Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Effective QTL Discovery Incorporating Genomic Annotations

Xiaoquan Wen
doi: https://doi.org/10.1101/032003
Xiaoquan Wen
Department of Biostatistics, University of Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Mapping molecular QTLs has emerged as an important tool for understanding the genetic basis of cell functions. With the increasing availability of functional genomic data, it is natural to incorporate genomic annotations into QTL discovery. In this paper, we describe a novel method, named TORUS, for integrative QTL discovery. Using hierarchical modeling, our approach embeds a rigorous enrichment analysis to quantify the enrichment level of each annotation in target QTLs. This enrichment information is then used to identify QTLs by up-weighting the genetic variants with relevant annotations using a Bayesian false discovery rate control procedure. Our proposed method only requires summary-level statistics and is highly efficient computationally: it runs one-hundred times faster than the current gold-standard QTL discovery approach that relies on permutations. Through simulation studies, we demonstrate that the proposed method performs accurate enrichment analysis and controls the desired type I error rate while greatly improving the power of QTL discovery when incorporating informative annotations. Finally, we analyze the recently released expression-genotype data from 44 human tissues generated by the GTEx project. By integrating the simple annotation of SNP distance to transcription start sites, we discover more genes that harbor expression-associated SNPs in all 44 tissues, with an average increase of 1,485 genes.

Footnotes

  • ↵* xwen{at}umich.edu

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted November 16, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Effective QTL Discovery Incorporating Genomic Annotations
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Effective QTL Discovery Incorporating Genomic Annotations
Xiaoquan Wen
bioRxiv 032003; doi: https://doi.org/10.1101/032003
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Effective QTL Discovery Incorporating Genomic Annotations
Xiaoquan Wen
bioRxiv 032003; doi: https://doi.org/10.1101/032003

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3514)
  • Biochemistry (7371)
  • Bioengineering (5347)
  • Bioinformatics (20328)
  • Biophysics (10048)
  • Cancer Biology (7781)
  • Cell Biology (11353)
  • Clinical Trials (138)
  • Developmental Biology (6454)
  • Ecology (9984)
  • Epidemiology (2065)
  • Evolutionary Biology (13359)
  • Genetics (9375)
  • Genomics (12614)
  • Immunology (7729)
  • Microbiology (19118)
  • Molecular Biology (7478)
  • Neuroscience (41163)
  • Paleontology (301)
  • Pathology (1235)
  • Pharmacology and Toxicology (2142)
  • Physiology (3183)
  • Plant Biology (6882)
  • Scientific Communication and Education (1276)
  • Synthetic Biology (1900)
  • Systems Biology (5328)
  • Zoology (1091)