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	38	

Abstract	39	

	40	
We	present	the	Metagenomic	Intra-species	Diversity	Analysis	System	(MIDAS),	which	is	an	41	
integrated	computational	pipeline	for	quantifying	bacterial	species	abundance	and	strain-42	
level	genomic	variation,	including	gene	content	and	single	nucleotide	polymorphisms,	from	43	
shotgun	metagenomes.	Our	method	leverages	a	database	of	>30,000	bacterial	reference	44	
genomes	which	we	clustered	into	species	groups.	These	cover	the	majority	of	abundant	45	
species	in	the	human	microbiome	but	only	a	small	proportion	of	microbes	in	other	46	
environments,	including	soil	and	seawater.	We	applied	MIDAS	to	stool	metagenomes	from	47	
98	Swedish	mothers	and	their	infants	over	one	year	and	used	rare	single	nucleotide	48	
variants	to	reveal	extensive	vertical	transmission	of	strains	at	birth	but	colonization	with	49	
strains	unlikely	to	derive	from	the	mother	at	later	time	points.	This	pattern	was	missed	50	
with	species-level	analysis,	because	the	infant	gut	microbiome	composition	converges	51	
towards	that	of	an	adult	over	time.	We	also	applied	MIDAS	to	198	globally	distributed	52	
marine	metagenomes	and	used	gene	content	to	show	that	many	prevalent	bacterial	species	53	
have	population	structure	that	correlates	with	geographic	location.	Strain-level	genetic	54	
variants	present	in	metagenomes	clearly	reveal	extensive	structure	and	dynamics	that	are	55	
obscured	when	data	is	analyzed	at	a	higher	taxonomic	resolution.	56	

	57	

Introduction	58	
	59	
Microbial	communities	play	a	myriad	of	important	roles	in	the	different	environments	that	60	
they	inhabit.	These	communities	are	typically	comprised	of	various	distinct	species	that	61	
each	exists	as	a	complex	and	heterogeneous	population	of	cells	with	differences	in	gene	62	
content	(Greenblum	et	al.	2015;	Zhu	et	al.	2015)	and	single	nucleotide	polymorphisms	63	
(SNPs)	(Schloissnig	et	al.	2013;	Kashtan	et	al.	2014;	Lieberman	et	al.	2014).	Several	recent	64	
studies	used	within-species	differences	in	gene	content	and	SNPs	as	a	window	into	the	65	
ongoing	evolutionary	history	of	microbes	on	earth.	For	example,	this	approach	has	66	
revealed	genomic	events	that	lead	to	ecologically	distinct	species	(Shapiro	et	al.	2012),	67	
uncovered	the	presence	of	ancient	subpopulations	of	ecologically	differentiated	marine	68	
bacteria	(Kashtan	et	al.	2014),	and	highlighted	extensive	intra-species	recombination	in	69	
pathogens	(Snitkin	et	al.	2011)	and	free-living	bacteria	(Rosen	et	al.	2015).	Additionally,	an	70	
understanding	of	strain-level	variation	is	critical	for	studying	the	interaction	of	microbes	71	
with	humans	and	for	understanding	microbial	pathogenicity.	Differences	at	the	nucleotide	72	
level	can	lead	to	within-host	adaptation	of	pathogens	(Lieberman	et	al.	2014),	and	73	
differences	in	gene	content	can	confer	drug	resistance,	convert	a	commensal	bacterium	74	
into	a	pathogen	(Snitkin	et	al.	2011),	or	lead	to	outbreaks	of	highly	virulent	strains	(Rasko	75	
et	al.	2011).		76	
	77	
Metagenomic	shotgun	sequencing	has	the	potential	to	shed	light	onto	strain-level	78	
heterogeneity	among	bacterial	genomes	within	and	between	microbial	communities,	79	
yielding	a	genomic	resolution	not	achievable	by	sequencing	the	16S	ribosomal	RNA	gene	80	
alone	(Sunagawa	et	al.	2013)	and	circumventing	the	need	for	culture-based	approaches.	81	
However,	limitations	of	existing	computational	methods	and	reference	databases	have	82	
prevented	most	researchers	from	obtaining	this	level	of	resolution	from	metagenomic	data.	83	
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Assembly-free	methods	that	map	reads	to	reference	genomes	in	order	to	estimate	the	84	
relative	abundance	of	known	strains	(Francis	et	al.	2013;	Tu	et	al.	2014)	are	effective	for	85	
well-characterized	pathogens	like	E.	coli	that	have	thousands	of	sequenced	genomes.	86	
However,	such	methods	cannot	detect	strain-level	variation	for	the	vast	majority	of	known	87	
species	that	currently	have	only	a	single	sequenced	representative.	Other	assembly-free	88	
approaches	have	been	developed	that	use	reads	mapped	to	one	or	more	reference	genomes	89	
to	identify	SNPs	(Schloissnig	et	al.	2013;	Lieberman	et	al.	2014)	and	gene	copy-number	90	
variants	(Greenblum	et	al.	2015;	Zhu	et	al.	2015;	Scholz	et	al.	2016)	of	microbial	91	
populations.	These	approaches	have	not	been	integrated	together	and/or	made	available	as	92	
software.	Recently,	several	software	tools	have	been	developed	(Luo	et	al.	2015;	Sahl	et	al.	93	
2015)	that	use	SNP	patterns	to	phylogenetically	type	strains,	but	these	methods	do	not	94	
capture	the	gene	content	of	these	organisms	and	may	not	be	able	to	resolve	strains	in	95	
communities	with	high	population	heterogeneity.	Additionally,	existing	methods	do	not	96	
provide	comprehensive	up-to-date	genomic	databases	of	bacterial	species,	thus	limiting	97	
their	utility	across	different	environments.	Assembly-based	methods	(Nielsen	et	al.	2014;	98	
Cleary	et	al.	2015)	that	seek	to	reconstruct	microbial	genomes	without	using	reference	99	
genomes	are	a	powerful	alternative	to	assembly-free	methods.	However,	these	often	100	
require	many	samples,	struggle	to	deconvolve	closely	related	strains,	or	require	manual	101	
inspection.		102	
	103	
To	address	these	issues,	we	developed	the	Metagenomic	Intra-species	Diversity	Analysis	104	
System	(MIDAS),	which	is	a	computational	pipeline	that	quantifies	bacterial	species	105	
abundance	and	intra-species	genomic	variation	from	shotgun	metagenomes.	Our	method	106	
integrates	many	features	(for	a	comparison	to	existing	methods,	see	Supplemental	Table	107	
S1)	and	leverages	a	comprehensive	database	of	>30,000	reference	genomes.	Given	a	108	
shotgun	metagenome,	MIDAS	rapidly	and	automatically	quantifies	gene	content	and	109	
identifies	SNPs	in	bacterial	species,	which	is	accurate	for	populations	with	a	minimum	of	1	110	
and	10x	sequencing	coverage,	respectively.		These	statistics	enable	quantitative	analysis	of	111	
bacterial	populations	within	and	between	metagenomic	samples.		112	
	113	
To	demonstrate	the	utility	of	this	approach,	we	used	MIDAS	to	conduct	novel	strain-level	114	
analyses	on	two	datasets.	First,	we	applied	MIDAS	to	stool	metagenomes	from	98	Swedish	115	
mothers	and	their	infants	and	used	rare	SNPs	to	track	vertical	transmission	and	temporal	116	
stability	of	strains	in	infants	over	the	first	year	of	life.	Second,	we	used	MIDAS	to	quantify	117	
gene	content	of	prevalent	bacterial	species	in	198	globally	distributed	marine	118	
metagenomes	and	identified	significant	intra-species	population	structure	associated	with	119	
geographic	location	and	environmental	variables.	These	analyses	reveal	striking	structures	120	
in	microbial	communities	that	are	missed	when	metagenomes	are	analyzed	at	a	coarser	121	
taxonomic	resolution.		122	
	123	
	124	

Results		125	
	126	
Identification	of	bacterial	species	with	a	consistent	definition	and	efficient	algorithm	127	
	128	
To	quantify	strain-level	genomic	variation	broadly	and	accurately,	we	built	a	129	
comprehensive	database	of	31,007	high-quality	bacterial	reference	genomes	obtained	from	130	
the	Pathosystems	Resource	Integration	Center	(PATRIC)	(Wattam	et	al.	2014).	We	131	
accurately	clustered	these	genomes	into	species	groups	to	avoid	inconsistent,	erroneous,	132	
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and	incomplete	annotations	that	afflict	some	microbial	taxonomies	(Mende	et	al.	2013),	133	
and	to	expand	and	improve	upon	previous	efforts	to	systematically	delineate	bacterial	134	
species	(Mende	et	al.	2013;	Schloissnig	et	al.	2013;	Varghese	et	al.	2015).	Towards	this	goal,	135	
we	hierarchically	clustered	reference	genomes	using	the	average	pairwise	percent	identity	136	
across	a	panel	of	30	universal	genes	(Figure	1a)	that	we	selected	from	a	panel	of	112	137	
candidates	(Wu	et	al.	2013)	(Supplemental	Fig	S1,	Supplemental	Table	S2).	We	found	that	138	
the	best	gene	families	for	identifying	bacterial	species	were	less	conserved	and	more	139	
widely	distributed	across	the	tree	of	life	relative	to	other	genes	we	tested	(Supplemental	140	
Fig	S2).	For	example,	many	ribosomal	gene	families	were	too	conserved	to	differentiate	141	
closely	related	species	(Supplemental	Table	S2).	We	applied	a	96.5%	nucleotide	identity	142	
cutoff,	which	produced	genome-clusters	that	were	highly	concordant	with	a	gold	standard	143	
definition	of	prokaryotic	species	based	on	95%	genome-wide	average	nucleotide	identity	144	
(Konstantinidis	et	al.	2006;	Richter	and	Rossello-Mora	2009)	(Supplemental	Table	S3).	Our	145	
procedure	clustered	the	31,007	bacterial	genomes	into	5,952	genome-clusters,	146	
representing	distinct	bacterial	species	(Supplemental	Table	S4-S5).	We	inferred	the	147	
phylogenetic	relationships	of	these	species	using	a	concatenated	alignment	of	the	30	148	
marker	genes	(Supplemental	Fig	S3).	Because	our	algorithm	uses	a	small	set	of	highly	149	
informative	marker	genes,	rather	than	genome-wide	sequence	comparisons,	it	will	be	150	
efficient	to	update	these	genome-clusters	as	additional	genomes	are	sequenced.	151	
	152	
The	genome-clusters	we	identified	often	differed	from	the	PATRIC	taxonomic	labels	(Figure	153	
1b).	Our	procedure	clustered	2,666	genomes	(8.6%	of	total)	that	had	not	been	previously	154	
annotated	at	the	species	level	and	reassigned	species	labels	for	3,035	genomes	(9.8%	of	155	
total)	to	either	(i)	group	them	with	genomes	that	were	not	labeled	as	the	same	species	in	156	
the	reference	taxonomy	(N=1,380)	or	(ii)	split	them	from	genomes	with	the	same	label	in	157	
the	reference	taxonomy	(N=1,655).	Supporting	our	species	definitions,	we	found	that	the	158	
bacterial	species	we	identified	tended	to	have	distinct	functional	repertoires,	with	only	159	
0.05%	of	FIGfam	protein	families	(Meyer	et	al.	2009)	shared	between	genomes	from	160	
different	species	on	average	compared	to	>80%	for	pairs	of	genomes	from	the	same	161	
species.	In	previous	work,	Mende	et	al.	conducted	a	similar	procedure	to	cluster	genomes	162	
into	species	groups	and	found	that	the	majority	of	disagreements	with	the	NCBI	taxonomy	163	
were	supported	by	the	literature	(Mende	et	al.	2013).	164	
	165	
Current	reference	genomes	cover	the	majority	of	human-associated	bacterial	species	166	
and	highlight	novel	diversity	in	other	environments	167	
	168	
We	evaluated	how	comprehensively	our	reference	database	covers	the	abundance	of	169	
species	present	in	different	environments,	as	this	is	a	requirement	for	conducting	170	
reference-based	strain-level	analyses.	Previous	work	has	shown	large	gaps	in	diversity	171	
between	sequenced	reference	genomes	and	environmental	microorganisms	(Wu	et	al.	172	
2009).	To	explore	how	well	current	genome	sequences	cover	diversity	present	in	173	
metagenomes	from	various	environments,	we	developed	a	novel	approach	that	estimates	174	
the	proportion	of	microbial	genomes	(including	archaea	and	eukaryotes,	but	excluding	175	
viruses)	in	a	metagenome	that	contain	a	sequenced	representative	at	the	species	level	in	a	176	
reference	database	(Methods).	This	proportion,	which	we	call	database	coverage,	indicates	177	
the	degree	to	which	species	in	a	sample	are	known	versus	novel.	178	
	179	
We	applied	this	method	to	stool	metagenomes	from	the	Human	Microbiome	Project	(HMP)	180	
and	four	other	studies	of	the	human	gut	(Supplemental	Table	S6).	We	found	that	our	181	
reference	database	of	5,952	bacterial	species	had	high	coverage	of	microbial	communities	182	
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from	the	human	body	(Figure	1c).	This	included	high	database	coverage	of	samples	from	183	
the	skin	(mean=83%),	nasal	cavity	(mean=63%),	urogenital	tract	(mean=62%),	mouth	184	
(mean=55%),	and	gastrointestinal	tract	(mean=49%).	The	human	gut	communities	with	185	
highest	database	coverage	came	from	individuals	in	the	United	States,	Europe,	and	China	186	
that	live	urban	lifestyles,	which	is	consistent	with	a	previous	report	(Sunagawa	et	al.	2013).	187	
In	contrast,	gut	microbiomes	of	individuals	from	Tanzania	and	Peru	that	live	hunter-188	
gatherer	and	agricultural	lifestyles	had	much	higher	levels	of	novel	species	with	no	189	
sequenced	representative	in	our	database.	This	finding	extends	the	previous	discoveries	of	190	
elevated	levels	of	novel	genera	(Schnorr	et	al.	2014)	and	functions	(Rampelli	et	al.	2015)	in	191	
the	gut	microbiome	of	African	hunter-gatherers.	Our	analysis	points	to	specific	192	
phylogenetic	gaps	in	the	set	of	currently	sequenced	bacterial	genomes.	Gut	communities	193	
with	lower	database	coverage	(i.e.,	fewer	species	that	have	been	sequenced)	tended	to	have	194	
higher	levels	of	several	genera	including	Coprococcus,	Subdoligranulum,	Dorea,	and	Blautia,	195	
whereas	well-characterized	communities	tended	to	have	higher	levels	of	the	genus	196	
Bacteroides	(Supplemental	Fig	S4).	We	conclude	that	there	is	a	clear	bias	of	genome	197	
sequencing	to	date	towards	species	associated	with	hosts	from	industrialized	countries.	198	
	199	
In	contrast	to	the	human	microbiome,	a	relatively	small	proportion	of	microbes	present	in	200	
other	environments	were	captured	by	our	reference	database	(Figure	1c	and	Supplemental	201	
Table	S6).	This	included	very	low	coverage	for	stool	metagenomes	from	laboratory	mice	202	
(mean=4.3%),	which	was	surprising	since	mice	are	often	used	as	a	model	system	for	203	
studying	the	human	microbiome.	Coverage	was	also	strikingly	low	in	marine	(means:	204	
surface	water=8.2%,	deep	chlorophyll	maximum	layer=6.9%,	subsurface	epipelagic	mixed	205	
layer=1.0%,	mesopelagic	zone=4.0%)	and	soil	(means:	desert=1.0%,	forest=1.0%,	206	
grassland=1.3%,	tundra=1.1%)	environments.	These	estimates	emphasize	the	massive	gap	207	
that	remains	between	the	microbial	diversity	found	in	non-human	environments	and	that	208	
represented	by	sequenced	bacterial	reference	genomes.	Strain-level	analyses	can	still	be	209	
performed	for	environments	with	low	database	coverage,	but	only	for	those	species	with	210	
sequenced	representatives.	211	
	212	
An	integrated	pipeline	for	quantifying	intra-species	genomic	variation	from	shotgun	213	
metagenomes	214	
	215	
We	developed	MIDAS,	a	software	tool	that	processes	shotgun	metagenomes	to	sensitively	216	
and	automatically	quantify	species	abundance	and	strain-level	genomic	variation	for	any	of	217	
the	bacterial	species	in	our	database	(Figure	2a	and	Methods).	MIDAS	was	designed	to	be	218	
fast,	memory	efficient,	and	to	scale	with	the	rapid	increase	in	sequenced	reference	genomes	219	
(Supplemental	Fig	S5).	Using	a	single	CPU,	MIDAS	processes	~5,000	reads	per	second	and	220	
requires	~3	gigabytes	of	RAM.	221	
	222	
MIDAS	first	estimates	the	coverage	and	relative	abundance	of	bacterial	species	by	mapping	223	
reads	to	a	database	of	universal	single-copy	gene	families	(Supplemental	Table	S7).	224	
Identifying	species	with	sufficient	coverage	for	gene	content	and	SNP	analyses	directly	225	
from	the	shotgun	metagenome	enables	automatic	selection	of	individual	species	for	variant	226	
quantification	without	any	prior	knowledge	about	a	community’s	composition,	and	it	227	
avoids	computationally	wasteful	alignments	to	genes	and	genomes	from	sequenced	228	
organisms	that	are	not	present	in	a	community.		229	
	230	
To	quantify	the	gene	content	of	individual	species	in	each	metagenome,	MIDAS	maps	reads	231	
to	a	pan-genome	database.	This	database	contains	the	set	of	non-redundant	genes	across	232	
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all	sequenced	genomes	from	each	species.	It	is	generated	on	the	fly	to	include	only	the	233	
subset	of	species	with	high	sequencing	coverage	at	universal	single-copy	genes	in	the	234	
metagenome	being	analyzed.	The	coverages	of	genes	in	the	pan-genome	database	are	235	
normalized	by	the	coverage	of	the	universal	single-copy	gene	families,	yielding	an	236	
estimated	copy	number	of	a	gene	per	cell	of	a	given	species	in	each	sample.	Additionally,	237	
copy	numbers	are	thresholded	to	predict	gene	presence-absence	per	sample.		238	
	239	
To	identify	SNPs	of	individual	species,	MIDAS	maps	reads	to	a	genome	database.	This	240	
database	contains	one	representative	genome	sequence	per	species,	and	it	only	includes	241	
species	with	high	sequencing	coverage	at	universal	single-copy	genes	in	the	metagenome	242	
being	analyzed.	Representative	genomes	are	selected	in	order	to	maximize	their	sequence	243	
identity	to	all	other	genomes	within	the	species.	The	core	genome	of	each	species	is	244	
identified	directly	from	the	data	using	nucleotide	positions	in	the	representative	genome	245	
that	are	at	high	coverage	across	multiple	metagenomic	samples	(Supplemental	Fig	S6).	246	
SNPs	are	quantified	along	the	entire	core	genome,	including	at	sites	that	are	variable	247	
between	samples,	but	fixed	within	individual	samples.	Core	genome	SNPs	are	useful	248	
because	they	occur	in	all	strains	of	a	species	and	facilitate	comparative	analyses.	249	
	250	
MIDAS	was	validated	using	20	mock	metagenomes	that	we	created	by	pooling	Illumina	251	
reads	from	completed	genome	sequencing	projects	(Supplemental	Tables	S8-9	and	252	
Methods).	These	libraries	are	expected	to	contain	sequencing	errors	and	other	253	
experimental	artifacts	found	in	real	short-read	sequencing	data	that	might	prevent	254	
accurate	estimation	of	species	abundance	and	strain-level	genomic	variation.		Using	this	255	
data,	we	found	that	MIDAS	accurately	estimated	the	relative	abundance	of	bacterial	species	256	
(r2=0.95),	but	slightly	underestimated	sequencing	coverage	(Figure	2b).	MIDAS	accurately	257	
predicted	the	presence	or	absence	of	genes	in	species	present	with	at	least	1	to	3x	258	
sequencing	coverage	(Figure	2c).	Prediction	accuracy	was	maximized	at	0.96	for	strains	259	
with	>3x	coverage	when	using	a	threshold	equal	to	0.35x	the	coverage	of	universal	single-260	
copy	genes	–	lower	thresholds	resulted	in	lower	specificity	and	higher	thresholds	resulted	261	
in	lower	sensitivity.	MIDAS	also	called	SNPs	at	a	low	false-discovery	rate,	but	required	262	
between	5	to	10x	coverage	to	identify	the	majority	of	SNPs	present	(Figure	2d).		263	
	264	
Species	and	strain-resolved	analyses	shed	light	on	vertical	transmission	of	human	265	
gut	microbiota	266	
	267	
We	hypothesized	that	the	large	numbers	of	SNPs	that	MIDAS	can	identify	from	individual	268	
metagenomes	could	be	leveraged	to	detect	bacterial	strains	unique	to	a	host	and	269	
transmission	of	strains	between	mothers	and	their	infants.	An	understanding	of	vertical	270	
transmission	is	critical	for	determining	the	extent	to	which	the	microbiome	–	and	by	271	
extension	microbiome-mediated	phenotypes	–	are	inherited.	A	recent	study	found	272	
significant	overlap	in	species	between	Swedish	mothers	and	their	infants	over	the	first	year	273	
of	life	(Backhed	et	al.	2015).	A	large	cohort	study	of	UK	twins	estimated	that	abundances	of	274	
many	microbial	taxa	are	heritable	(Goodrich	et	al.	2016).	Neither	study	examined	whether	275	
strains	are	vertically	transmitted,	and	recent	work	has	shown	that	species-level	analyses	276	
alone	are	insufficient	to	resolve	transmission	events	(Li	et	al.	2016).	Transmission	of	277	
specific	taxonomic	groups	has	been	resolved	using	multilocus	sequence	typing	of	infant	278	
stool	plus	mother’s	breast	milk	(Martin	et	al.	2012)	or	stool	(Makino	et	al.	2013).	Other	279	
studies	have	examined	the	development	of	the	infant	gut	microbiome,	including	at	the	280	
strain	level	(Luo	et	al.	2015),	but	did	not	assess	vertical	transmission.	Thus,	the	extent	and	281	
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timescale	of	vertical	transmission	and	the	stability	of	transmitted	stains	are	currently	not	282	
well	established.	283	
	284	
To	quantify	strain	transmission	from	mother	to	infant,	we	applied	MIDAS	to	the	Backhed	et	285	
al.	stool	metagenomes	from	98	mothers	and	their	infants	at	4	days,	4	months,	and	12	286	
months	after	birth	(Backhed	et	al.	2015).	We	found	that	bacterial	species	alpha	diversity	287	
was	lowest	in	newborns	and	increased	over	time,	species	beta	diversity	was	highest	in	288	
newborns	and	decreased	over	time,	and	samples	clustered	by	host	age	based	on	Bray-289	
Curtis	dissimilarity	between	species	relative	abundance	profiles	(Figure	3a	and	290	
Supplemental	Fig	S7).	Compared	to	infants,	mothers	had	more	diverse	microbiomes	that	291	
tended	to	harbor	more	unshared	(i.e.,	unique	to	host)	species	(77%	versus	48%,	T-test	292	
P<2.2e-16).	Despite	this,	we	found	a	large	number	of	shared	species	between	infants	and	293	
their	mothers,	which	increased	over	time	as	diversity	increased	in	the	infants	(Figure	3b)	294	
and	did	not	strongly	depend	on	birth	mode	(P=0.52)	or	breast-feeding	at	any	stage	(P-295	
values	=	0.04,	0.04,	0.33	at	4	days,	4	months,	and	12	months).	These	species-level	trends	296	
agree	with	the	results	of	the	original	study	that	used	different	methods	to	identify	species	297	
(Backhed	et	al.	2015).	Surprisingly,	we	found	nearly	as	many	shared	species	between	298	
permuted	mother-infant	pairs	where	vertical	transmission	did	not	occur	(Figure	3c),	299	
suggesting	that	increased	similarity	of	species	in	a	mother	and	her	infant	over	its	first	year	300	
is	unlikely	the	result	of	direct	transmission.		301	
	302	
To	detect	transmission	of	gut	microbiota	from	mother	to	infant	with	high	specificity	and	303	
sensitivity,	we	developed	a	novel	approach	that	uses	SNPs	output	by	MIDAS	(Methods).	304	
First	we	identified	species	shared	between	mothers	and	their	infants	with	>10x	sequencing	305	
coverage,	which	is	required	for	sensitive	detection	of	SNPs	(Figure	2d).	Next,	we	identified	306	
rare	SNPs	within	these	species	that	were	private	to	strains	found	in	a	mother	and	her	307	
infant.	We	refer	to	these	SNPs	as	marker	alleles	because	they	serve	as	a	marker	for	308	
individual	strains.	To	detect	whether	a	transmission	has	occurred	for	a	species,	we	309	
quantified	the	percent	of	marker	alleles	found	in	a	mother	that	were	shared	with	her	infant.		310	
	311	
To	validate	that	marker	alleles	could	be	used	to	track	strains	between	hosts,	we	applied	our	312	
method	to	stool	metagenomes	of	healthy	adults	from	the	Human	Microbiome	Project	313	
(HMP)	(Methods).	As	a	positive	control,	we	compared	marker	alleles	of	species	between	314	
metagenomes	from	the	same	individual	at	the	same	time	point	(technical	replicates),	and	315	
as	a	negative	control,	we	compared	marker	alleles	of	species	between	metagenomes	from	316	
different	unrelated	individuals	(non-replicates).	As	expected,	we	found	high	allele	sharing	317	
(mean=79.5%)	between	technical	replicates	and	low	allele	sharing	between	non-replicates	318	
(mean=1.01%)	(Supplemental	Fig	S8).	The	fact	that	allele	sharing	was	<100%	in	the	319	
technical	replicates	and	>0%	in	the	non-replicates	is	likely	due	to	a	combination	of	factors,	320	
including	read	sampling	variation,	small	sample	sizes,	and	sequencing	errors.	For	example,	321	
marker	alleles	may	be	found	in	other	individuals	when	sample	sizes	are	increased.	To	322	
define	a	transmission	event,	we	selected	a	marker	allele	sharing	cutoff	of	5%,	which	clearly	323	
separated	the	positive	and	negative	controls	(sensitivity=99.8%,	specificity=96.6%).	High	324	
sensitivity	and	specificity	was	consistently	observed	across	species	we	tested	325	
(Supplemental	Table	S10).	326	
	327	
Strikingly,	we	found	that	marker	alleles	were	commonly	shared	between	mothers	and	328	
vaginally	born	infants	4	days	after	birth	(Figure	3d-e).	There	were	no	species	present	with	329	
>10x	coverage	in	15	C-section	born	infants	and	their	mothers	to	assess	transmission	in	330	
these	individuals.	This	likely	reflects	lower	vertical	transmission	of	the	mother’s	gut	331	
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microbes,	but	we	cannot	directly	test	that	hypothesis	with	the	available	data.	On	average	332	
72%	of	marker	alleles	present	in	mother	strains	were	found	in	vaginally	born	newborns,	333	
which	was	only	slightly	less	than	the	level	of	allele	sharing	observed	from	our	positive	334	
control.	Furthermore,	out	of	the	111	high-coverage	species	present	in	mothers	and	335	
newborns,	101	(91%)	had	greater	than	5%	marker	allele	sharing,	indicating	extensive	336	
vertical	transmission	of	gut	microbiota	shortly	after	birth.	Commonly	transmitted	species	337	
included	Bacteroides	vulgatus	(25/28	mother-infant	pairs	with	>5%	marker	allele	sharing),	338	
Parabacteroides	distasonis	(10/11),	Bifidobacterium	adolescentis	(8/10),	and	Escherichia	339	
coli	(10/10)	(Figure	3d).	These	are	fairly	different	from	the	taxa	with	heritable	abundances	340	
in	the	UK	twin	study	(Goodrich	et	al.	2016)	(see	Discussion).	341	
	342	
While	we	detected	high	strain	similarity	4	days	after	birth,	mother	and	infant	strains	343	
significantly	differed	over	time.	Comparing	strain-level	SNPs	in	4-month	and	12-month	344	
infants	to	their	mothers,	we	observed	a	sharp	decrease	in	marker	allele	sharing	and	345	
transmission	rates	(Figure	3d).	Across	all	species,	transmission	rates	decreased	from	91%	346	
at	4	days	(101/111	shared	species	with	>5%	marker	allele	sharing),	to	80%	at	4	months	347	
(131/163),	to	55%	at	12	months	(172/313).	C-section	born	infants	tended	to	have	fewer	348	
vertically	strains	transmitted	strains	compared	to	vaginally	born	infants	at	four	months	349	
(Chi-square	P=5e-8,	3/14	versus	128/149	shared	species	with	>5%	marker	allele	sharing)	350	
and	to	a	lesser	extent	at	12	months	(Chi-square	P=0.06,	13/34	versus	159/279).	This	trend	351	
was	in	stark	contrast	to	what	we	observed	at	the	species	level,	where	there	was	an	increase	352	
in	the	number	of	shared	species	over	time	and	an	increase	in	species-level	compositional	353	
similarity.	Thus,	while	the	species	level	composition	of	mothers	and	infants	converged	over	354	
time,	the	strain	level	composition	actually	diverged.	355	
	356	
We	hypothesized	that	transmission	rates	decreased	over	time	due	to	late	colonization	of	357	
the	infant	gut	by	new	strains	from	the	environment	and/or	other	hosts.	If	this	were	the	358	
case,	then	we	would	expect	that	(i)	infant	strains	that	were	distinct	from	the	mother	at	12	359	
months	had	low	abundance	in	the	infant	at	earlier	stages	and	(ii)	strains	transmitted	from	360	
the	mother	at	4	days	persisted	in	the	infant	gut	over	one	year.		Supporting	our	hypothesis,	361	
we	found	that	the	abundance	of	a	species	at	4	days	was	predictive	of	whether	the	strain	of	362	
that	species	was	transmitted	from	the	mother	(Figure	4a).	Specifically,	strains	with	low	363	
abundance	at	4	days	but	high	abundance	at	12	months	tended	to	be	distinct	from	strains	364	
found	in	the	mother.	In	contrast,	strains	with	high	abundance	at	4	days	and	high	abundance	365	
at	12	months	were	similar	to	strains	found	in	the	mother.	Also	supporting	our	hypothesis,	366	
we	found	that	the	vast	majority	of	strains	that	were	transmitted	from	the	mother	at	4	days	367	
persisted	in	the	infants	at	4	months	(49/54	mother-infant	pairs	with	>5%	marker	allele	368	
sharing)	and	at	12	months	(47/51).	Because	the	mother’s	stool	was	only	sequenced	at	4	369	
days	after	birth,	we	cannot	rule	out	the	possibility	that	late	colonizing	strains	came	from	370	
the	mother’s	gut	but	were	not	detected	at	the	time	of	initial	sampling.	To	address	this	issue,	371	
we	quantified	the	temporal	stability	of	strains	in	157	healthy	adults	from	the	HMP	over	a	372	
time	period	of	300-400	days	(Supplemental	Fig	S9).	We	found	high	marker	allele	sharing	373	
(mean=77.0%)	and	transmission	rates	(96.2%),	which	suggests	that	maternal	strains	may	374	
be	quite	stable	over	time,	and	agrees	with	previous	work	(Faith	et	al.	2013;	Schloissnig	et	375	
al.	2013).	Together	these	results	suggest	that	bacteria	from	sources	other	than	the	mother’s	376	
gut	increasingly	colonize	the	infant	gut	over	time.	377	
	378	
We	found	that	vertical	transmission	rates	varied	for	different	taxonomic	groups	of	bacteria.	379	
At	one	year	after	birth,	the	class	Bacteroidia	was	enriched	in	vertical	transmission	events	380	
(Chi-square	P=2.56e-18),	whereas	the	class	Clostridia	was	depleted	(Chi-square	P=1.43e-381	
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22).	Similar	results	were	observed	at	other	taxonomic	levels	(Supplemental	Table	S11).	382	
Examples	of	early	colonizing	Bacteroidia	included	Bacteroides	vulgatus,	Bacteroides	383	
uniformis,	and	Bacteroides	ovatus	and	examples	of	late	colonizing	Clostridia	included	384	
Blautia	wexlerae,	Faecalibacterium	prausnitzii,	Eubacterium	rectale,	and	Ruminococcus	385	
bromii	(Figure	4b).	The	fact	that	Clostridia	were	rarely	transmitted	from	mother	to	infant	386	
may	be	due	to	the	ability	of	members	of	this	group	to	form	spores	and	survive	outside	of	387	
the	host	for	longer	periods	of	time	(Browne	et	al.	2016).	Together,	these	results	highlight	388	
differences	in	the	inheritance	of	gut	microbiota	that	may	be	linked	to	distinct	modes	and	389	
timing	of	transmission	between	hosts.		390	
	391	
Global	strain-level	geography	of	prevalent	marine	bacteria	392	
	393	
Many	bacterial	species	are	distributed	widely	across	the	world’s	oceans	(Sunagawa	et	al.	394	
2015).	Yet	genomes	of	a	given	species	sampled	nearby	each	other	can	differ	significantly	in	395	
their	gene	content	(Kashtan	et	al.	2014).	To	explore	the	extent	of	population	structure	396	
across	different	marine	bacterial	species	on	a	global	scale,	we	used	MIDAS	to	quantify	gene	397	
content	for	prevalent	species	in	198	marine	metagenomes	from	66	stations	along	the	Tara	398	
Oceans	expedition	(Sunagawa	et	al.	2015).	Since	we	found	that	our	database	had	relatively	399	
low	coverage	of	the	cellular	organisms	present	ocean	samples	(Figure	1c),	we	first	400	
estimated	relative	abundance	and	coverage	of	bacterial	species	in	each	metagenome	to	401	
identify	30	species	where	gene	content	could	be	reliably	estimated	(coverage	>3x	across	a	402	
high	percentage	of	samples).	Among	these	species	were	several	members	of	the	genera	403	
Pelagibacter,	Alteromonas,	Synechococcus,	and	Marinobacter,	a	large	group	of	closely	404	
related	Prochlorococcus	species,	and	several	unnamed	Alphproteobacteria	species	(Figure	405	
5a).	Reference	pangenome	sizes	for	these	species	ranged	from	1,047	and	1,311	genes	in	the	406	
streamlined	genomes	of	SAR406	and	SAR86	(each	with	1	genome)	to	6,427	genes	in	the	407	
largest	Prochlorococcus	genome	cluster	(N=26	genomes)	and	7,819	genes	for	Alteromonas	408	
macleodii	(N=4	genomes).	409	
	410	
We	discovered	extensive	variability	of	gene	content	for	these	prevalent	species	of	marine	411	
bacteria	across	the	ocean	metagenomes	(Supplemental	Table	S12).	Across	all	species,	we	412	
found	an	average	of	318	genes	that	differed	between	samples,	ranging	from	144	genes	in	413	
SAR86	to	700	in	Alteromonas	marina.	We	next	quantified	the	percent	of	genes	that	were	414	
different	between	samples	using	the	Jaccard	index	and	found	that	on	average	19%	of	genes	415	
differed	between	samples.	This	level	of	genomic	variability	was	higher	than	the	13%	416	
recently	reported	for	human	gut	communities	(Zhu	et	al.	2015),	although	this	may	be	due	417	
to	methodological	differences.	Regardless,	our	estimate	of	19%	is	almost	certainly	an	418	
underestimate	of	the	true	level	of	gene	content	variation	between	populations,	because	419	
MIDAS	cannot	measure	the	variation	of	genes	that	are	present	in	strains	but	absent	from	420	
sequenced	reference	genomes.	421	
	422	
To	explore	how	this	variation	correlated	with	geography	and	sampling	depth,	we	423	
conducted	a	principal	component	analysis	(PCA)	of	gene	content	for	each	bacterial	species,	424	
as	has	been	done	to	study	the	geographic	structure	of	human	populations	(Novembre	et	al.	425	
2008).	Strikingly,	we	found	that	the	populations	of	many	species	clustered	together	by	426	
ocean	region	based	on	the	first	two	principal	components	of	gene	content,	regardless	of	427	
sampling	depth	(Figure	5b).	For	example,	populations	of	Pelagibacter	(species	id:	61513)	428	
formed	three	discrete	clusters	corresponding	to	the	Mediterranean	Sea,	South	Atlantic	429	
Ocean,	and	South	Pacific	Ocean,	and	each	cluster	contained	samples	from	different	water	430	
layers.	Similar	results	were	obtained	for	many	other	species,	including	Prochlorococcus	431	
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(species	id:	57810)	and	SAR86	(species	id:	59142)	(Figure	5c).	We	found	that	the	432	
population	structure	of	the	30	marine	bacteria	was	highly	consistent,	regardless	of	the	433	
percent	identity	threshold	used	for	defining	pan-genome	gene	families	(75-99%	identity)	434	
(Supplemental	Fig	S10-11).	435	
	436	
To	evaluate	the	extent	of	gene	content	biogeography	across	species,	we	computed	the	437	
correlation	between	PCA	distances	and	geographic	distances	(Methods)	and	found	438	
significant	distance-decay	in	gene	content	for	the	majority	of	species	tested,	including	all	18	439	
Prochlorococcus	species	(Figure	5b).	Furthermore,	this	pattern	was	observed	both	in	440	
samples	from	the	surface	water	layer	and	the	deep	chlorophyll	maximum	layer.	A	previous	441	
study	found	season	to	be	a	major	driver	of	biodiversity	patterns	in	the	global	ocean	(Ladau	442	
et	al.	2013).	To	explore	whether	season	or	other	environmental	variables	were	associated	443	
with	strain-level	population	structure,	we	compared	correlations	of	the	first	principal	444	
component	of	gene	content	(PC1)	with	geography	and	environmental	variables	445	
(Supplemental	Fig	S12).	For	20/30	species	tested,	longitude	(17/30)	or	latitude	(3/30)	was	446	
the	strongest	predictor	of	gene	content,	and	each	explained	a	significant	proportion	of	gene	447	
content	variation	(22%	and	8%	on	average).	In	contrast,	day	length	(an	indicator	of	season)	448	
explained	relatively	little	variation	(4%	on	average)	and	was	the	most	predictive	covariate	449	
for	only	one	Prochlorococcus	species	(species	id:	60683).	450	
	451	
A	few	species	showed	relatively	little	geographic	structure.	Instead	they	had	gene	content	452	
variation	that	correlated	with	depth	or	marine	layer.	The	most	striking	example	of	this	was	453	
an	unnamed	Alphproteobacteria	species	(species	id:	44631)	which	contained	two	genomes	454	
in	our	database	obtained	via	single-cell	sequencing	(Stepanauskas	2012).	This	species	was	455	
predominantly	found	in	the	mesopelagic	layer	(below	200m)	and	increased	in	relative	456	
abundance	with	decreasing	depth	(Figure	5c).	Looking	only	at	mesopelagic	samples,	we	457	
found	that	the	first	principal	component	of	gene	content	(PC1)	was	strongly	correlated	458	
with	depth	(R2=0.59)	suggesting	little	mixing	of	strains	of	the	Alphproteobacteria	species	459	
across	depths.	We	identified	266	genes	positively	correlated	with	depth	and	316	genes	that	460	
were	negatively	correlated	with	depth	(FDR-corrected	Spearman	p-value	<	0.01,	461	
Supplemental	table	S13).	This	could	indicate	that	the	populations	at	different	depths	462	
contain	genes	for	adaptation	to	the	range	of	temperatures	and	nutrients	across	which	this	463	
species	is	found.	When	we	included	samples	from	all	marine	layers,	we	found	that	samples	464	
from	the	mesopelagic	and	epipelagic	zone	clustered	based	on	gene	content	and	there	was	465	
still	a	strong	correlation	between	PC1	and	depth	(R2=0.57)	(Supplemental	Fig	S13).		466	
	467	
Together,	our	results	expand	upon	and	even	contradict	patterns	of	marine	bacterial	468	
biogeography	observed	at	the	species	level.	In	particular,	gene	content	analysis	reveals	that	469	
abundant	and	prevalent	species	are	not	ubiquitous	at	the	strain	level.	Instead	they	show	470	
significant	structure	across	geographic	regions,	even	though	sampling	location	is	not	a	471	
strong	predictor	of	species	relative	abundance	(Sunagawa	et	al.	2015).	472	
	473	
	474	

Discussion	475	
	476	
We	developed	MIDAS,	an	integrated	computational	pipeline	that	quantifies	bacterial	strain-477	
level	gene	content	and	SNPs,	as	well	as	species	abundance,	from	shotgun	metagenomes.	By	478	
coupling	fast	taxonomic	profiling	via	a	panel	of	universal-single-copy	genes	with	sensitive	479	
pan-genome	and	whole-genome	alignment,	MIDAS	can	efficiently	and	automatically	480	
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compare	hundreds	of	metagenomes	to	>30,000	reference	genomes	to	identify	genetic	481	
variants	present	in	the	strains	of	each	sample.	Our	publicly	available	software	and	data	482	
resources	will	enable	researchers	to	conduct	large-scale	population	genetic	analysis	of	483	
metagenomes.		484	
	485	
This	first	version	of	MIDAS	has	several	limitations.	Since	it	currently	relies	on	bacterial	486	
reference	genomes,	MIDAS	cannot	quantify	variation	for	novel	species,	novel	genes,	or	487	
known	species	from	other	groups	of	microbes	(e.g.	archaea,	eukaryotes,	and	viruses).	To	488	
accurately	quantify	strain-level	gene	content	and	SNPs,	MIDAS	requires	greater	than	1x	and	489	
10x	sequencing	coverage,	respectively.	This	biases	analyses	towards	the	most	abundant	490	
and	prevalent	species	in	an	environment.	MIDAS	was	nonetheless	able	to	capture	the	491	
majority	of	microbial	species	abundance	across	human	body	sites,	making	it	well	suited	for	492	
uncovering	strain-level	variation	of	human-associated	bacteria.	In	contrast,	other	493	
environments	appeared	to	be	dominated	by	microbes	missing	from	our	reference	database	494	
of	bacterial	genomes	sequenced	to	date.	For	this	reason,	it	will	be	important	to	update	the	495	
database	in	the	future	as	the	number	(Land	et	al.	2015)	and	diversity	(Wu	et	al.	2009)	of	496	
microbial	reference	genomes	continues	to	rapidly	grow,	as	new	experimental	(Rinke	et	al.	497	
2013)	and	computational	(Nielsen	et	al.	2014)	approaches	uncover	genome	sequences	of	498	
uncultured	microbes.	It	will	also	be	useful	to	incorporate	genomes	from	other	domains	of	499	
life.	Based	on	the	design	of	our	database	and	algorithm,	MIDAS	should	scale	with	this	500	
growth	of	reference	data.		501	
	502	
To	illustrate	the	utility	of	MIDAS,	we	analyzed	stool	metagenomes	from	98	mothers	and	503	
their	infants	over	one	year	and	used	rare	SNPs	(i.e.	marker	alleles)	to	track	transmission	of	504	
strains	between	hosts.	Based	on	this	analysis,	we	found	extensive	vertical	transmission	of	505	
specific	early	colonizing	bacteria	shortly	after	birth,	which	largely	persisted	in	the	infant	506	
for	one	year.	In	contrast,	we	found	that	late	colonizing	bacteria	were	often	distinct	from	the	507	
mother	at	the	strain	level,	likely	originating	from	the	environment	and/or	other	hosts.	508	
Additionally	we	found	that	certain	taxonomic	groups,	like	Bacteroidia,	tend	to	be	vertically	509	
transmitted,	while	others,	like	Clostridia	do	not,	which	suggests	that	only	part	of	the	gut	510	
microbiome	may	be	inherited.	When	the	same	metagenomes	were	analyzed	at	the	species	511	
level,	these	patterns	of	transmission	were	missed,	and	a	false	signal	of	increasing	512	
transmission	over	time	was	detected	due	to	convergence	of	the	infant	microbiome	towards	513	
a	more	diverse	and	adult-like	species	profile	after	weaning.		514	
	515	
The	bacterial	taxa	that	tended	to	be	transmitted	from	mother	to	infant	in	our	analysis	differ	516	
from	the	taxa	whose	abundances	were	found	to	be	heritable	in	a	previous	study	of	UK	517	
twins	(Goodrich	et	al.	2016).	For	example,	we	estimated	low	transmission	rates	for	strains	518	
of	Blautia	(Supplemental	Table	S11),	but	Goodrich	et	al.	found	that	the	abundance	of	519	
Blautia	is	highly	heritable.	Conversely,	we	estimated	high	transmission	rates	for	strains	of	520	
Bacteroides,	but	this	was	one	of	the	genera	whose	abundance	was	least	heritable	in	the	UK	521	
twins.	These	differences	between	studies	reveal	some	important	distinctions.	First,	522	
heritability	of	taxon	abundance	does	not	necessarily	imply	vertical	transmission.	Rather,	523	
twins	and	other	related	individuals	may	share	a	propensity	to	retain	similar	levels	of	taxa	524	
that	they	both	acquire	from	a	variety	of	sources	(i.e.,	different	strains).	On	the	other	hand,	525	
strains	vertically	transmitted	at	birth	should	result	in	heritability	of	presence	if	they	are	526	
retained.	But	they	could	be	lost	as	the	infant	ages,	or	their	abundances	may	not	be	heritable	527	
even	if	their	presence	is.	Finally,	human	genetics	may	not	explain	inter-individual	528	
differences	in	abundance	for	taxa,	such	as	Bacteroides,	that	are	highly	abundant	and	529	
prevalent,	even	if	they	are	vertically	transmitted.		530	
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	531	
Our	analysis	of	mother-infant	strain	sharing	leaves	a	few	questions	unanswered.	One	532	
intriguing	issue	is	the	source	of	the	strains	that	colonize	the	infant	but	are	not	present	in	533	
the	mother’s	stool	microbiome	at	4	days	after	birth.	It	is	possible	that	some	strains	colonize	534	
the	mother’s	gut	later	in	the	year	and	are	then	passed	along	to	the	infant,	though	this	is	535	
unlikely	based	on	the	temporal	stability	of	strains	in	the	adult	microbiome.	The	new	strains	536	
could	also	derive	from	other	sites	on	the	mother’s	body,	such	as	skin	and	breast	milk,	other	537	
people,	or	the	environment.	One	caveat	of	our	analysis	is	that	we	did	not	distinguish	which	538	
strains	were	transmitted	to	the	infant	from	the	mother	in	cases	where	mothers	harbored	539	
multiple	strains.	Instead,	we	treated	the	transmission	events	as	binary,	whereby	a	540	
transmission	was	defined	as	at	least	one	strain	being	transmitted.	It	would	be	interesting	to	541	
explore	transmission	as	a	quantitative	variable	in	future	work,	including	elucidating	how	542	
the	strain	composition	and	genetic	diversity	of	bacterial	populations	change	as	they	are	543	
passed	from	mother	to	offspring	and	potentially	undergo	bottlenecks	and	selection.		544	
	545	
To	explore	bacterial	population	structure	using	gene	content,	we	applied	MIDAS	to	ocean	546	
samples	from	the	Tara	expedition.	We	found	a	number	of	prevalent	and	abundant	bacterial	547	
species,	which	shows	that	our	method	can	be	applied	to	different	environments,	despite	548	
low	database	coverage.	Based	on	these	results,	we	found	that	the	gene	content	of	many	549	
species	in	the	epipelagic	water	layer	(0-200m)	was	structured	geographically.	This	550	
contrasts	with	previous	work	at	the	species	level,	which	found	that	depth	and	temperature	551	
were	the	strongest	predictors	of	community	structure	(Sunagawa	et	al.	2015).	However,	552	
the	gene	content	of	other	species	found	in	the	mesopelagic	layer	(200-1000m)	were	553	
structured	by	depth.	Future	work	is	needed	to	understand	the	extent	to	which	these	gene-554	
level	patterns	are	driven	by	adaptation	to	different	environments	in	the	ocean,	or	due	to	555	
neutral	processes,	like	genetic	drift	and/or	migration.	556	
	557	
Microbiome	research	is	in	an	era	where	metagenome-wide	analyses	can	now	pinpoint	558	
individual	strains	and	genes	that	differ	in	presence	or	abundance	between	samples.	559	
Importantly,	this	level	of	resolution	is	not	only	revealing	associations	that	are	missed	by	560	
analyses	conducted	at	higher	taxonomic	levels,	but	also	patterns	that	oppose	those	inferred	561	
from	species	abundance	distributions.	A	striking	example	is	our	discovery	that	infants	562	
share	more	gut	bacterial	strains	with	their	mothers	at	birth	than	later	in	their	first	year	of	563	
life,	despite	the	fact	that	the	species	composition	of	their	microbiomes	are	becoming	more	564	
similar	as	the	infant	ages.	Without	conducting	a	strain-level	genomic	analysis,	one	might	565	
incorrectly	infer	that	vertical	transmission	of	the	gut	microbiome	is	constant	or	increasing	566	
during	the	first	year	of	life.	Similarly,	the	high	level	of	gene	copy	number	variation	that	we	567	
observe	in	Tara	oceans	bacteria	and	its	strong	correlation	with	marine	region	in	surface	568	
waters	emphasizes	functionally	important	differences	in	strains	across	global	oceans	that	569	
are	missed	when	metagenomes	are	analyzed	at	the	species	level.	Furthermore,	it	is	clear	570	
that	gene	content	of	even	the	most	prevalent	and	abundant	marine	bacterial	species	cannot	571	
be	accurately	inferred	from	the	currently	limited	number	of	sequenced	genomes	for	this	572	
environment.	The	same	is	true	for	laboratory	mice,	humans	from	non-industrialized	573	
countries,	and	soil.	These	results	point	to	specific	phylogenetic	groups	and	environments	574	
that	are	highest	priority	for	additional	genome	sequencing,	culturing	attempts,	and	575	
functional	assays.		576	

	577	

Materials	and	Methods	578	
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	579	
Sequence	based	identification	of	bacterial	species		580	
	581	
We	developed	a	procedure	to	cluster	bacterial	genomes	into	species	groups	based	on	the	582	
pairwise	percent	identity	across	a	set	of	universal	gene	families,	which	was	inspired	by	583	
previous	work	(Mende	et	al.	2013).	We	began	with	33,252	prokaryotic	genomes	584	
downloaded	from	PATRIC	(Wattam	et	al.	2014)	in	March	2015.	Next,	we	used	HMMER3	585	
(Eddy	2011)	with	an	E-value	threshold	≤1e-5	to	identify	protein	homologs	of	112	bacterial	586	
universal	gene	families	(Wu	et	al.	2013)	across	the	genomes.	The	HMMER3	search	took	too	587	
long	for	two	gene	families	(B000042,	B000044),	which	were	dropped.	When	there	were	588	
multiple	homologs	of	a	gene	family	identified	in	a	genome,	we	took	the	homolog	with	the	589	
lowest	E-value.	We	filtered	out	low	quality	genomes	with	fewer	than	100	universal	genes	590	
identified	(N=1,837)	or	with	greater	than	1,000	contigs	(N=618),	which	left	31,007	high-591	
quality	genomes	(Supplemental	Table	S5).			592	
	593	
Next,	we	used	BLASTN	(Altschul	et	al.	1990)	to	perform	sequence	alignment	of	each	gene	594	
family	between	all	high-quality	genomes.	We	filtered	out	local	alignments	where	either	the	595	
query	or	target	was	covered	by	<70%	of	its	length.	We	converted	percent	identities	to	596	
distances	using	the	formula:	!!" = (100−  !!")/100,	where	!!"	was	the	percent	identity	597	
of	a	gene	between	genomes	a	and	b.	This	resulted	in	an	undirected	graph	for	each	marker	598	
gene	family	where	nodes	were	genomes	and	edges	were	distances.	We	performed	average-599	
linkage	hierarchical	clustering	for	each	graph	using	the	program	MC-UPGMA	(Loewenstein	600	
et	al.	2008).	The	output	of	MC-UPGMA	is	a	tree,	which	we	cut	at	different	distance	601	
thresholds	(0.01	to	0.10).	Each	cut	of	the	tree	yielded	a	set	of	genome-clusters.	602	
	603	
For	validation,	we	compared	each	set	of	genome-clusters	to	average	nucleotide	identity	604	
(ANI),	which	is	considered	to	be	a	gold	standard	for	delineating	prokaryotic	species	605	
(Konstantinidis	et	al.	2006;	Richter	and	Rossello-Mora	2009)	but	was	too	computationally	606	
intensive	to	compute	for	all	genome-pairs.	Specifically,	we	used	the	procedure	described	by	607	
Richter	and	Rossello-Mora	(Richter	and	Rossello-Mora	2009)	to	compute	ANI	for	>18,000	608	
genome-pairs	and	labeled	pairs	of	genomes	with	ANI	≥	95%	as	members	of	the	same	609	
species	and	pairs	of	genomes	with	ANI	<	95%	as	members	of	different	species.	We	610	
compared	these	labels	to	our	genome-clusters	and	classified	each	genome-pair	into	one	of	611	
the	following	categories:	True	positive:	a	clustered	genome-pair	with	ANI	≥	95%;	False	612	
positive:	a	clustered	genome-pair	with	ANI	<	95%;	False	negative:	a	split	genome-pair	with	613	
ANI	≥	95%;	True	negative:	a	split	genome-pair	with	ANI	<	95%.	Using	these	classifications	614	
we	calculated	the	true	positive	rate	(TPR),	precision	(PPV),	and	F1-score	for	each	set	of	615	
genome-clusters	corresponding	to	90-99%	identity	between	pairs	of	genomes	for	a	given	616	
marker	gene	(Supplemental	Table	S2).		617	
	618	
Based	on	this	evaluation,	we	identified	a	subset	of	30	gene	families	that	produced	genome-619	
clusters	that	were	in	agreement	with	ANI,	all	with	maximum	F1-score	>	0.93	across	620	
thresholds.	To	increase	clustering	performance,	we	took	the	average	pairwise	distances	621	
across	these	30	gene-families	and	used	these	new	distances	to	re-cluster	genomes	using	622	
MC-UPGMA	(Supplemental	Table	S3).	We	found	that	a	distance	cutoff	of	0.035	(96.5%	623	
nucleotide	identity)	maximized	the	F1-score	at	0.98	and	resulted	in	5,952	genome-clusters	624	
(Supplemental	Table	S3).	Each	genome-cluster	was	annotated	by	the	most	common	625	
PATRIC	Latin	name	within	the	cluster	(Supplemental	Table	S4).		626	
	627	
Genomic	database	construction	628	
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	629	
Genome-clusters	(i.e.	bacterial	species)	were	leveraged	in	order	to	compile	a	630	
comprehensive	genomic	data	resource	used	by	MIDAS.	First,	we	identified	a	representative	631	
genome	from	each	species	to	use	for	detecting	core-genome	SNPs.	Each	representative	632	
genome	was	chosen	in	order	to	maximize	its	average	nucleotide	identity	at	the	30	universal	633	
genes	(Supplemental	Table	S2)	to	other	members	of	the	species.	Next,	we	build	a	database	634	
of	15	universal	single-copy	gene	families	(Supplemental	Table	S7)	to	use	for	estimating	the	635	
abundance	of	the	species	from	a	shotgun	metagenome.	Gene	families	were	selected	based	636	
on	their	ability	to	accurately	recruit	metagenomic	reads	as	well	as	being	universal	and	637	
single-copy.	Many	of	the	30	gene	families	for	clustering	genomes	into	species	and	the	15	638	
gene	families	for	quantifying	species	abundance	from	metagenomes	were	different	and	639	
were	selected	using	distinct	criteria.		Next,	we	used	USEARCH	(Edgar	2010)	to	identify	the	640	
set	of	unique	genes	at	99%	identity	across	all	genomes	within	each	species,	which	are	used	641	
by	MIDAS	for	metagenomic	pan-genome	profiling.	This	procedure	clustered	116,978,184	642	
genes	from	the	31,007	genomes	into	31,840,245	gene	families.	We	further	clustered	these	643	
genes	at	different	levels	of	sequence	identity	(75-95%	DNA	identity)	in	order	to	identity	de	644	
novo	gene	families	of	varying	size	and	diversity	for	downstream	analyses.	Functional	645	
annotations	for	all	genes	were	obtained	from	PATRIC	and	include	FIGfams	(Meyer	et	al.	646	
2009),	Gene	Ontology	(Consortium	2000),	and	KEGG	Pathways	(Kanehisa	and	Goto	2000).		647	
	648	
Species	abundance	estimation	649	
	650	
MIDAS	uses	reads	mapped	to	15	universal	single-copy	gene	families	to	estimate	the	651	
abundance	of	the	5,952	bacterial	species	from	a	shotgun	metagenome.	These	15	gene	652	
families	were	selected	from	a	set	of	112	phylogenetically	informative	bacterial	gene	653	
families	(Wu	et	al.	2013)	for	their	ability	to	accurately	recruit	metagenomic	reads	to	the	654	
correct	species.	To	evaluate	how	informative	different	gene	families	are	for	estimation	of	655	
abundance,	we	simulated	one	hundred	100-bp	reads	from	each	of	the	112	gene	families	in	656	
each	of	the	5,952	species	and	used	HS-BLASTN	(Chen	et	al.	2015)	to	map	these	reads	back	657	
to	a	database	that	contained	the	full	length	gene	sequences.	To	simulate	the	presence	of	658	
novel	species	and	strains,	we	discarded	alignments	between	reads	and	reference	sequences	659	
from	the	same	species.	Each	read	was	assigned	to	a	species	based	on	its	top	hit.	660	
Recruitment	performance	was	measured	using	the	F1-score.	Based	on	this	experiment,	we	661	
identified	15	universal	single-copy	gene	families	that	were	best	able	to	accurately	assign	662	
the	species	from	which	metagenomic	reads	derived.	Additionally,	we	identified	the	optimal	663	
percent	identity	cutoffs	for	mapping	reads	to	the	database,	which	ranged	from	94.5%	to	664	
98.00%	identity	depending	on	the	gene	family	(Supplemental	Table	S7).		665	
	666	
To	perform	taxonomic	profiling,	MIDAS	aligns	reads	to	the	database	of	15	universal	gene	667	
families	with	HS-BLASTN,	discards	local	alignments	that	cover	<70%	of	the	read	or	668	
alignments	that	fail	to	satisfy	the	gene-specific	species-level	percent	identity	cutoffs,	and	669	
assigns	each	uniquely-mapped	read	to	a	species	according	to	its	best-hit.	MIDAS	assigns	670	
non-uniquely	mapped	reads	(i.e.	identical	alignment	scores	to	genes	from	>1	species)	using	671	
probabilities	estimated	from	uniquely	mapped	reads.		These	mapped	reads	are	used	to	672	
estimate	the	coverage	and	relative	abundance	of	each	species.		673	
	674	
Gene	content	estimation	675	
	676	
To	estimate	gene	content,	MIDAS	first	uses	the	species	abundance	profile	to	identify	677	
bacterial	species	with	sufficient	coverage	(e.g.	>1x).	A	pan-genome	database	is	dynamically	678	
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built,	which	contains	a	set	of	non-redundant	genes	from	these	species.	We	used	a	99%	679	
sequence	identity	threshold	to	cluster	similar	genes	such	that	any	two	genes	that	are	<99%	680	
similar	were	classified	as	distinct	genes.	Bowtie2	(Langmead	and	Salzberg	2012)	is	used	to	681	
locally	map	reads	from	the	metagenome	against	the	pan-genome	database.	Each	read	is	682	
mapped	a	single	time	according	to	its	best	hit,	and	reads	with	an	insufficient	mapping	683	
percent	identity	(default=94%),	alignment	coverage	(default=70%),	mapping	quality	684	
(default=20),	or	sequence	quality	(default=20)	are	discarded.		685	
	686	
Mapped	reads	are	used	to	compute	the	coverage	of	the	genes	clustered	at	99%	identity.		687	
Since	the	99%	identity	may	result	in	many	very	similar	gene	families,	MIDAS	gives	the	688	
option	of	further	clustering	the	gene	families	at	lower	sequence	identities	ranging	from	689	
75%	to	95%.	Aggregating	enables	quantification	of	gene	families	of	varying	size	and	690	
diversity,	while	maintaining	mapping	speed	and	sensitivity.	691	
	692	
To	estimate	gene	copy	numbers	in	a	bacterial	population,	gene	coverages	are	normalized	693	
by	the	median	coverage	across	the	15	universal	single-copy	gene	families	(Supplemental	694	
Table	S7).	Copy-number	values	are	thresholded	to	produce	gene	presence/absence	calls.	695	
MIDAS	merges	these	results	across	multiple	metagenomic	samples	to	produce	gene	content	696	
matrices	for	all	species,	which	facilitate	comparative	analyses	across	genes	and	697	
metagenomic	samples.	698	
	699	
Identifying	core	genome	SNPs	700	
	701	
To	estimate	core	genome	SNPs,	MIDAS	first	uses	the	species	abundance	profile	to	identify	702	
species	with	sufficient	coverage	(e.g.	>10x).	A	representative	genome	database	is	703	
dynamically	built,	which	contains	a	single	genome	per	species	that	meets	the	coverage	704	
requirement.	The	representative	genome	is	a	single	genome	chosen	that	has	the	greatest	705	
nucleotide	identity,	on	average,	to	other	members	of	the	species.	Only	a	single	genome	is	706	
needed	for	identifying	the	core	genome,	because	this	region	should	be	present	in	all	strains	707	
of	a	species.	Bowtie2	is	used	to	globally	map	reads	to	the	representative	genome	database.		708	
Each	read	is	mapped	a	single	time	according	to	its	best	hit,	and	reads	with	an	insufficient	709	
mapping	percent	identity	(default=94%),	alignment	coverage	(default=70%),	mapping	710	
quality	(default=20),	or	sequence	quality	(default=20)	are	discarded.	Additionally,	bases	711	
with	low	sequence	quality	scores	are	discarded	(default=30).	Samtools	(Li	et	al.	2009)	is	712	
used	to	generate	a	pileup	of	nucleotides	at	each	genomic	position	and	generate	VCF	files.	713	
VCF	files	are	parsed	to	generate	output	files	that	report	nucleotide	variation	statistics	at	all	714	
genomic	sites.	To	identify	the	core	genome	of	a	species,	MIDAS	uses	the	output	from	715	
multiple	metagenomic	samples	to	identify	regions	at	consistently	high	coverage	(e.g.	>10x	716	
coverage	in	95%	of	samples)	(Supplemental	Fig	S6).	MIDAS	then	produces	core	genome	717	
SNP	matrices	for	all	species,	which	facilitate	comparative	analyses	of	nucleotide	variation	718	
across	genomic	sites	and	metagenomic	samples.	MIDAS	also	gives	the	option	of	outputting	719	
all	SNPs,	including	those	that	are	not	in	the	core	genome.	720	
	721	
Shotgun	simulations	and	validation	of	MIDAS	output	722	
	723	
To	validate	MIDAS	we	designed	a	series	of	realistic	metagenomic	simulations	using	reads	724	
from	completed	genome-sequencing	projects	deposited	in	the	NCBI	Sequence	Read	Archive	725	
(Leinonen	et	al.	2011)	which	we	identified	using	the	SRAdb	tool	(Yuelin	Zhu	2013).	We	726	
used	this	data	to	construct	20	mock	metagenomes,	which	each	contained	100-bp	Illumina	727	
reads	from	20	randomly	selected	bacterial	genome	projects	(Supplemental	Tables	S8-9).	728	
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We	only	selected	genome	projects	that	corresponded	to	one	of	the	31,007	genomes	present	729	
in	our	reference	database,	and	we	used	only	one	genome	project	per	selected	species.	We	730	
simulated	libraries	that	contained	100x	total	genome	coverage.	The	relative	abundances	of	731	
the	20	genomes	were	exponentially	distributed	in	each	simulation	(50%,	25%,	12%,	6.5%	732	
etc.).		733	
	734	
We	compared	the	output	of	MIDAS	to	the	known	species	abundance,	gene	content,	and	735	
SNPs	in	the	simulated	communities.	To	evaluate	the	accuracy	of	species	abundance	736	
estimation	we	compared	the	expected	relative	abundance	and	coverage	to	the	simulated	737	
relative	abundance	and	coverage.	To	evaluate	the	accuracy	of	gene	content	estimation,	we	738	
ran	MIDAS	to	estimate	the	copy-number	of	genes	in	the	pan-genome	of	each	species	in	each	739	
simulation.	We	applied	a	cutoff	to	these	values	to	predict	gene	presence/absence.	True	740	
positives	(TP)	were	present	genes	predicted	as	present,	false	positives	(FP)	were	absent	741	
genes	predicted	as	present,	true	negatives	(TN)	were	absent	genes	predicted	as	absent,	and	742	
false	negatives	(FN)	were	present	genes	predicted	as	absent.	Performance	was	measured	743	
across	a	range	of	copy-number	cutoffs	using	balanced	accuracy:	(TPR+TNR)/2,	where	744	
TPR=TP/(TP+	FN)	and	TNR=TN/(TN+FP).	To	evaluate	the	accuracy	of	core	genome	SNPs,	745	
we	ran	MIDAS	to	estimate	the	frequency	of	nucleotide	variants	in	the	representative	746	
genome	of	each	species	in	each	simulation.	We	predicted	SNPs	using	the	consensus	allele	at	747	
each	genomic	position.	True	SNPs	were	identified	by	comparing	genomes	in	the	748	
simulations	to	the	representative	genomes	used	for	read	mapping	with	the	program	749	
MUMmer	(Stefan	Kurtz	2004),	which	identified	3,971,528	total	true	SNPs.	True	positives	750	
were	correctly	called	SNPs,	false	positives	were	incorrectly	called	SNPs,	and	false	negatives	751	
were	SNPs	that	were	not	called	due	to	insufficient	coverage.	We	compared	predicted	SNPs	752	
to	true	SNPs	and	measured	performance	using	the	true	positive	rate	(TP/TP+FN)	and	753	
precision	(TP/TP+FP).		754	
	755	
Assessing	database	coverage	across	different	environments	756	
	757	
We	estimated	the	species-level	coverage	of	the	MIDAS	database	across	metagenomes	from	758	
different	environments.	Database	coverage	is	defined	as	the	percent	(0	to	100%)	of	759	
genomes	from	cellular	organisms	in	a	community	that	have	a	sequenced	representative	at	760	
the	species	level	in	the	reference	database.	We	estimated	database	coverage	by	(i)	761	
computing	the	total	coverage	across	all	species	in	the	MIDAS	database	by	mapping	762	
metagenomic	reads	to	15	universal	single-copy	genes	and	applying	species-level	mapping	763	
thresholds,	(ii)	computing	the	coverage	across	all	microbial	species,	including	those	absent	764	
from	the	MIDAS	reference	database	using	the	tool	MicrobeCensus	(Nayfach	and	Pollard	765	
2015),	and	(iii)	taking	the	ratio	of	these	two	quantities,	multiplied	by	100.	We	applied	this	766	
approach	to	metagenomes	from	human	body	sites	(Consortium	2012),	human	stool	(Qin	et	767	
al.	2012;	Li	et	al.	2014;	Obregon-Tito	et	al.	2015;	Rampelli	et	al.	2015),	baboon	stool	(Tung	768	
et	al.	2015),	mouse	stool	(Xiao	et	al.	2015),	ocean	water	(Sunagawa	et	al.	2015),	and	soil	769	
from	deserts,	forests,	grasslands,	and	tundra	(Fierer	et	al.	2012).	To	identify	possible	770	
taxonomic	groups	that	harbored	novel	species	in	the	human	gut,	we	performed	Spearman	771	
correlations	between	database	coverage	and	the	relative	abundance	of	genera,	estimated	772	
using	mOTU	(Sunagawa	et	al.	2013).	773	
	774	
Tracking	transmission	of	strains	between	hosts	775	
	776	
We	used	marker	alleles	to	track	transmission	of	strains	between	hosts.	We	defined	a	777	
marker	allele	as	an	allele	at	a	genomic	site	that	was	present	in	only	a	single	individual,	or	in	778	
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the	case	of	the	mother-infant	dataset,	a	single	mother-infant	pair.	For	simplicity,	we	only	779	
considered	bi-allelic	genomic	sites.	An	allele	was	determined	to	be	present	in	a	sample	if	it	780	
was	supported	by	≥3	reads	and	≥10%	of	the	total	reads	mapped	at	the	genomic	site.	These	781	
parameters	were	chosen	to	minimize	the	effect	of	sequencing	errors	and	filter	out	low	782	
frequency	variants	that	could	not	be	consistently	detected	between	samples.	Marker	allele	783	
sharing	was	computed	as	the	percent	of	marker	alleles	in	mother	strains	that	were	also	784	
found	in	her	infant.	To	minimize	variation	in	marker	allele	sharing	due	to	sampling,	we	785	
excluded	individuals	with	fewer	than	10	identified	marker	alleles	for	a	species.	We	applied	786	
this	procedure	to	66	species	found	in	stool	metagenomes	from	98	Swedish	mothers	and	787	
their	infants	(Backhed	et	al.	2015)	as	well	as	123	American	individuals	from	the	Human	788	
Microbiome	Project	(HMP)	(Consortium	2012).	We	included	the	HMP	samples	in	order	to	789	
increase	sample	sizes	and	therefore	improve	the	specificity	of	marker	alleles	identified	in	790	
mothers	and	their	infants.	As	a	positive	control	to	assess	the	sensitivity	of	our	approach,	we	791	
quantified	marker	allele	sharing	for	each	species	between	pairs	of	technical	replicates	from	792	
the	HMP.	As	a	negative	control	to	assess	specificity,	we	quantified	marker	allele	sharing	for	793	
each	species	between	pairs	of	unrelated	individuals	from	the	HMP,	which	were	not	used	to	794	
identify	marker	alleles.	Based	on	these	results,	we	defined	a	transmission	event	as	>5%	795	
marker	allele	sharing	between	a	pair	of	individuals.	796	
	797	
Analysis	of	globally	distributed	marine	metagenomes	798	
	799	
To	assess	the	global	population	structure	of	marine	bacteria,	we	analyzed	198	shotgun	800	
metagenomes	collected	from	the	Tara	Oceans	expeditions	that	corresponded	to	801	
prokaryotic	size	fractions.	We	utilized	up	to	100	million	reads	per	metagenome	and	802	
analyzed	only	one	sequencing	replicate	per	sample.	We	used	MIDAS	to	quantify	the	relative	803	
abundance	of	the	5,952	reference	species,	and	based	on	these	results	identified	30	species	804	
that	occurred	at	>3x	sequencing	depth	in	the	greatest	number	of	metagenomes.	The	least	805	
prevalent	species	was	found	in	23%	of	metagenomes.	Next,	we	used	MIDAS	to	quantify	the	806	
gene	content	of	these	species	across	metagenomic	samples.	Reads	were	mapped	to	the	pan-807	
genome	database,	and	reads	with	<94%	alignment	identity	were	discarded.	Mapped	reads	808	
were	used	to	compute	the	coverage	of	genes	clustered	at	95%	identity.	Gene	coverages	809	
were	normalized	by	the	coverage	of	15	universal	single	copy	genes	to	estimate	gene	copy	810	
numbers.	We	estimated	gene	presence-absence	by	thresholding	the	gene	copy	numbers,	811	
whereby	any	gene	with	a	copy	number	<0.35	was	considered	to	be	absent.	812	
	813	
To	uncover	population	structure,	we	performed	a	principle	component	analysis	of	the	gene	814	
presence-absence	matrix	for	each	species.	To	assess	the	relationship	between	gene	content	815	
and	geography,	we	first	quantified	the	PCA	distance	and	geographic	distance	between	816	
metagenomic	samples	for	each	species.	PCA	distances	were	computed	using	the	Euclidian	817	
distance	between	samples	based	on	the	first	two	principle	components.	Geographic	818	
distances	were	computed	using	the	Great	circle	distance	with	the	R	package	geosphere	819	
(Hijmans	2016).	Mantel	tests	were	computed	using	the	R	package	vegan	(Oksanen	et	al.	820	
2016)	to	correlate	the	PCA	distances	to	the	geographic	distances.	Up	to	one	million	821	
permutations	were	performed	to	assess	significance.	822	

	823	

Figure	legends	824	
	825	
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Figure	1.	Construction	of	bacterial	species	database	and	its	coverage	of	microbial	826	
communities	across	different	environments	827	
A)	31,007	genomes	were	hierarchically	clustered	based	on	the	pairwise	identity	across	a	828	
panel	of	30	universal	gene	families.	We	identified	5,952	species	groups	by	applying	a	829	
96.5%	nucleotide	identity	cutoff	across	universal	genes,	which	is	equivalent	to	95%	830	
identity	genome	wide.	B)	Concordance	of	genome-cluster	names	and	annotated	species	831	
names.	Of	the	31,007	genomes	assigned	to	a	genome-cluster,	5,701	(18%)	disagreed	with	832	
the	consensus	PATRIC	taxonomic	label	of	the	genome-cluster.	Most	disagreements	are	due	833	
to	genomes	lacking	annotation	at	the	species	level	(47%).	Other	disagreements	are	because	834	
a	genome	was	split	from	a	larger	cluster	with	the	same	name	(29%)	or	assigned	to	a	835	
genome-cluster	with	a	different	name	(24%).	C)	Coverage	of	the	species	database	across	836	
metagenomes	from	host-associated,	marine,	and	terrestrial	environments.	Coverage	is	837	
defined	as	the	percent	(0	to	100%)	of	genomes	from	cellular	organisms	in	a	community	838	
that	have	a	sequenced	representative	at	the	species	level	in	the	reference	database.	Inset	839	
panel	shows	the	distribution	of	database	coverage	across	human	stool	metagenomes	from	840	
six	countries	and	two	host	lifestyles.	841	
	842	
Figure	2.	An	integrated	pipeline	for	profiling	species	abundance	and	strain-level	843	
genomic	variation	from	metagenomes	844	
A)	The	MIDAS	analysis	pipeline.	Reads	are	first	aligned	to	a	database	of	universal-single-845	
copy	genes	to	estimate	species	coverage	and	relative	abundance	per	sample.	For	species	846	
with	sufficient	coverage,	reads	are	next	aligned	to	a	pan-genome	database	of	genes	to	847	
estimate	gene	coverage,	copy-number,	and	presence/absence.	Finally,	reads	are	aligned	to	848	
a	representative	genome	database	to	detect	SNPs	in	the	core	genome.	The	core	genome	is	849	
defined	directly	from	the	data	by	identifying	high	coverage	regions	across	multiple	850	
metagenomic	samples.	(B-D)	To	evaluate	performance	for	each	component	of	MIDAS,	we	851	
analyzed	20	mock	metagenomes	composed	of	100-bp	Illumina	reads	from	microbial	852	
genome-sequencing	projects.	Each	community	contained	20	organisms	with	exponentially	853	
decreasing	relative	abundance.	We	tested	the	ability	of	MIDAS	to	estimate	species	coverage	854	
and	to	predict	genes	and	SNPs	present	in	the	strains	of	the	mock	communities	compared	to	855	
the	reference	gene	and	genome	databases.	B)	Species	coverage	is	accurately	estimated.	856	
Each	boxplot	indicates	the	distribution	of	estimated	genome	coverages	across	20	mock	857	
communities	for	the	top	8	most	abundant	species	out	of	20	analyzed.	C)	Gene	858	
presence/absence	is	accurately	predicted	when	genome	coverage	is	above	1x	and	a	gene	859	
copy	number	cutoff	of	0.35	is	used.	Accuracy	=	(Sensitivity	+	Specificity)/2;	Sensitivity	=	(#	860	
genes	correctly	predicted	as	present)/(#	total	genes	present);	Specificity	=	(#	genes	861	
correctly	predicted	as	absent)/(#	total	genes	absent).	D)	SNPs	are	detected	with	a	low	false	862	
discovery	rate	and	good	sensitivity	when	genome	coverage	is	above	10x.	Sensitivity	=	(#	863	
correctly	called	SNPs)/(#	total	SNPs);	False	Discovery	Rate	=	(#	incorrectly	called	864	
SNPs)/(#	called	SNPs).		865	
	866	
Figure	3.	An	increase	in	shared	species	but	decrease	in	shared	strains	over	time	867	
between	stool	metagenomes	from	mothers	and	their	infants	868	
A)	Principal	coordinate	analysis	of	Bray-Curtis	dissimilarity	between	species	relative	869	
abundance	profiles	of	stool	samples	from	mothers	and	infants	at	4	days,	4	months,	and	12	870	
months	following	birth.	Species	composition	of	infant	microbiomes	is	most	similar	to	871	
mothers	at	12	months.	B)	The	number	of	shared	species	increases	over	time	between	872	
mothers	and	their	own	infants.	C)	This	pattern	for	biological	mother-infant	pairs	is	similar	873	
to	that	of	unrelated	mothers	and	infants	(permuted	pairs).	D)	In	contrast,	marker	allele	874	
sharing	decreases	over	time	between	mothers	and	their	infants	for	shared	species	with	875	
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>10x	sequencing	coverage,	indicating	highest	strain	similarity	at	4	days.	Allele	sharing	is	876	
defined	as	the	percent	of	marker	alleles	in	the	mother	that	are	found	in	the	infant.	The	877	
horizontal	red	line	indicates	the	5%	marker	allele	threshold	used	for	defining	vertical	878	
transmission	events.	E)	Vertical	transmissions	for	20	bacterial	species	across	mother-879	
infant	pairs	at	three	time	points.	A	vertical	transmission	is	defined	as	>5%	marker	allele	880	
sharing	between	mother	and	infant.	The	phylogenetic	tree	on	the	left	is	constructed	based	881	
on	a	concatenated	DNA	alignment	of	30	universal	genes	(Supplemental	Fig	S3).	The	tree	882	
shows	that	species	with	more	vertical	transmission	are	phylogenetically	clustered.	883	
	884	
Figure	4.	Strains	that	colonize	the	infant	gut	late	in	the	first	year	are	rarely	found	in	885	
the	mother	886	
A)	Vertical	transmission	of	strains	at	12	months	versus	their	relative	abundance	at	4	days.	887	
Each	data	point	indicates	a	shared	species	found	in	a	mother	and	her	infant.	The	vertical	888	
axis	indicates	whether	a	strain	of	the	species	was	transmitted	from	the	mother	(y=1)	or	not	889	
(y=0).	The	curve	is	a	logistic	regression	fitted	to	data	points.	Histograms	indicate	the	890	
distribution	of	relative	abundance	at	4	days	for	strains	that	were	transmitted	and	not	891	
transmitted.	Strains	with	high	relative	abundance	in	infants	at	4	days	are	frequently	892	
transmitted	from	the	mother.	Strains	that	appear	in	the	infant	at	later	time	points	(i.e.	low	893	
abundance	at	4	days)	are	rarely	transmitted	from	the	mother.	B)	Examples	of	early	894	
colonizing	species	that	are	frequently	transmitted	vertically	(Bacteroides	vulgatus,	895	
Parabacteroides	distasonis,	and	Bacteroides	fragilis)	and	late	colonizing	species	that	are	896	
rarely	transmitted	vertically	(Eubacterium	rectale,	Faecalibacterium	prausnitzii,	and	Blautia	897	
wexlerae).	Points	are	colored	based	on	vertical	transmission.	Gray	indicates	there	was	898	
insufficient	sequencing	coverage	to	quantify	SNPs	and	determine	whether	the	strain	was	899	
transmitted	from	the	mother	or	not.	900	
	901	
Figure	5.	Gene	content	and	geography	are	correlated	for	many	marine	bacteria	902	
A)	Prevalence	of	50	bacterial	species	across	198	ocean	metagenomes.	Species	identifiers	903	
are	indicated	in	parenthesis.	Many	marine	species	have	sufficient	sequencing	depth	and	904	
prevalence	for	population	genetic	analyses.	B)	Correlation	of	PCA	and	geographic	distance	905	
between	pairs	of	samples	for	different	marine	species.	PCA	distance	was	calculated	using	906	
the	Euclidian	distance	between	PC1	and	PC2	of	the	gene	presence/absence	matrix.	907	
Geographic	distance	was	calculated	using	the	great-circle	distance	between	sampling	908	
locations.	Correlations	and	p-values	were	computed	using	the	Mantel	test	with	1	million	909	
permutations.	Only	one	metagenome	per	location	was	included	in	the	tests.	The	population	910	
structure	of	marine	bacteria,	based	on	the	first	two	principal	components	of	gene	content,	911	
is	correlated	with	geography	for	many	species	of	bacteria.	C)	Candidatus	Pelagibacter	and	912	
SAR86	are	examples	of	marine	bacterial	species	geographically	structured	populations	913	
based	on	gene	presence/absence.	Each	point	indicates	a	bacterial	population	from	a	914	
different	sample.	Point	colors	indicate	the	marine	region.	Point	shapes	indicate	the	ocean	915	
depth.	Samples	tended	to	cluster	together	based	on	ocean	region,	not	ocean	depth.	D)	916	
Alpha	proteobacterium	is	an	example	of	a	species	present	in	the	mesopelagic	zone	where	917	
depth	is	the	major	driver	of	population	structure.	918	
	919	
	920	

Software	availability	921	
MIDAS	is	implemented	in	Python	and	is	freely	available,	along	with	documentation	at:	922	
https://github.com/snayfach/MIDAS.	Source	code	is	additionally	included	as	923	
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Supplemental	Material.	Our	reference	database	of	bacterial	species	and	associated	genomic	924	
data	resources	are	available	at:	http://lighthouse.ucsf.edu/MIDAS	925	
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