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Abstract— Multi-scale agent-based models are increasingly 
used to simulate tumor growth dynamics. Simulating such 
complex systems is often a great challenge despite large 
computational power of modern computers and, thus, 
implementation techniques are becoming as important as the 
models themselves. Here we show, using a simple agent-based 
model of tumor growth, how the computational time required 
for simulation can be decreased by using vectorization 
techniques. In numerical examples we observed up to 30-fold 
increases in computation performance when standard 
approaches were, at least in part, replaced with vectorized 
routines in MATLAB. 
 

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER  

Complex multi-scale cellular automata models are 
helping cancer researchers to simulate tumor development 
form the very early stages to clinically apparent disease [1-5]. 
The main advantages of agent-based models are the ability to 
formalize single-cell kinetics and to bridge many temporal 
and spatial scales. However, despite the large computational 
power of modern computers simulating such complex 
systems efficiently remains a great challenge. Stochastic 
simulations often need to be performed hundreds of times in 
order to estimate parameters during high-dimensional 
parameter sweeps, or to perform sensitivity analyses of the 
overall system dynamics. Thus, high-performance 
implementation techniques are becoming increasingly 
important. Appropriate use of available data structures and 
routines can reduce the computational time in some cases 
more than 80 times [6], making high-dimensional model 
simulation and analysis feasible. 

Agent-based models are commonly implemented in 
different programming languages including C++, Python or 
MATLAB. Herein we focus on MATLAB, which is 
frequently used in scientific computations due to its built-in 
highly optimized matrix and vector manipulation routines. In 
particular, we focus on Matlab’s vectorization capability, a 
technique that revises loop-based scalar code into matrix and 
vector operations. Using a simple agent-based model we 
show the computational gain when such technique is applied. 
An initially seeded cancer cell populates the computational 
domain through migration and proliferation, with 
spontaneous cell death being possible at mitosis [6]. 

II. ILLUSTRATIVE RESULTS OF APPLICATION OF METHODS 

In silico simulations of tumor growth show that the thickness 
of the proliferating rim and the fraction of quiescent cells 
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depend strongly on the traits of the individual cells. If cells 
have a short doubling time and small probability to die 
spontaneously during division, then the proliferating cells are 
exclusively arranged in a thin rim at the tumor boundary, 
which amounts to only about 10% of the whole population in 
our example (Fig. 1A). For slowly dividing cells that are 
susceptible to spontaneous death during division we observe 
2-fold increase in the fraction of proliferating cells in a 
thicker rim as well as deeper into the tumor (Fig. 1B). 
Despite the larger proliferative fraction, however, overall 
tumor growth is slower (45 vs. 69 days to grow from a single 
cell to a population of 100,000 cells). On the other hand, 
larger proliferative fraction can result in faster acquisition of 
favorable phenotypes if spontaneous mutations were 
considered in the system [4]. 

We measured the time needed to simulate tumor growth up to 
about 20,000 cells starting from a single initial cell for three 
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Figure 1. Exemplary tumor morphologies for different single cells traits. (A) 
Single cell with low doubling time and low chance to die spontaneously 
during division. (B) Slowly dividing cell with higher chance to undergo 
spontaneous death during division. Simulation snapshots were taken at the 
level of about 100,000 cells. Reported are the numbers of proliferating 
(Nprolif) and quiescent (Nquiescent) cells. 

Figure 2. Comparison of the computational speed for different 
implementation techniques and lattice sizes. Reported are the averages and 
standard deviations from 20 independent simulations 
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different implementation approaches: 1) loop-based 
approach, 2) partial vectorization, and 3) extended 
vectorization. Comparison of the computational speed reveals 
up to a 30-fold reduction for the extended vectorized 
approach compared to a loop-based implementation (Fig. 2). 
Moreover, using appropriate data structures in all three 
implementation approaches made computational time 
independent on the lattice size. 

III. QUICK GUIDE TO THE METHODS  

We consider a simple in silico agent-based model, in 
which each cancer cell occupies a 10x10 µm grid point on a 
2D rectangular lattice. Tumor cells populate the 
computational lattice by cell migration and cell proliferation. 
A cell can randomly migrate to (with probability pmig) or 
place a daughter cell (with probability pprol) into one of the 
eight adjacent lattice points subject to availability; if all 
adjacent points are occupied the cell becomes quiescent. 
Additionally, a cell can die spontaneously at a proliferation 
attempt (with probability pdeath). Time is advanced at discrete 
time intervals Δt = 1/24 day (1 hour). At each simulation 
step, cells are considered in random order to minimize lattice 
geometry effects and the behavior of each cell is updated.  

A. Basic data structures 
We represent the computational domain as an NxN 

Boolean array (L). A true value in L indicates that the lattice 
point is occupied. An additional integer vector is maintained 
to store indices for all viable cells present in the system. This 
additional variable avoids costly lattice searches for existing 
cells, which otherwise have to be performed at every 
simulation step. The domain boundaries are set to true in L, 
but not considered in the cells vector. 

B. Basic procedure 
A standard loop-based approach to simulate the 

considered agent-based model is be summarized in the 
following steps 

1. Shuffle cells using the MATLAB randperm function: 
ix = randperm(length(cells)); 

2. For each cell check if there is available space in the 
neighborhood and decide about its fate  
for k = 1:length(ix)  

 n = []; 

  for i = -1:1 

   for j = -N:N:N 

 if ~L(cells(ix(k))+i+j) 

  n = [n cells(ix(k))+i+j]; 

 end 

   end 

  end 

if ~isempty(n)  

 %decide about cell fate 

end 

  end 

Note: variable n stores the indices of all free adjacent 
spots for a currently investigated cell. 

C. Partial vectorization 

The nested for loops used in the loop-based approach to 
search through a cell’s neighborhood can be avoided using 
the following code 
 aux = [-N-1 -N -N+1 -1 1 N-1 N N+1]; 

 n = cells(ix(k))+aux(randperm(8)); 

 ind = find(~L(n),1,'first');  

 n = n(ind); 

Where variable n (if non-empty) holds the index to a 
randomly selected free spot in the cell neighborhood. Of 
course variable aux must be defined outside of the main 
simulation loop. 

D. Extended vectorization 
Rewriting the procedures in a vectorized manner is more 

involved, but can be summarized in the following steps 

1. Select all cells that have a free spot in the neighborhood 
using vectorized routine 
 vnC = 1:length(cells); 

 aux = [-N-1 -N -N+1 -1 1 N-1 N N+1]; 

 S = L(bsxfun(@plus,cells,aux')); 

 indxF = vnC(~all(S));  

Variable indxF holds the indices of all cells that have at 
least one vacant lattice spot in their 8-cell 
neighborhood. 
 

2. Using vectorized logical statements perform initial 
decisions as to what will happen to each cell 

  nC = length(indxF);  

  P = rand(1,nC)<pprol;  

  M = ~P & rand(1,nC)<pmig;  

     Variables P and M hold the indices of the cells that will 
attempt to proliferate and migrate, respectively. 

3. Randomly shuffle only those cells that will attempt to 
proliferate or migrate and, using a for loop, determine 
individual cells fates. 
act = find(P|M); 

act = act(randperm(length(act))); 

for ii = act 

 %decide about cell fate 

end 
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