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Abstract

Mapping molecular QTLs has emerged as an important tool for understanding the ge-

netic basis of cell functions. With the increasing availability of functional genomic data,

it is natural to incorporate genomic annotations into QTL discovery. In this paper, we

describe a novel method, named TORUS, for integrative QTL discovery. Using hierarchical

modeling, our approach embeds a rigorous enrichment analysis to quantify the enrichment

level of each annotation in target QTLs. This enrichment information is then used to iden-

tify QTLs by up-weighting the genetic variants with relevant annotations using a Bayesian

false discovery rate control procedure. Our proposed method only requires summary-level

statistics and is highly efficient computationally: it runs one-hundred times faster than the

current gold-standard QTL discovery approach that relies on permutations. Through sim-

ulation studies, we demonstrate that the proposed method performs accurate enrichment

analysis and controls the desired type I error rate while greatly improving the power of

QTL discovery when incorporating informative annotations. Finally, we analyze the re-

cently released expression-genotype data from 44 human tissues generated by the GTEx

project. By integrating the simple annotation of SNP distance to transcription start sites,

we discover more genes that harbor expression-associated SNPs in all 44 tissues, with an

average increase of 1,485 genes.
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1 Background

With the advancements in sequencing technology, mapping quantitative trait loci (QTL) with

cellular phenotypes has emerged as a powerful tool for understanding the genetic basis of cell

functions. Recent QTL mapping studies using RNA-seq, ChIP-seq, DNaseI-seq, ATAC-seq and

DNA methylation data have revealed that an abundance of genetic variants are associated with

various cellular phenotypes (Lappalainen et al. 2013; Ardlie et al. 2015; Ding et al. 2014; Degner

et al. 2012; McVicker et al. 2013; Banovich et al. 2014). Subsequently, the discovery of molecular

QTLs has provided valuable insights for understanding the molecular mechanisms of complex

diseases (Albert and Kruglyak 2015). Note that a distinctive feature of molecular QTL analysis is

that tens of thousands of molecular phenotypes are simultaneously measured (e.g., genome-wide

gene expression profiling by RNA-seq), which imposes a new type of statistical challenge.

In this paper, we use the term QTL to refer to the genomic regions that harbor traits associated

causal variants, and following Veyrieras et al. (2008), we refer to the actual causal variants as

quantitative trait nucleotides (QTNs). In practice, the statistical analysis of molecular QTLs

typically consists of two stages: the primary goal of the first stage is to screen a large number

of candidate loci and identify QTLs, and we refer to this process as QTL discovery; in the

second stage, a fine-mapping analysis is performed to determine the potential QTNs in each

discovered QTL. In addition to providing a list of candidate QTLs for fine-mapping analysis,

QTL discovery is also highly important for network and pathway analysis. When analyzing

expression quantitative trait loci (eQTLs), the candidate genomic regions are generally formed

by the coding and the neighboring regulatory regions of each target gene, and the QTL discovery

analysis is also known as eGene discovery (Lappalainen et al. 2013; Ardlie et al. 2015; Sul et al.

2015). The statistical strategies for the two stages of QTL analysis differ: the QTL discovery is

typically formulated as a multiple hypothesis testing problem, whereas the QTN fine mapping

is often addressed using variable selection techniques.

Our primary focus in this paper is the statistical analysis for QTL discovery. The gold-standard

QTL discovery approach has been well established in cis-eQTL analysis and can be trivially

generalized to other molecular QTL analyses (Flutre et al. 2013; Lappalainen et al. 2013; Ardlie

et al. 2015). In cis-eQTL mapping, the standard approach first performs single SNP association

testing for all gene-SNP pairs. For each gene, the minimum p-value from all member SNPs is then

regarded as the gene-level test statistic and is subsequently converted into a gene-level p-value

to test the null hypothesis asserting no associated SNPs within the locus of interest. Because

the null distribution of the gene-level test statistic is generally unknown due to complicated
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linkage disequilibrium (LD) patterns, extensive permutations are required to obtain the gene-

level p-values. Finally, false discovery rate (FDR) control procedures, e.g., Benjamini-Hochberg

(Benjamini and Hochberg 1995) and Storey’s q-value procedure (Storey 2003), are applied to

correct for multiple testing of tens of thousands of genes genome-wide.

Although the gold-standard procedure is statistically justified and widely applied, it lacks com-

putational efficiency due to its heavy reliance on extensive permutations: the computational

cost remains very high for genome-wide QTL discovery, even though recent work (Sul et al.

2015) has made significant improvements. More critically, there is no principled way to flexi-

bly incorporate valuable genomic annotations into the standard procedure. With the increasing

availability of functional genomic data (Pique-Regi et al. 2011; ENCODE Project Consortium

et al. 2012; Kundaje et al. 2015), the scientific community has accumulated substantial knowledge

on the functional roles of individual genetic variants. It is completely intuitive to incorporate

this knowledge into the analysis of QTL discovery and prioritize the genomic loci that harbor

well-annotated functional variants. Similarly, existing results regarding QTL analyses can also

provide valuable insights into the distributive patterns of causal QTNs. For example, almost all

of the analyses in cis-eQTL mapping report that associated casual SNPs tend to cluster around

transcription start sites (TSS) and that the abundance of signals rapidly decreases away from

TSS (Lappalainen et al. 2013; Wen et al. 2015; Ardlie et al. 2015). In light of this pattern,

it appears natural to up-weight the SNPs close to TSS in eQTL analysis a priori rather than

treating every cis-SNP equally. However, to the best of our knowledge, a principled approach

that can effectively incorporate known genomic annotations into the analysis of QTL discovery

does not exist.

In this paper, we use a natural hierarchical model to integrate SNP-level annotations into QTL

mapping. We propose a highly efficient computational framework, TORUS, to first evaluate

the enrichment level of each genomic annotation in the causal variants, and then we utilize the

quantified enrichment information to prioritize each candidate SNP accordingly and perform

Bayesian multiple hypothesis testing for QTL discovery. Importantly, the proposed QTL discov-

ery approach also seamlessly connects to our proposed Bayesian QTL fine-mapping method (Wen

2014; Wen et al. 2015) by providing the SNP-level prior information as a by-product. Through

simulations, we demonstrate the superiority of the proposed approach over the state-of-the-art

gold-standard approach in terms of both computational efficiency and power of QTL discovery.

Finally, we demonstrate our approach by analyzing eQTL data from 44 human tissues that were

recently released by the GTEx project.
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2 Results

2.1 Method Overview

Our statistical approach is built upon our recently proposed Bayesian hierarchical model (Wen

et al. 2015). A distinctive feature of this model is its use of prior specification to quantitatively

connect the genomic annotations of a candidate SNP with its latent trait-association status

through a set of regression coefficients known as enrichment parameters (details are shown in

the Methods section). This model has been successfully applied in fine-mapping eQTNs across

multiple tissues (Ardlie et al. 2015) and across multiple populations (Wen et al. 2015). Moreover,

this model naturally accounts for LD between candidate SNPs and shows great advantages over

the existing standard single-SNP-based QTL analysis approaches. In this paper, we extend this

approach for QTL discovery applications.

For each genomic locus l consisting of p SNPs, we use a binary p-vector γ l to denote the latent

association status of all member SNPs, i.e., γ li = 1 indicates that the i-th SNP is associated

with the quantitative trait of interest. The problem of QTL discovery can then be formulated

as testing the null hypothesis H0 : γ l = 0 for each locus. When mapping molecular QTLs,

tens of thousands of loci are simultaneously interrogated; therefore, the issue of multiple testing

control/correction must be addressed.

To take full advantage of the Bayesian hierarchical model, we employ a Bayesian false discovery

rate (FDR) control approach (Newton et al. 2004; Müller et al. 2004). Briefly, this procedure

requires computing the posterior probability

ul := Pr(γ l = 0 | Data)

to summarize the evidence for (or against) the null hypothesis for each locus l. The null hypothe-

sis is intuitively rejected if the corresponding ul is too small. To determine the rejection threshold

tα based on a predefined FDR control level α (typically set at 0.05), a straightforward algorithm

(Newton et al. 2004) can be applied such that the expected value of false discovery proportion

(which can be directly computed from uls) from the observed data is not greater than α. The

connection between the Bayesian FDR control approach and commonly applied frequentist ap-

proaches has been well documented in the statistical literature (Newton et al. 2004; Müller et al.

2004), and we also provide a brief account in the Methods section and in the Supplementary

Material.
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By computing ul based on the proposed Bayesian hierarchical model, the Bayesian FDR control

procedure naturally allows genomic annotations to be leveraged in QTL discovery. However,

the exact evaluation of ul requires integrating out all enrichment parameters and exploring an

enormous space of all possible association models. This becomes a computationally daunting

challenge even for a single locus, let alone the genome-wide application for tens of thousands of

loci. To overcome the computational difficulty, we propose evaluating ul using an approximation

ûl that can be computed considerably more efficiently. Specifically, rather than fully integrating

out the enrichment parameter α, we apply an EM algorithm to determine its maximum likeli-

hood estimate (MLE), α̂, and evaluate an empirical Bayes estimate of the posterior probability,

namely, ûl := Pr(γ l = 0 | Data, α̂). In addition, to reduce the extensive exploration of all

possible values of γ l, we adopt a strategy that focuses only on a subset of alternative models

that contain at most K QTNs and that assumes that the posterior probabilities of association

models with more than K QTNs are negligible. Because the convincing QTNs discovered from

the association data are highly sparse compared with the number of candidate SNPs in almost

all genetic/genomic applications, this approximation is likely accurate for the vast majority of

loci. For the small number of loci that do harbor more than K casual QTNs, this specific ap-

proximation leads to a conservative over-estimation of ul, which may result in a loss of power

but no inflation of type I error. To achieve the best computational efficiency, in practice, we

set K = 1, which essentially assumes at most one QTN per locus. It can be argued that the

gold-standard frequentist approach also implicitly makes such an assumption (see the Meth-

ods section). Furthermore, although this very assumption has been successfully applied by other

Bayesian approaches (Pickrell 2014; Servin and Stephens 2007; Veyrieras et al. 2008; Flutre et al.

2013), it has always been formulated as an explicit prior assumption and hence requires a some-

what non-natural parameterization that is not only difficult to interpret but also complicates

the estimation of the enrichment parameters. Jointly applying both approximation strategies

results in a highly efficient computational procedure for QTL discovery. Moreover, the proposed

approach only requires summary-level statistics from single SNP association testing, which is

extremely convenient for addressing genome-wide high-throughput genomic data.

The statistical methods are implemented in the software package TORUS, which is freely available

at https://gihub.com/xqwen/torus/.
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2.2 Simulation Study

We perform a series of simulation studies to demonstrate the power, robustness and computa-

tional efficiency of the proposed QTL discovery approach.

2.2.1 QTL Discovery without Annotation

In the first simulation, we generate genome-wide eQTL data sets assuming no influence from any

genomic feature. Our goal is to evaluate the performance of the proposed Bayesian procedure

under the baseline scenario and to compare it with the commonly applied gold-standard approach.

We select 11,761 protein coding and linc-RNA genes from the GEUVADIS project (Lappalainen

et al. 2013) and the genotype data from 343 European individuals. For each gene, we randomly

select 50 cis-SNPs with a minor allele frequency of ≥ 0.05. With probability 1−π0, we randomly

assign 1 to 3 eQTNs. Given the eQTNs for each gene, we simulate the expression levels using

a multiple regression model (Supplementary Materials). We generate 20 data sets for each π0

value and vary the value of π0 from 0.1 to 0.9.

Without using annotation information, the Bayesian hierarchical model is reduced to a simple

form with a single parameter in the logistic prior, which assumes a priori each candidate SNP

independently and equally likely to be the causal eQTL. For comparison, we analyze the simulated

data sets using the software package eGENE-MVN (Sul et al. 2015). This package implements

the gold-standard QTL discovery method that uses the minimum single SNP association p-

value in a locus as the test statistic; however, it finds the corresponding locus-level p-value in a

considerably more efficient manner. After obtaining the locus-level p-values, we perform FDR

control and identify QTLs using Storey’s q-value method.

The simulation results (Table 1) indicate that both TORUS and the gold-standard approach

control FDR at the desired level across all π0 levels. Overall, the powers of the two methods are

quite similar. However, the standard method achieves slightly better power when π0 is small,

and the proposed Bayesian method exhibits better performance when π0 is relatively large. We

suspect that this result is mainly because when π0 is large, the “one causal SNP per locus”

assumption becomes closer to the truth compared with the situation when π0 is small, and

therefore, the posterior probability approximation is more accurate and less conservative. In

addition, to examine the robustness of the proposed approach, we re-analyze the simulated data

but include the annotation of SNP distance to TSS (details described in simulation study II).
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As expected, the enrichment analysis indicates that there is little impact of the annotation to

the eQTLs in the simulated data set (due to our simulation scheme), and the results for eGene

discovery remain virtually identical.

Most importantly, our computational time benchmark shows that the proposed Bayesian method

is considerably more efficient: to analyze a single simulated data set on a Linux box with an 8-core

Intel Xeon 2.13 GHz CPU, the average running time for the Bayesian method is approximately 2

minutes 25 seconds (with 12 parallel processing threads); in comparison, eGENE-MVN requires

approximately 3 hours and 45 minutes (also with 12 parallel threads) for the same computational

task.

Table 1: Comparison of TORUS and the gold-standard minimum p-value-based QTL discovery
procedure without genomic annotations using simulated eQTL data. Both methods control the
desired FDR level at 5%. The standard method performs better when the proportion of candidate
loci being QTLs (i.e., 1 − π0) is high, whereas the proposed procedure works better when the
proportion is low. In all cases, however, the powers are comparable. In addition, we perform the
proposed approach using SNP distance to TSS as an annotation, and the results remain virtually
identical, as expected.

TORUS without annotation Minimum p-value Method
π0 FDR Power FDR Power

0.10 0.010 0.842 0.024 0.864
0.33 0.028 0.807 0.038 0.810
0.50 0.038 0.801 0.040 0.789
0.67 0.045 0.767 0.047 0.743
0.90 0.049 0.739 0.049 0.701

2.2.2 QTL Discovery with Annotation

Our second simulation study attempts to mimic a commonly observed phenomenon in cis-eQTL

mapping: eQTL signals tend to cluster around transcription start sites of the corresponding

target genes and rapidly decrease away from TSS. We use the same set of 11,761 genes from the

GUEVADIS project but include all SNPs within a 1 Mb radius from the TSS of each gene. On

average, there are 5,856 SNPs per gene (median of 5,892). We do not impose any restrictions

on the minor allele frequencies of the cis-SNPs and take all the genotypes directly from the

GUEVADIS project. During the simulation, causal eQTL SNPs are randomly assigned by a

probability computed from a continuous function of SNP distance to TSS (DTSS, measured in
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kb and denoted by d), i.e.,

p(d) = µe−λ |d|, (2.1)

where λ controls the rate of decay in the expected number of causal eQTL SNPs away from TSS

and µ determines the overall expected number of cis-eQTLs. We experiment with two different

λ values, λ = 0.02 and λ = 0.1, corresponding to relatively modest and fast rates of decay,

respectively. We then set the µ values to keep the overall expected number of causal eQTL SNPs

comparable across the schemes. Note that our simulation function (2.1) is not compatible with

the functional form of our logistic prior (4.2).

For each simulation setting, we generate 20 data sets and analyze each data set with and with-

out incorporating DTSS information. We do not run the minimum p-value-based approach on

these considerably larger data sets because of the high computational cost. Nevertheless, we

fully expect its performance to be similar to that of the proposed Bayesian approach ignoring

DTSS information based on our evaluation in the first simulation study. When utilizing DTSS

information, we follow the approaches used in Veyrieras et al. (2008); Degner et al. (2012) to

dissect the genome into variable sizes of distance bins. In general, we use smaller sized bins in

the close vicinity of TSS and larger sized bins away from TSS. The details on the binning of

SNPs are given in the Supplementary Materials.

Our results indicate that by estimating the enrichment parameters, the Bayesian approach ef-

fectively characterizes the impact of the DTSS on the eQTL abundance. The estimation of the

eQTL signal decay rates with respect to TSS is quite accurate (Fig. 1), albeit our estimation

model is very different than the data generative model. We also find that the baseline prevalence

(which corresponds to the parameter µ in (2.1)) is slightly under-estimated, which results in the

estimates of the SNP-level priors and the FDR control being overly conservative. This result is

likely because of the combination of our approximation strategy and the relatively small sample

size. Utilizing the highly informative quantitative priors substantially improves the power of

eQTL discovery (Table 2). For the modest decay rate, incorporating DTSS in eQTL discovery

results in a 15% (or 7 percentage points) power gain, whereas in the fast decay case, we find that

there is a 25% (or 10 percentage point) increase in power, which results in correctly discovering

∼ 1000 more eGenes on average.
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Figure 1: TORUS estimates of eQTL signal decay rates with respect to DTSS in simulations.
Panels A and B plot the estimates by the EM algorithm for the modest and fast decay rates,
respectively. Each bar in the plot represents a distance bin. To determine the height of the bar,
we compute the prior association probability of a SNP located in the corresponding distance bin
by plugging in the MLEs (averaged over 20 repetitions) using equation (4.2). We then normalize
the resulting probabilities with respect to the center bin such that the center bar always has
a weight of 1. For visualization purposes, we choose to highlight the 100 kb region centered
around TSS. The red lines in both panels denote the true decay rate according to the generating
functions. It is clear that the enrichment estimates from the EM algorithm capture the overall
patterns of the decay effect quite accurately.
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Table 2: Comparison of QTL discovery with and without incorporating genomic annotations
using simulated eQTL data. We simulate the eQTL data sets such that the majority of QTN
signals decay according to the function p(d). The annotation model uses the SNP distance to
TSS as annotations, whereas the baseline model does not. For both the modest and rapid decay
functions, we observe substantial power gain by incorporating relevant annotations into the QTL
discovery.

Baseline Model Annotation Model
Decay Function FDR Power FDR Power

p(d) = 0.005 e−0.02 |d| 0.006 0.468 0.009 0.538

p(d) = 0.02 e−0.1 |d| 0.010 0.406 0.009 0.509

2.3 Analysis of GTEx eQTL Data

We analyze the eQTL data sets from the GTEx project (release version 6), which consist of

genotype and expression phenotype data from 44 human tissues. The sample sizes in this data

release vary from 70 (uterus) to 361 (muscle skeletal). The genotype and expression data have

been subjected to the standard quality control protocols performed by the GTEx consortium.

We download the summary-level statistics, β̂, se(β̂), for each gene-SNP pair computed by the

software package MatrixEQTL (Shabalin 2012) directly from the GTEx portal. The GTEx

portal also provides a list of eGenes for each tissue obtained by the gold-standard minimum

p-value approach using permutation and Storey’s q-value procedure.

We first run the proposed Bayesian method at the baseline without using any annotations to

identify eGenes at the FDR 0.05 level, and the result is shown in Figure 2A. Compared with

the permutation result, it displays a pattern that is very similar to what we observed in the first

simulation study: at the baseline level, the Bayesian method appears to be optimal when the

detectable QTL signals are overly low, whereas when the detectable signals are high, it performs

slightly worse than the gold-standard approach.

We then include the SNP DTSS annotations into the hierarchical model and re-analyze the data

using the proposed QTL discovery procedure. We find that the eGene discovery is uniformly

improved: in each single tissue, incorporating DTSS yields more eGenes than using either the

baseline model or the gold-standard permutation approach. On average, we discover 1,475 more

eGenes per tissue compared with the gold-standard approach when incorporating DTSS infor-

mation in the hierarchical model. Most importantly, we find great concordance between the

eGenes discovered: on average, 93% of the eGenes discovered by the gold-standard permutation
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Figure 2: eQTL discovery from GTEx data by TORUS. We plot the number of eGenes discovered
by TORUS versus the minimum p-value approach in each tissue. Each point represents a single
tissue. Panels A and B present the TORUS results in the baseline and by incorporating DTSS
annotations, respectively. The pattern observed in panel A is very similar to what we observed
in the first simulation study. With the incorporation of DTSS annotations, TORUS discovers
more eGenes in all tissues.

procedure are also identified by TORUS.

Computationally, both analyses by TORUS complete within 1 hour of running time for a single

tissue. On a distributed computing cluster, the full analysis for all 44 tissues takes less than 12

hours.

Our eGene discovery method also yields SNP-level priors incorporating annotations that are

critical for the downstream fine-mapping analysis. We perform the multi-SNP eQTL fine mapping

for the discovered eGenes in the lung tissue using the MCMC algorithm proposed in Wen et al.

(2015). We find that in 19 of 8,605 identified eGenes (at the FDR 0.05 level), there is at

least one convincing eQTL signal (posterior inclusion probability of > 0.90) that is located

500 kb or farther away from the corresponding TSS. Although relatively rare, the association

strength of those signals are quite strong. We take the example of gene CCZ1 (Ensembl ID:

ENSG00000122674) and show the fine-mapping results of its cis-eQTLs in Fig. 3. The cis region

appears to harbor multiple independent eQTL signals, and the posterior inclusion probabilities

for three independent signals exceed 99%. The farthest eQTL signal is approximately 900 kb away
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from the TSS, and the fine-mapping analysis narrows the set of causal variants for this signal

to approximately 10 highly correlated SNPs. Through this example, we have illustrated that

by defining a relatively large cis regulatory candidate region, we are able to find strong eQTL

signals that locate farther away from the gene (according to the 1-dimensional map). More

importantly, our QTL discovery analysis naturally connects to the downstream fine-mapping

analysis by providing the critical SNP-level prior information.
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Figure 3: Fine mapping of gene CCZ1 based on the QTL discovery results in lung tissue. Using
the SNP-level prior generated from the QTL discovery analysis, we perform multi-SMP fine
mapping using the software package FM-QTL. Overall, we identify 4 clusters of independent
association signals. The left panel plots all the SNPs with posterior inclusion probabilities
(PIPs) ≥ 0.01. The locations of the SNPs are labeled with respect to the TSS. The SNPs in the
same color are in LD and represent the same eQTL signal. The cumulative PIP for the purple,
blue and green clusters are all ≥ 0.99, and the cumulative PIP for the gold cluster is 0.72. The
heatmap on the right panel represents the LD structure among the plotted SNPs. This analysis
demonstrates that some distant eQTL signals (in this case, the green cluster) can be confidently
detected, and QTL discovery should include a large candidate region

3 Discussion

In this article, we have introduced a powerful statistical approach for discovering molecular QTLs

through the use of high-throughput sequencing data and dense genotype data. Through a combi-

nation of theoretical derivations, simulation studies and real applications, we have demonstrated

that i) our proposed novel approach rigorously controls pre-defined false discovery rates in QTL

discovery; ii) by naturally integrating highly informative genomic annotation, the proposed ap-

proach consistently displays superior power compared with the current gold-standard approaches;
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and iii) our implementation of the proposed statistical methods exhibits superb computational

efficiency and is one-hundred times faster than the gold-standard method by avoiding extensive

permutations.

Our use of hierarchical modeling enables the integration of genomic annotations into QTL map-

ping in an elegant probabilistic framework. More importantly, it provides an EM algorithm to

perform rigorous enrichment analysis. Note that the embedded enrichment analysis procedure

extends beyond enrichment testing – it provides accurate quantification of the enrichment level

of each annotation (Supplementary Material).

The SNP distance to TSS is probably the most convenient genomic annotation. Nevertheless,

we have demonstrated that the proper use of DTSS helps to resolve a long-standing dilemma

in cis-eQTL mapping: the choice of the cis-region length. It is well known that most cis-eQTL

signals are clustered around TSS and become sporadic away from it. This appears to suggest

that one should focus on a relatively shorter cis region (e.g., ∼ 100 kb) to lessen the multiple

testing burden and discover more eGenes. However, such an approach will inevitably miss some

distant yet strong signals, and the accumulative loss of signals across all genes can be severe. In

our proposed approach, we select a rather large cis region and use the enrichment analysis to

assess a prior weight of each SNP by their DTSS. Consequently, neighboring SNPs of TSS are

up-weighted, and distant SNPs are relatively down-weighted. This naturally solves the dilemma:

the focus is on close-by SNPs, but strong distant signals can still overcome the prior weighting

penalty and be uncovered.

Finally, in our view, QTL discovery is not the endpoint of the QTL analysis. Rather, it primarily

serves as a screening procedure to prioritize a subset of candidate loci that are highly likely

to harbor causal trait-associated variants – a strategy that is well demonstrated and widely

applied in genome-wide association studies (GWAS). As illustrated in our analysis of GTEx

data, our QTL discovery approach naturally connects to the downstream (Bayesian) multi-SNP

fine-mapping analysis by supplying the SNP-level priors computed by plugging in the point

estimate from the enrichment analysis into the prior model (4.2).
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4 Methods

4.1 Hierarchical Model for QTL Discovery

We consider a general problem of QTL mapping at the genome-wide scale. In particular, we

assume that there are L genomic loci (in many cases, the loci are naturally formed by genes),

each of which contains pl SNPs for l = 1, ..., L. Given a sample of n unrelated individuals, for

each locus l, we model the potentially locus-specific quantitative trait measurement yl within

the sample using the following general form of the linear regression model

yl = µl1 +

pl∑
i=1

βligli + el, el ∼ N(0, τ−1l I), (4.1)

where n-vectors gli , e represent the sample genotypes at genetic variant li and the residual

errors, respectively. (At present, we assume that y is a univariate quantitative trait, and we

relax this assumption and extend the framework to multivariate quantitative traits in section

4.4.) Furthermore, we denote Gl := (gl1 , ..., glpl ). Note that the model allows multiple SNP

associations within a given locus. The regression coefficients µl and βli represent the intercept

and the genetic effect of each genetic variant, respectively, and τ−1l denotes the residual error

variance. Following Wen (2014), we further denote the latent binary association status of each

genetic variant li by γli := 1(βli 6= 0) (i.e., γli is dichotomized from the corresponding βli), and

γ l := (γl1 , ..., γlpl ).

Our prior specifications for the parameters µ, βli and τ are mostly standard and follow directly

from Marin and Robert (2007), and we leave the details to the Supplementary Materials. Most

importantly, we use the prior specification for γ l to incorporate variant-level genomic annotation

information. Specifically, we assume that the γlis are a priori independent and that

log

[
Pr(γli = 1)

Pr(γli = 0)

]
= α0 +

m∑
j=1

αjdlij, (4.2)

where we use dli := (dli1, ..., dlim) to denote the variant-specific genomic features, and the hyper-

parameter α := (α0, ..., αm), which characterizes the enrichment level of each genomic feature

in trait-associated genetic variants, is referred to as the enrichment parameter. Note that in the

special case where no genomic annotation is used in the analysis, the prior model (4.2) contains

a single parameter α0, which quantifies the prevalence of trait-associated genetic variants among
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all candidate SNPs. We refer to this model as the baseline model.

4.2 Multiple Hypothesis Testing and Bayesian FDR Control

The problem of QTL discovery can be framed as a hypothesis testing problem. Specifically, we

identify locus l as a QTL if the null hypothesis asserting that it contains no trait-associated

genetic variant, i.e.,

H0 : γ l = 0,

is rejected. The problem of multiple hypothesis testing arises because we perform simultaneous

testing for tens of thousands of loci across the genome when mapping molecular QTLs.

To take full advantage of our hierarchical model, we adopt a Bayesian FDR control strategy

(Newton et al. 2004; Müller et al. 2004). Briefly, the Bayesian FDR control requires computing

the posterior probability ul := Pr(γ l = 0 | yl,Gl) for each locus l, and it rejects the null

hypothesis if ul is small (note that the rejection rule is analogous to the commonly applied p-

value-based approach). Based on a pre-defined FDR control level α, a straightforward algorithm

(Newton et al. 2004) can be applied to determine the induced rejection threshold tα such that

tα = arg max
t

( ∑
ul≤t ul∑

l 1(ul ≤ t)
≤ α

)
, (4.3)

where the expression
∑

l 1(ul ≤ t) in the denominator represents the total number of rejections at

threshold t, and the expression
∑

ul≤t ul in the numerator represents the expected false rejections

at threshold t. The Bayesian FDR control procedure is naturally connected to its frequentist

counterpart (Supplementary Material), with the primary difference being that the Bayesian FDR

is conditional on the observed data in hand whereas the frequentist procedure computes FDR

over hypothetically repeated experiments. Furthermore, Müller et al. (2004) proved that the

Bayesian procedure is theoretically optimal in the sense that it minimizes the corresponding

false non-discovery rate (FNR, a measure of power).

4.3 Approximate Computation of Posterior Probability

Although the posterior probability ul is conceptually straightforward to obtain from the proposed

hierarchical model, its computation is practically intractable. To ease the computation, we apply

two levels of approximation.
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A critical intermediate step in evaluating ul is to compute the probability Pr(γ = 0 | yl,Gl,α)

for a given value of the enrichment parameter α. Specifically, we evaluate this quantity by

Pr(γ l = 0 | yl,Gl,α) =
Pr(γ l = 0 | α)∑

γ ′ Pr(γ l = γ ′ | α) BF(γ ′)
, (4.4)

where BF(γ) denotes the Bayes factor

BF(γ) :=
Pr(yl | Gl,γ l = γ)

Pr(yl | Gl,γ l ≡ 0)
,

and by definition, BF(0) = 1. Although the calculation of BF(γ) for any given γ can be achieved

analytically for a wide range of linear model systems (Wen 2014), it is practically infeasible to

enumerate all possible γ values when the number of SNPs within a locus is large (for p SNPs

in a locus, there are a total of 2p association models to explore). Here, we propose using the

approximation

Pr(γ l = 0 | yl,Gl,α) ≈ Pr(γ l = 0 | α)∑
||γ ′||≤K Pr(γ l = γ ′ | α) BF(γ ′)

, (4.5)

where ||γ ′|| denotes the number of non-zero indicators in vector γ ′, and the subset {γ ′ : ||γ ′|| ≤
K} consists of only the association models with no more than K associated SNPs. Note that

the approximation (4.5) is practically accurate if∑
||γ ′||>K Pr(γ l = γ ′ | α) BF(γ ′)∑
||γ ′|| Pr(γ l = γ ′ | α) BF(γ ′)

→ 0, (4.6)

i.e., the posterior probability on more complicated association models becomes negligible. Never-

theless, even if this ideal condition is not satisfied, the approximation still provides a conservative

estimate of the true posterior probability because

Pr(γ l = 0 | α)∑
||γ ′||≤K Pr(γ l = γ ′ | α) BF(γ ′)

≥ Pr(γ l = 0 | α)∑
||γ ′|| Pr(γ l = γ ′ | α) BF(γ ′)

.

This property is critically important for ensuring that applying approximation (B.2) does not

increase type I errors.

To achieve the best computational efficiency, we simply set K = 1 in practice, which is optimal

when there is at most one causal SNP per locus. In this special case, the approximation has a
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analytic form, i.e.,

Pr(γ l = 0 | yl,Gl,α) ≈ 1

1 +
∑p

k=1 e
α′dlk BFlk

, (4.7)

where BFlk denotes the Bayes factor for the k-th SNP from the single SNP testing and can be

computed analytically from the corresponding single SNP testing statistics (Servin and Stephens

2007; Wakefield 2009). One of the most attractive advantages is that the full analysis now

only requires summary-level statistics rather than full individual-level genotype-phenotype data.

Note that the assumption of ”one QTN per locus” is widely used in genetic association/QTL

mapping analyses. The gold-standard frequentist test statistic, the minimum p-value in a locus

by single SNP association testing, is the most powerful if only one genuine association exists

within the locus (De la Cruz et al. 2010). Many Bayesian approaches make this assumption

explicitly (Veyrieras et al. 2008; Gaffney et al. 2012; Flutre et al. 2013; Pickrell 2014) in prior

specification. Although similarly intuitive, restricting the number of causal variants a priori

requires a completely different formulation that is not as straightforward to interpret (as our

logistic priors) and often causes convergence issues when estimating the enrichment parameters.

Moreover, we argue that for most of the currently available molecular QTL data sets, we only

discover one convincing association signal for the vast majority of the quantitative trait loci (Wen

et al. 2015). Therefore, we expect that this approximation should be accurate on average with

no severe loss of power.

Additionally, we take an empirical Bayes approach to estimate ul by

ûl := Pr(γ = 0 | yl,Gl, α̂), (4.8)

where α̂ denotes the maximum likelihood estimate of the enrichment parameter. This approach

essentially replaces the integration (of α) by a more computationally efficient optimization pro-

cedure. To find the MLE of α, we follow (Wen et al. 2015) and derive an efficient EM algorithm

that incorporates the analytic posterior approximation of Pr(γ l | yl,Gl,α) (details are described

in the Supplementary Material). Briefly, in the E-step, we compute the posterior inclusion prob-

ability (PIP) of each SNP in each locus given the current estimate of α, and in the M-step, we

simply fit a logistic regression model using the PIPs as the response variable and update the

estimate of α by the corresponding fitted regression coefficients. Note that the PIP computation

in the M-step also applies the posterior approximation that essentially assumes a single QTN

per locus. Interestingly, through extensive simulations (Supplementary Fig. 1), we find that the

intercept term α0 in (4.2) tends to be slightly under-estimated. This result is partially due to

the conservative nature of our posterior probability approximation, but it is mostly related to
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the imperfect power to detect associations, i.e., QTNs with small effects are difficult to identify

with a limited sample size even when a multi-SNP model is considered. Interestingly, other en-

richment coefficients associated with specific annotations are generally estimated unbiased and

accurately (Supplementary Fig. 1). Overall, the prior estimates from the EM algorithm are

slightly conservative, which is arguably desirable in QTL mapping problems.

4.4 Extension to Multivariate Quantitative Traits

Thus far, our description of the proposed method has focused on univariate quantitative traits,

e.g., gene expressions and DNA methylation measurements. Our framework can be trivially

extended to applications in which the quantitative trait is measured by multivariate variables,

e.g., in the case of using ATAC-seq data to quantify chromatin accessibility. To accommodate

multivariate quantitative trait data, we simply replace the model (4.1) by a multivariate linear

regression model, which naturally accounts for the correlations between multiple components of

the trait. In the example of ATAC-seq data, the response variable for each individual at each

locus can simply be described by a row vector with each entry representing the read counts from

a pre-defined window on the genome. To perform the Bayesian FDR control, it only requires

to adjust the single SNP association Bayes factor according to the modified multivariate linear

regression model. Fortunately, such results are available in the statistical literature (Wen and

Stephens 2014).

4.5 Extension to QTL Data Composing Multiple Heterogeneous Groups

Molecular QTL data collected from multiple heterogeneous sources have become increasingly

available (Maranville et al. 2011; Barreiro et al. 2012; Wen et al. 2015; Ardlie et al. 2015).

Joint analysis of QTL data across multiple heterogeneous groups not only improves the power

of identifying consistent QTL signals across groups (Flutre et al. 2013; Wen et al. 2015) but

also helps to correctly map group-specific QTL signals (Maranville et al. 2011; Barreiro et al.

2012; Flutre et al. 2013). Utilizing the previous statistical results from computing Bayes factors

from heterogeneous subgroups (Wen and Stephens 2014), the proposed approach can be trivially

applied in those scenarios for QTL discovery while integrating genomic annotations.
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5 Data Access

The GTEx summary-level statistics can be downloaded from the GTEx portal (http://www.

gtexportal.org/home/). The GEUVADIS data are publicly available at http://www.geuvadis.

org/web/geuvadis/RNAseq-project. The simulation scripts and the software package TORUS

(including source code) can be downloaded from https://github.com/xqwen/torus/
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Appendix A Bayesian FDR Control and Its Connection

to Frequentist Approaches

In the context of QTL discovery, the multiple testing problem can be framed as a binary decision

problem with respect to γ l for l = 1, ..., L. We define a binary indicator, Zl, for each locus l

and set Zl = 1 if γ l 6= 0 and 0 otherwise. Further, we denote the collection of the observed

phenotype-genotype data by Y . Let the function δl(Y ) denote a decision (0 or 1) on Zl based on

the observed data, and define the total discoveries by D :=
∑L

l=1 δl. Following the formulation

of Müller et al. (2006), the False Discovery Proportion (FDP), which is also a random variable,

can be defined as the proportion of false discoveries among total discoveries, i.e.,

FDP :=

∑L
l=1 δl(1− Zl)
D ∨ 1

. (A.1)

Recall,

ul := Pr(Zl = 0 | Y ) = 1− E(Zl | Y ); (A.2)

thus, the Bayesian False Discovery Rate is naturally defined as

BFDR := E(FDP | Y ) =

∑L
l=1 δl ul
D ∨ 1

, (A.3)

where the conditional expectation is taken with respect to Z := (Z1, . . . , ZL). Moreover, the

frequentist control of the False Discovery Rate focuses on the quantity

FDR := E(FDP) = E [E(FDP | Y )] , (A.4)

where the additional expectation is taken with respect to Y over (hypothetically) repeated

experiments. It is important to note that controlling the Bayesian FDR is a sufficient but not

necessary condition to control the frequentist FDR; thus the Bayesian FDR control is more

stringent in theory.

As demonstrated by Newton et al. (2004) and Müller et al. (2006), the Bayesian FDR control is

based on the following natural decision rule

δ∗l (t) = I (ul < t) . (A.5)
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For a pre-defined FDR level α, the threshold tα in (A.5) is determined by

tα = arg min
t

(∑L
l=1 δ

∗
l (t) ul

D(t) ∨ 1
≤ α

)
(A.6)

In practice, we use the following simple algorithm proposed by (Newton et al. 2004) to determine

tα:

1. sort ul’s in ascending order: i.e., u(1) ≤ u(2) ≤ ... ≤ u(L).

2. start from m = 1 and compute the partial mean using the sorted sequence of {u(l)} for

sm =
∑m

l=1 u(l)/m

3. stop if sm > α

4. tα = u(m−1) if m > 1, and 0 otherwise; and reject the hypotheses corresponding to u(1), ..., u(m−1).

Appendix B EM Algorithm for Enrichment Analysis

B.1 Algorithm Details

In this section, we outline the EM algorithm to estimate the enrichment parameter α. The

algorithm is a special case of what is described in Wen et al. (2015). We denote Γ := {γ1, ...,γL}.
By treating Γ as missing data, we obtain the complete data likelihood by the following

P (Y ,Γ | α) = Pr(Γ | α)P (Y | Γ)

=
L∏
l=1

Pr(γ l | α)
L∏
l=1

P (yl | γ l),
(B.1)

where the factorization is based on the conditional independence relationships induced by the

hierarchical model. We further re-write the prior probability Pr(γ l | α) using the logistic model,

Pr(γ l | α) =

p∏
i=1

[(
exp(α′dli)

1 + exp(α′dli)

)γli ( 1

1 + exp(α′dli)

)1−γli
]
.
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Therefore, the complete data log-likelihood is given by

logP (Y ,Γ | α) =
L∑
l=1

p∑
i=1

γli(α
′dli)−

L∑
l=1

p∑
i=1

log[1 + exp(α′dli)] +
L∑
l=1

logP (yl | γ l).

The EM algorithm is initiated at an arbitrary starting point α = α(1). In the E-step of the t-th

iteration, we compute

E
[
logP (Y ,Γ | α) | Y ,α(t)

]
=

L∑
l=1

p∑
i=1

Pr(γli = 1 | yl,α(t))(α′dli)

−
L∑
l=1

p∑
i=1

log[1 + exp(α′dli)]

+ E
(
logP (yl | γ) | yl,α(t)

)
.

That is, we evaluate the posterior inclusion probability Pr(γ li | yl,α
(t)) for each candidate SNP

and for all loci. In the M-step, we find

α(t+1) = arg max
α

(
L∑
l=1

p∑
i=1

Pr(γli = 1 | y, g,α(t))(α′dli)−
L∑
l=1

p∑
i=1

log[1 + exp(α′dli)]

)
.

It is not difficult to recognize that the the functional form of the objective function coincides

with the log likelihood function of a logistic regression model with the binary response variable ,

γli , replaced by its corresponding posterior expectation, Pr(γli = 1 | y,α(t)). Therefore, we can

directly fit a logistic regression model to find α(t+1).

The computational difficulty of the EM algorithm lies in evaluating the PIPs in the E-step. The

situation is the same as computing ul in Bayesian FDR control where the exact computation is

intractable. To ease computation, we apply the same deterministic approximation technique. The

key assumption is again that posterior probabilities of single QTN association models dominate

the posterior probability space of {γ} for locus l, i.e.,∑
||γ ||≤1 Pr(γ | α)BF(γ)∑
γ Pr(γ | α)BF(γ)

→ 1. (B.2)
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Consequently, it follows that

Pr(γ l | yl,α) ≈

{
Pr(γ |α)BF(γ)∑
||γ ||≤1 Pr(γ)BF(γ)

if ||γ|| ≤ 1

0 otherwise

The model space of {γ : ||γ|| ≤ 1} contains only the null model, γ l = 0, and all single-SNP

association models. We denote

πl,0 := Pr(γ l = 0 | α) =

p∏
i=1

(1 + exp(α′dli))
−1
.

We use γ◦j to denote the single-SNP association model where the j-th SNP is the assumed QTN.

Clearly,

Pr(γ◦lj | α) = exp(α′dlj)

p∏
i=1

(1 + exp(α′dli))
−1

= πl,0 · exp(α′dlj),

and

BF(γ◦j) = BFj,

and recall that BFj denotes the Bayes factor based on the single-SNP analysis of SNP j. Finally,

we note that given the restrained model space, the PIP of SNP j, Pr(γlj = 1 | yl,α), coincides

with the posterior model probability, Pr(γ◦j | yl,α). Given all of the above, it follows from the

simple algebra that

Pr(γli = 1 | yl,α) ≈ eα
′dli BFli

1 +
∑p

k=1 e
α′dlk BFlk

, (B.3)

which can be analytically evaluated given α.

B.2 Accuracy Evaluation by Simulation

We perform simulation studies to evaluate the performance of the EM algorithm in enrichment

analysis. Our simulation setting mimics the application of genome-wide cis-eQTL mapping,

however at a reduced scale. Specifically, we select a subset of 5,000 random genes from the

GEUVADIS data. For each gene, 50 cis-SNPs are used in the simulation and we annotate 30%

of the SNPs with a binary feature. For each SNP, the association status is determined by a
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Bernoulli trail with the success (i.e. associated) probability given by

p =
exp(−4 + α1d)

1 + exp(−4 + α1d)
,

where d is the SNP specific binary annotation value, and α1 is the true enrichment parameter.

Given the true QTNs of each gene, we then apply the scheme described in section C to simulate

the effect sizes of the QTNs and the expression levels for the 343 European individuals. We set

α1 = −0.25, 0.00, 0.25, 0.50, 0.75, 1.00, and for each α1 value, we simulate 100 data sets. We use

the proposed EM algorithm to analyze the simulated data sets. For comparison, we also estimate

α1 using a logistic regression with the true association status as the outcome variable and the

annotations as the predictor. This analysis represents a theoretical best case scenario, and its

results should be regarded as the optimal bound for the analyses that infer the latent association

status from the genotype-phenotype data. The results (Supplementary Fig. 4) indicate that

the EM algorithm based on our posterior approximation scheme consistently yields unbiased

estimates for α1. The decrease of estimation efficiency from the theoretical optimal estimator,

represented by the difference of the standard errors, is not large. However, we do find the

baseline parameter α0 is consistently under-estimated, largely due to imperfect power to detect

associations.

Appendix C Simulation Details

In this section, we provide the details of the scheme for simulating genetic effects of casual QTNs

and the individual-level quantitative traits.

As described in the main text, we perform Bernoulli trials for each of the candidate SNPs and

determine its association status with the target (expression) quantitative trait. For each causal

QTN, we then draw its genetic effect from a Normal distribution, i.e.,

βli | γ li = 1 ∼ N(0, 0.62).

The individual-level expression levels for locus l are then simulated according to the linear model

yl =

p∑
i=1

βli γ ligli + e, e ∼ N(0, I).
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Figure 4: Point estimates of the enrichment parameter in simulations. The point estimate of
α1 ± standard error (obtained from 100 simulated data sets) for each method is plotted for
each simulation setting. The “best case” method uses the true association status and represents
the optimal performance for any enrichment analysis method. The estimate based on the EM
algorithm using the posterior approximation yields unbiased estimate but with larger variation
than the optimal method, which is fully expected.

In our scheme, the genetic association by a causal QTN explains 0.7% (for QTN with minor

allele frequency 1%) to 15% (for QTN with minor allele frequency 50%) of the heritability, which

is quite realistic.

In the analysis, we compute the single SNP Bayes factor using the analytic formula by Wakefield

(2009). More specifically, we assume the prior genetic effect of an QTN is drawn from a mixture

of Normal distribution, i.e.,

βli | γ li = 1 ∼
∑
i

πiN(0, φ2
i ).

And we use a grid of φ values, {φ : 0.1, 0.2, 0.4, 0.8}, and set π1 = · · · = π4 = 0.25. We also apply

this setting for analyzing the eQTL data from the GTEx project.
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Appendix D Binning of cis-SNPs by DTSS

Here we describe the binning scheme to annotate the SNPs in the cis region of a target gene. We

place each SNP into 21 unequally spaced bins according to its DTSS (Table 3). The the bins are

smaller and denser as close to TSS, which helps capture the rapid decay of QTL signals. This

binning scheme leads to estimation of 21 enrichment parameters in the enrichment analysis.

Table 3: Binning scheme for cis-SNPs

Bin Range (kb) Size (kb)

-10 < −500 500
-9 [−500,−250) 250
-8 [−250,−100) 150
-7 [−100,−50) 50
-6 [−50,−25) 25
-5 [−25,−10) 15
-4 [−10,−5) 5
-3 [−5,−2.5) 2.5
-2 [−2.5,−1) 1.5
-1 [−1,−0.5) 0.5
0 [−0.5, 0.5) 1
1 [0.5, 1) 0.5
2 [1, 2.5) 1.5
3 [2.5, 5) 2.5
4 [5, 10) 5
5 [10, 25) 15
6 [25, 50) 25
7 [50, 100) 50
8 [100, 250) 150
9 [250, 500) 250
10 > 500 500
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