within a hypothesis-

testing framework depicting the expected statistical relationships between landscape and neutral genetic data 

(Richardson et al. 2016), correlative analyses allow identifying the possible determinants of spatial genetic 

structures, thus providing a valuable way of assisting both landscape management and wildlife conservation 

(Segelbacher et al. 2010).  

Depending on the complexity of the landscape, several competing hypotheses can be combined within the 

same analysis, such as isolation-by-distance (IBD) or isolation-by-resistance (IBR; Zeller et al. 2012). These 

hypotheses are formulated on the basis of how specific landscape features (coded as pairwise Euclidean or cost 

distances) are assumed to impact genetic differentiation and, by extension, gene flow. Isolation-by-distance is 

notably a baseline hypothesis in landscape genetics (Jenkins et al. 2010). In organisms whose dispersal ability is 

spatially constrained, the IBD hypothesis depicts the expected increase in genetic differentiation (and its 

variance) between populations as geographical distance increases. At a given spatial scale (e.g., Bradbury & 

Bentzen 2007), a significant positive correlation between Euclidean distances and genetic distances would give 
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support to the tested hypothesis, suggesting that dispersal movements decrease as geographic distance increases 

(Slatkin 1993; but see Edelaar & Bolnick 2012).  

However, it has to be emphasized that F-statistics are not estimates of gene flow per se but are primarily 

measures of the balance between genetic drift on the one hand, and migration (and mutations) on the other hand: 

high values of pairwise Fst indicate that genetic variation is mostly driven by drift, whereas low values indicate 

that genetic variation is mostly determined by dispersal, counterbalancing the effects of drift. Genetic drift is the 

evolutionary process of random fluctuations in allelic frequencies naturally occurring in all populations, 

whatever their size, though compounded in small ones (Allendorf 1986). If not fully compensated by gene flow, 

these random fluctuations ultimately lead to genetic differentiation, all the more quickly that at least one of the 

two considered demes is small. In other words, genetic distances may increase because of reduced landscape 

connectivity (and thus dispersal) between populations, but also because of spatial variations in population sizes 

(Jaquiéry et al. 2011; Richardson et al. 2016 ; see Appendix S1a for an illustration). Spatial heterogeneity in the 

intensity of genetic drift alone may thus be responsible for spurious relationships between measures of genetic 

differentiation and landscape predictors, erroneously providing support for alternative hypotheses such as IBD or 

IBR and possibly leading to counterproductive management and conservation measures. This risk of spurious 

conclusions is all the more important as the heterogeneity in the intensity of drift is not random but follows 

spatial patterns (such as upstream-downstream gradients in rivers or altitudinal gradient in mountains) that may 

in some cases be falsely captured by alternative landscape hypotheses (Appendix S1b). In any case, quantifying 

the contribution of spatial heterogeneity in local drift to the variance in genetic differentiation may provide 

crucial insights into the actual drivers of genetic structures. 

In the same way that IBD or IBR hypotheses depict the expected contribution of landscape characteristics 

to the variance in genetic distances, we here propose an additional hypothesis relating the influence of spatial 

heterogeneity in local effective population sizes (Ne) over patterns of genetic differentiation: the Spatial-

Heterogeneity-in-Ne (SHNe) hypothesis. This SHNe hypothesis, based on the computation of distance-based 

metrics from estimates of Ne, naturally falls within the hypothesis-testing framework classically used in 

landscape genetics, and is aimed at quantifying the contribution of heterogeneity in population sizes in shaping 

spatial patterns of genetic differentiation, thus providing further insight into acting evolutionary forces. Note that 

we did not intend to compute a measure of genetic differentiation “corrected” for Ne (as in Relethford 1996 or 

Jost 2008), but rather to provide metrics allowing a direct quantification of the amount of variance explained by 

SHNe.  
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In this study, we first described how estimates of Ne can be used to compute two distinct SHNe metrics 

stemming from the theoretical model of pure random genetic drift. We then investigated the influence of SHNe 

on the variance in Fst values and on the behaviour of each metric in a simple two-deme situation. We then tested 

the ability and efficiency of each metric to account for heterogeneity in population sizes when they are directly 

computed from Ne, using simulations in various genetic models of population structure. Given the inherent 

difficulty in estimating Ne (Wang 2005), we used similar simulations to assess whether SHNe metrics were still 

efficient when computed from environmental proxies for local carrying capacities K, assuming that K is an 

imperfect proxy of Ne. We further assessed the efficiency of each metric in an empirical case study involving a 

freshwater fish species (Gobio occitaniae) using environmental estimates of population sizes. We finally 

discussed how and why these metrics should be recurrently used in landscape genetics studies. 
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Materials and Methods 

DISTANCE-BASED METRICS OF SHNe 

The di metric (for distance based on the inverse) was first proposed by Relethford (1991) and directly 

ensues from the classical formula depicting the expected loss of heterozygosity in an ideal Wright-Fisher 

population of constant size N over time but experiencing genetic drift (e.g. Hartl & Clark 2007, p. 122):  

      (  
 

  
)
 
(    )    (eq. 1) 

where Ft is the fixation index at generation t. Extrapolated to a spatial context and with F0 set to 0, the same 

equation can be used to depict the expected divergence of two subpopulations of size Ni relative to a founding 

population, in a situation where subpopulations are totally isolated, of constant size over time and with genetic 

drift being the only acting evolutionary force (Crow & Kimura 1970). After transformation (Relethford 1991), it 

can be shown that Fst between populations 1 and 2 is proportional to di (Appendix S2b), with: 

    
 

  
 

 

  
 
     

    
 (eq. 2) 

and N1 and N2 the (ideally effective) population sizes of populations 1 and 2, respectively.  

The dhm metric (for distance based on the harmonic mean) was proposed by Serrouya et al. (2012) and 

also directly ensues from eq. 1. In the case of fluctuating population sizes over time, it can be shown that the 

effective size Ne of a population is the harmonic mean of census populations sizes N over time (Wright 1938; 

Hartl & Clark 2007). The harmonic mean weights smaller populations more heavily: in biological terms, it 

means that a single period of small population size (bottleneck) can result in a serious loss of heterozygosity. 

Extrapolated to a spatial context, the use of the harmonic mean entails that the smaller one of the two 

populations, the higher the pairwise genetic distance under a pure genetic drift model (Appendix S2a). We thus 

expect Fst between populations 1 and 2 to be proportional to dhm, with:  

      
 

 

  
 
 

  

  
     

     
  (eq. 3) 

Note that we considered the opposite to the harmonic mean of N because the untransformed harmonic mean 

shows negative relationships with Fst (Serrouya et al. 2012), and thus does not behave as a classical distance-

based metric. Metrics di and dhm are inversely related and are thus expected to show different mathematical 

properties for the same combination of population sizes (Fig. 1b; Appendix S2c).   

Directly accounting for SHNe through the use of Ne is probably the most straightforward approach, but 

implies a major difficulty: estimating this demographic parameter, a task that may turn out to be tricky (Wang 

2005).  Alternatively, we thus propose to consider the use of environmental estimates of local carrying capacities 
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(K) as a proxy for effective population sizes. Carrying capacity reflects the upper asymptote of the logistic 

growth curve of a population given the distribution and abundance of resources determined by local 

environmental conditions (Hanski 1994) and can be approximated using specific environmental variables such as 

habitat patch size or habitat quality (e.g. Raeymaekers et al. 2008).  

 

SIMULATED DATASETS 

For all simulations, we used a computational pipeline including the programs ABCsampler (Wegmann et 

al. 2010), Simcoal2.1.2 (Laval & Excoffier 2004) and arlsumstat (Excoffier & Lischer 2010) to simulate and 

analyse microsatellite genetic datasets, with 15 independent loci following a stepwise mutation model and a 

unique mutation rate µ = 0.0005 (see Appendices S8 and S9 for results with µ = 0.01). Parameter values 

(symmetrical migration rates mi and local demes‟ effective population sizes Ne (in number of haploid 

genotypes), hereafter only denoted as N) were picked from uniform distributions using ABCsampler and were 

then used as inputs in Simcoal2.1.2 to simulate genetic data based on a coalescent approach. In all simulations, a 

maximum of 30 haploid genotypes (that is, 15 diploid individuals) were sampled from each deme at the end of 

simulations and were used to compute pairwise Fst among demes using arlsumstat. di and dhm metrics were 

computed on the basis of demes‟ local carrying capacities K, with K = N + α N. The parameter   represents the 

uncertainty in the estimates of effective population sizes through an environmental proxy such as habitat patch 

size. The estimates of N were considered as unbiased for α = 0 (since K = N) or uncertain for    . To control 

for heterogeneity in local genetic drift, effective population sizes Ni were computed from a maximum population 

size Nmax following Ni = Nmax -   Nmax , with  Nmax fixed at 1000 or randomly picked from a uniform distribution 

ranging from 100 to 1000 (see details below) and   a correcting parameter randomly picked from a uniform 

distribution ranging from 0 to 0.95 so that Ni ≤ Nmax. Levels of heterogeneity across effective population sizes 

were estimated using the coefficient of variation        ̅⁄ , with s and  ̅ the standard deviation and the mean 

of effective population sizes, respectively. All statistical analyses were performed in R 3.1.2 (R Development 

Core Team 2014). 

Influence of SHNe on the variance in Fst. We first investigated the influence of SHNe on the variance 

in Fst values and on the behaviour of each SHNe metric in a simple two-deme situation. We simulated 10
5
 

genetic datasets with m fixed at 0.02 and   set to 0. Effective population size for deme 1 (N1) was fixed at Nmax = 

1000 (i.e. 500 diploid genotypes), while effective population size for deme 2 (N2) was computed from N1 
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following             . For each dataset, we computed pairwise Fst, di and dhm metrics, and CV. We then 

plotted Fst values as well as z-transformed di and dhm values against N2.  

Contribution of SHNe metrics to the variance in Fst. We then assessed the contribution of each SHNe 

metric to the variance in Fst in four complex situations differing according to both the network structure and the 

migration model used for simulations (Appendix S3). We considered two different network structures: a one-

dimensional 16-deme linear network and a two-dimensional 16-deme lattice network. We considered two 

distinct migration models: a spatially structured island model (Wright 1943) in which m decreases with 

Euclidean distance following an inverse-square function, and a spatially structured stepping-stone model 

(Kimura & Weiss 1964) where demes can only exchange migrants with adjacent demes. For each situation, 

10,000 genetic datasets were simulated with   set to 0, m randomly picked from a uniform distribution ranging 

from 0.0001 to 0.3 and Nmax randomly picked from a uniform distribution ranging from 100 to 1000. For each 

simulated dataset, we computed four pairwise matrices (Fst, di, dhm and Euclidean distances mr, the latter acting 

as a simple measure of inter-deme matrix resistance) and performed multiple regressions on distance matrices 

(MRDM; Smouse et al. 1986) between Fst and each SHNe metric, with mr as a unique covariate (Fst = mr + di 

or Fst = mr + dhm). All variables were z-transformed to standardize parameter estimates. Commonality analysis 

(a variance partitioning procedure assessing the reliability of model parameters in face of multicollinearity; Ray-

Mukherjee et al. 2014; Prunier et al. 2015) was used to estimate the respective unique contribution (U) of each 

predictor to the variance in the dependent variable. The unique contribution is the part of the total variance in the 

dependent variable that is explained by the sole effect of the predictor being considered (mr, di or dhm). On the 

contrary, common contributions (shared variance among predictors) can help identify statistical suppression 

situations, responsible for artefactual distortions in parameter estimates (Paulhus et al. 2004; Prunier et al. 2017). 

Datasets were finally pooled according to their migration rate into 30 classes defined every 0.01 units (about 330 

datasets per class). For each class, we computed the mean and the standard deviation of unique contributions of 

each predictor. A unique contribution was considered as negligible as soon as the dispersion around the mean 

included zero. 

Minimum level of heterogeneity accounted for by SHNe metrics. To determine the minimum level of 

SHNe likely to affect pairwise Fst, we used the same approach as described above but with a constant migration 

rate (m = 0.02). For each simulated dataset, we additionally computed the coefficient of variation CV, and 

plotted the unique contribution of each predictor (mr, di or dhm) along with their respective standard deviation 

against CV. 
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Metrics measured from an environmental proxy. Finally, we investigated the influence of uncertainty 

in the estimation of Ne through an environmental proxy. We used the same approach as described above with m 

randomly picked from a uniform distribution ranging from 0.0001 to 0.3 and the parameter   picked, 

independently for each population, from a uniform distribution ranging from -0.9 to 0.9 (Appendix S4).  

 

EMPIRICAL DATASET 

As en empirical example, we considered neutral genetic data collected in the gudgeon (Gobio occitaniae), 

a small benthic freshwater fish. Fieldwork was conducted in accordance with French laws and with the approval 

of the Prefecture du Lot (the administrative region where the samples were collected). A total of 562 individuals 

were caught in 2011 by electro-fishing in 19 sampling sites scattered along the mainstream channel of the river 

Célé (Appendix S5). Pairwise Fst were computed between all pairs of sites using 11 microsatellite loci 

(Appendix S13). Details on laboratory procedures and acquisition of landscape data are provided in Appendix 

S6. The riparian distance among sites was used as a measure of matrix resistance mr among sites. We first used a 

simple Mantel test to assess significance of the relationship. We further investigated the observed pattern by 

using piecewise regression (Toms & Lesperance 2003) to identify the scale of migration-drift equilibrium, that 

is, the distance at which different linear relationships are observed. Estimations of breakpoints and slope 

parameters, as well as 95% confidence intervals, were performed using the R-package segmented (Muggeo 

2008). 

Given the difficulty in estimating effective population sizes in the wild (Wang 2005), we used a proxy for 

local carrying capacities to estimate di and dhm. The proxies we used were the width of the river at each 

sampling site and the estimated home-range size of each population (Raeymaekers et al. 2008). The home-range 

size of each deme was computed as the product of length and width of the river network (including tributaries) 

delimited by any downstream or upstream weir (see Blanchet et al. 2010 for a description of weirs in this river). 

This corresponded to the water area in which gudgeons were free to move. Matrices of pairwise di and dhm were 

then computed from these estimates and were independently confronted to the matrix of pairwise Fst using 

MRDM with 1000 permutations and with mr as a covariate. Commonality analyses were then used to 

disentangle the relative contribution of each predictor to the variance in pairwise Fst.  

Finally, we plotted the residuals of the linear regression between Fst and the di metric (based on measures 

of river width) against mr and used a simple Mantel test to assess significance of the relationship. We further 
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investigated the observed pattern by using piecewise regression to identify the distance threshold at which 

different linear relationships could be observed.   
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Results 

SIMULATED DATASETS 

Influence of SHNe on the variance in Fst. The aim of this first simulation study was to assess the 

behaviour of SHNe metrics in a very simple system in response to the variance in effective population sizes. 

Simulations were conducted so that any increase in heterogeneity (as measured by CV) was associated with a 

decrease in the size of one of the two populations (N2), the size of the other population (N1) being held constant. 

As expected, the increase in heterogeneity in Ne led to an increase in the variance in Fst (Fig.1a): Fst values 

ranged from 0 to 0.25 for a CV of 1.2 (N2 ≈ 5) while they did not exceed 0.05 for a CV of 0 (N2 ≈ 1000). The 

dhm metric showed a regular (though non-linear) increase with the increase in CV, while the di metric showed 

limited increase for CV ≤ 0.6, followed by a steep increase for CV > 0.6 (Fig.1b). When Fst and SHNe metrics 

were scaled to range from 0 to 1, SHNe metrics followed patterns similar to that observed for Fst, although di 

tends to better fit the general Fst pattern than dhm (Appendix S7). 

Contribution of SHNe metrics to the variance in Fst. In the absence of uncertainty in the estimation of 

effective population sizes (α = 0), both di and dhm explained a non-negligible part of the total variance in 

pairwise Fst (i.e. from 5% to more than 60%; Fig. 2). Dispersion around the means further indicated that the 

unique contribution of SHNe metrics can be substantial, whatever the maximum population size in the system 

(Nmax ranging from 100 to 1000) and for migration rates as high as 0.135 (Fig. 2). For m < 0.135, the unique 

contributions of di and dhm were the lowest for a linear network with stepping-stone migration (Fig. 2a-b) and 

were the highest in a lattice network with spatially limited dispersal (Fig. 2g-h). In this latter case, di and dhm 

explained much more variance than the traditional covariate mr as soon as m < 0.05. For other genetic models, 

the unique contributions of di and dhm were roughly as high as (linear network with spatially limited migration; 

Fig. 2c-d) or slightly higher than (lattice network with stepping-stone dispersal; Fig. 2e-f) the unique 

contribution of mr. Overall, di and dhm behaved very similarly, although mean contribution as well as dispersion 

around the mean were slightly higher for di than for dhm in all situations.  

Minimum level of heterogeneity accounted for by SHNe metrics. When m was fixed at 0.02, the 

unique contribution of dhm and di were negligible when CV were below a value ranging from 0.23 (Fig. 3c-h) to 

0.28 (linear network with stepping-stone migration; Fig. 3a-b). At maximum heterogeneity (CV ≈ 0.8), unique 

contributions ranged from 10 to 50% (Fig. 3). As previously, di and dhm behaved very similarly, although mean 

contribution as well as dispersion around the mean were slightly higher for di than for dhm in all situations. In 

most situations, the averaged model fit R² (the sum of unique and common contributions; Prunier et al. 2015) 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 22, 2017. ; https://doi.org/10.1101/031633doi: bioRxiv preprint 

https://doi.org/10.1101/031633


 

12 

 

also increased with the increase of CV (e.g. from 10 to 60%; Fig. 3g-h).  The observed decrease in the unique 

contribution of mr as the unique contribution of SHNe metrics increases (Fig. 3a-f) was not due to an increase in 

the common contribution of mr and SHNe metrics (data not shown), indicating that the relative support for 

alternative hypotheses such as IBD or IBR may be impaired in presence of SHNe.  

Metrics measured from an environmental proxy. When uncertainty was included in the estimation of 

effective population sizes so as to mimic an environmental proxy for K (using α ϵ [-0.9, 0.9]), mr showed similar 

patterns to those in absence of uncertainty (Fig. 4). SHNe metrics behaved similarly to situations where true 

estimates of N were used, although unique contributions were systematically lower (but still up to 30% for m 

values lower than a threshold ranging from 0.025 to 0.105). Furthermore, and as previously, dispersion around 

the mean was generally noticeably larger for dhm than for di.  

 

EMPIRICAL DATASET 

   
The pattern of IBD in G. occitaniae was characterized by a slightly positive though insignificant relationship 

between Fst and mr (Table 1). Piecewise regression explained a slightly higher proportion of the variance in Fst 

(6.7%) than classical linear regression (2.9%). However, the upper bound of the confidence interval around the 

putative breakpoint (estimated at 74.8 ± 7.7 km) was located beyond spatial extent of the study. 

When K values were estimated from river width or home-range sizes, coefficients of variation were 

respectively 0.432 and 0.927, suggesting high SHNe in this system. On the whole, model fit indices R² were 

higher when K values were estimated from river width rather than from home-range sizes (Table 1), indicating 

that river width was a better proxy for carrying capacities than home-range size in this dataset. Whatever the 

proxy used for K, mr showed limited unique contribution to the variance in measures of genetic differentiation, 

with values ranging from 3.4 to 7.8% (Table 1). This variability in unique contributions of mr stemmed from 

collinearity with distance-based metrics of genetic drift, as revealed by common contributions C (Prunier et al. 

2015): indeed, the highest unique contribution of mr (U = 7.8%) was also associated with the highest negative 

common contribution (C = - 4.8%), indicating statistical suppression, a situation responsible for an artificial 

boost in both the regression coefficient and its significance (Paulhus et al. 2004; Prunier et al. 2017). The 

observed variability in model fits (ranging from 4% to 44.2%) thus mostly ensued from the variability in SHNe 

metrics‟ unique contributions to the variance in Fst.  When K values were estimated from home-range sizes, the 

effect of di was not significant (unique contribution of 1.1%) whereas dhm uniquely accounted for 9.8% of 
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variance in Fst. When K values were estimated from river width, the unique contribution of di and dhm strongly 

increased, reaching 41.3% and 36.7% respectively (Table 1).  

When exploring the relationship between residuals of the linear regression between Fst and the di metric 

(based on measures of river width) and mr, piecewise regression explained a substantially higher proportion of 

the variance in Fst (23.8%) than linear regression (12.5%). The scatterplot showed an increase in residual values 

up to 8.9 ± 3.3 km and a clear-cut plateau beyond this threshold (Fig. 5b). This pattern suggests that, once the 

influence of SHNe is taken into account, the scale of IBD may be better inferred, with the divergence between 

populations located more than 8.9 km apart being mostly determined by drift.  
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Discussion 

The possible influence of SHNe on the raw material of most landscape genetic studies, namely the 

variance in inter-deme measures of genetic differentiation, is rarely taken into consideration (but see Leblois et 

al. (2004) for an example), although it may lead to erroneous or incomplete interpretations of observed genetic 

patterns. Our study demonstrates that considering SHNe metrics (i.e., distance metrics measured from estimates 

of Ne or from environmental proxies for local carrying capacities) is a relevant approach to quantify the 

contribution of SHNe to the variance in pairwise measures of genetic differentiation, providing substantial 

information as to the actual drivers of observed patterns of genetic differentiation in addition to alternative 

hypotheses such as IBD. The proposed framework is based on a simple variance-partitioning procedure and does 

not require any complex parameterisation. 

 

COMPARISON OF SHNe METRICS 

In a simple two-deme situation with constant migration rate, SHNe metrics exhibited patterns similar to 

Fst, thus properly rendering the influence of spatial heterogeneity in local drift on deme genetic differentiation. 

In more realistic scenarios, these metrics allowed quantifying the influence of SHNe on the variance in pairwise 

Fst from CV of about 25%. In other words, pairwise Fst in a set of three populations of mean size 100 and 

exchanging 2% of migrants at each generation (m = 0.02) may be affected by SHNe for differences in population 

sizes as low as 25 (e.g. N = 75, 100 and 125). The SHNe metrics explained up to 60% of variance in measures of 

genetic differentiation (and up to 80% for a higher mutation rate; see Appendix S8) at low migration rate, but 

still showed substantial contributions for migration rates as high as 0.135 (0.225 for a higher mutation rate). It is 

however noteworthy that the amounts of explained variance strikingly depended on the configuration of the 

network (1D versus 2D), the migration model (presence versus absence of long distance migration events) and 

the mutation rate (Appendices S8 and S9).  

When applied to the G. occitaniae dataset, the use of di and dhm allowed explaining large amounts of 

variance in genetic differentiation when river width was used as a proxy for local carrying capacities. Only 2.9% 

of variance in measures of genetic differentiation was accounted for with mr as the only predictor. On the 

contrary, up to 44.2% of variance was explained when either di or dhm were used as additional explanatory 

variables. This suggests that the observed variance in measures of genetic differentiation was mostly driven by 

SHNe and much less by IBD. Interestingly, taking this effect into consideration through the use of residuals 

increased the scatterplot signal-to-noise ratio and revealed that genetic differentiation actually increased with 
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riparian distance as long as populations were less than 8.9 km apart. This threshold corresponds to the scale of 

spatial autocorrelation in measures of genetic differentiation and may provide an upper estimate for effective 

dispersal distance (Anderson et al. 2010). This parameter is of particular interest as it may be used to inform 

conservation policies, for instance to support decisions in management of weirs or dams. Note however that 

taking the influence of SHNe into account in simulated datasets did not systematically lead to such an increase in 

signal-to-noise ratio (data not shown), probably because of variations in the spatial scale of simulated processes 

(Bradbury & Bentzen 2007). Further studies are hence needed to identify the specific conditions under which 

such improvement can be achieved: for instance, the upstream-downstream increase in carrying capacities 

encountered in river systems is responsible for a specific longitudinal pattern of SHNe (Appendix S1b) that may 

be more easily captured using this procedure than in the case of random SHNe (as simulated in this study).  

When uncertainty was introduced in estimates of Ne, mimicking the use of an environmental proxy such 

as local carrying capacities, simulations showed that both di or dhm were still efficient at accounting for the 

influence of SHNe on the variance in Fst. However, dhm slightly outperformed di at intermediate migration rates 

(i.e., for m lower than 0.1) as di‟s unique contribution to the variance in Fst showed higher dispersion around the 

mean than dhm. This trend was confirmed by the empirical dataset: when local carrying capacities were 

estimated from home-range sizes, di failed to detect any contribution of SHNe to the variance in genetic 

differentiation, whereas dhm -though less efficient than with river width as a proxy- still explained about 10% of 

variance. This difference stems from the inner characteristics of each metric. Given the use of a harmonic mean 

in its computation, dhm tends to increase as soon as one of the two demes shows a low to intermediate Ne. While 

di values show a rapid decrease as soon as one of the two demes shows an increase in Ne, the decrease in dhm 

values is smoother, thus still allowing the detection of the effect of SHNe despite higher uncertainty in the 

estimates of Ne. The dhm metric may actually be more robust when using environmental proxies for local 

carrying capacities and should therefore be preferred (or compared) to di. It is noteworthy that the two metrics 

can easily be combined in a single model and, provided collinearity patterns are inspected (Prunier et al. 2015), 

the best at fitting the dataset be selected according to its unique contribution (see Appendix S10 for an 

illustration). 

 

BIOLOGICALLY RELEVANT METRICS 

Simulations indicated that the influence of SHNe was still perceptible for migration rates up to 0.15, 

irrespective of the model of population structure being considered (Figs 2 and 4). Interestingly, this range of 
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values is higher than migration rates likely to be encountered in most natural systems. Indeed, summary statistics 

from 49 recent empirical studies that used BAYESASS (Wilson & Rannala 2003) to estimate interpatch 

migration rates (collected from a literature survey by Meirmans 2014; see Appendix S11 and Appendix S14 for 

details) indicated that the median value of average migration rates was 0.023, with more than 95% of studies 

showing average estimates lower than 0.1 (Appendix S12). For instance, the average estimate of migration rates 

in G. occitaniae in our empirical dataset was about 0.02 (unpublished data), as estimated using GENECLASS 

(Cornuet et al. 1999). These observations suggest that SHNe is likely to be an important driver of spatial genetic 

variation in many empirical datasets, considering that natural variability in deme sizes is most probably far from 

being an exception. Because of their ability to explain substantial additional amounts of variance in observed 

measures of genetic differentiation, we argue that considering the use of simple distance-based metrics such as di 

or dhm in future landscape genetic studies should thoroughly improve our understanding of observed spatial 

patterns of genetic variation.  

 

LIMITATIONS OF SHNe METRICS 

Considering the difficulties in accurately estimating Ne from genetic data (Wang 2005), the use of alternative 

estimates of population size such as observed local densities (e.g. Joly et al. 2001; Blanchet et al. 2010) or 

habitat patch size (e.g. Verboom et al. 1991; Raeymaekers et al. 2008) to compute SHNe metrics is particularly 

appealing, but has yet to be considered with caution. The validity of such metrics indeed proceeds from the 

assumption that effective population sizes have remained constant over time (Appendix S2). This assumption 

theoretically limits the practical use of SHNe metrics to systems in which populations are not subject to abrupt 

changes in genetic drift. For populations having suffered from bottleneck events (Nei et al. 1975) or from 

founder effects (Ellstrand & Elam 1993), local environmental variables such as patch size may not properly 

mirror the actual effective population size, thus making SHNe metrics poor predictors of spatial patterns of 

genetic differentiation. In these situations, estimating effective population sizes from molecular data -although a 

delicate exercise- probably remains the best option (see Wang 2005 for a review synthesizing methods used to 

estimate Ne). More generally, integrating the demographic processes affecting Ne over time will be an important 

challenge to overcome so as to make landscape genetics an integrative discipline accounting for the complexity 

of spatially and temporally dynamic populations (Lowe & Allendorf 2010).  
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CONCLUSION 

Habitats modifications by humans have two components (Fischer & Lindenmayer 2007); one leading to a 

decrease in connectivity (fragmentation) and another leading to a decrease in habitat and resource availability 

(habitat loss and degradation). By reducing the size of available habitats and by decreasing connectivity among 

habitats, humans are rapidly making the ground more and more fertile for genetic drift, and therefore spatial 

heterogeneity in local drift, to become an increasingly influential evolutionary process. As the combined use of 

SHNe metrics and classical (IBD, IBR, etc.) landscape predictors in regression commonality analyses may 

substantially improve our understanding of how each process respectively contributes to observed spatial 

patterns of genetic variation, we believe that the time is ripe to systematically quantify the influence of SHNe on 

the spatial genetic structure of wild populations, in order to identify cases where genetic differentiation is 

actually increasing as a consequence of spatial heterogeneity in resource availability. 
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Table 1. Results of Mantel test (univariate model), MRDM  and commonality analyses (bivariate models) 

performed on empirical data. For each type of environmental proxy for carrying capacities (K) and each model 

(Model), the table provides the model fit index (R²) and, for each predictor (Pred), the standardized regression 

coefficients (beta weights β), the p-value (p) and finally unique (U), common (C) and total (T) contributions to 

the variance in the dependent variable. 

 

K Model R² Pred β p U C T 

    0.029 mr 0.171 0.119 0.029 0.000 0.029 

Home-Range       0.040 mr 0.185 0.038 0.034 -0.004 0.029 

 

  

di 0.104 0.173 0.011 -0.004 0.006 

        0.127 mr 0.192 0.026 0.037 -0.008 0.029 

 

  

dhm 0.313 0.001 0.098 -0.008 0.090 

River width       0.442 mr 0.283 0.001 0.078 -0.048 0.029 

 

  

di 0.652 0.001 0.413 -0.048 0.365 

        0.396 mr 0.219 0.003 0.048 -0.018 0.029 

 

  

dhm 0.607 0.001 0.367 -0.018 0.348 
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Fig 1. Behaviour of Fst (a) and each z-transformed SHNe metric (b) in a simple two-deme system as a function 

of effective population size N2 (d: value of SHNe metrics; CV: Coefficient of variation). 
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Fig 2. Unique contribution of metrics mr and di (left panels) or mr and dhm (right panels) as a function of the 

migration rate m for    . Results are for a linear network with stepping-stone migration (a-b), a linear network 

with spatially limited dispersal (c-d), a lattice network with stepping-stone migration (e-f) and a lattice network 

with spatially limited dispersal (g-h). Circles represent the average unique contribution of each variable and 

coloured areas represent the dispersion of unique contributions around the mean, as defined by standard 

deviations. Vertical dashed lines indicate the migration rate m above which the unique contribution of SHNe 

metrics become negligible (lower bound for standard deviation < 0). 
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Fig 3. Averaged R² (red) and unique contribution of metrics mr and di (left panels) or mr and dhm (right panels) 

as a function of heterogeneity in Ne (CV: coefficient of variation) for m = 0.02 and    . See legend in Fig. 2 

for other details. 
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Fig 4. Unique contribution of metrics mr and di (left panels) or mr and dhm (right panels) as a function of the 

migration rate m for   ranging from -0.9 to 0.9. See legend in Fig. 2 for other details. 
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Fig 5. Scatterplot of pairwise Fst against (a) pairwise riparian distances (mr) and (b) residuals of the linear 

regression between Fst and the di metric (computed from river width) in the empirical dataset. Piecewise 

regression lines are in black. In red, solid vertical lines indicate the distance thresholds on either side of which 

different linear relationships can be observed, with 95% confidence intervals represented by dashed lines.  
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