

.

Abstract— Multi-scale agent-based models are increasingly
used to simulate tumor growth dynamics. Simulating such
complex systems is often a great challenge despite large
computational power of modern computers and, thus,
implementation techniques are becoming as important as the
models themselves. Here we show, using a simple agent-based
model of tumor growth, how the computational time required
for simulation can be decreased by using vectorization
techniques. In numerical examples we observed up to 30-fold
increases in computation performance when standard
approaches were, at least in part, replaced with vectorized
routines in MATLAB.

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER

Complex multi-scale cellular automata models are
helping cancer researchers to simulate tumor development
form the very early stages to clinically apparent disease [1-5].
The main advantages of agent-based models are the ability to
formalize single-cell kinetics and to bridge many temporal
and spatial scales. However, despite the large computational
power of modern computers simulating such complex
systems efficiently remains a great challenge. Stochastic
simulations often need to be performed hundreds of times in
order to estimate parameters during high-dimensional
parameter sweeps, or to perform sensitivity analyses of the
overall system dynamics. Thus, high-performance
implementation techniques are becoming increasingly
important. Appropriate use of available data structures and
routines can reduce the computational time in some cases
more than 80 times [6], making high-dimensional model
simulation and analysis feasible.

Agent-based models are commonly implemented in
different programming languages including C++, Python or
MATLAB. Herein we focus on MATLAB, which is
frequently used in scientific computations due to its built-in
highly optimized matrix and vector manipulation routines. In
particular, we focus on Matlab’s vectorization capability, a
technique that revises loop-based scalar code into matrix and
vector operations. Using a simple agent-based model we
show the computational gain when such technique is applied.
An initially seeded cancer cell populates the computational
domain through migration and proliferation, with
spontaneous cell death being possible at mitosis [6].

II. ILLUSTRATIVE RESULTS OF APPLICATION OF METHODS

In silico simulations of tumor growth show that the thickness
of the proliferating rim and the fraction of quiescent cells

Research partially supported by the NIH/NCI Integrative Cacer Biology

Program 5U54 CA113007.
J. Poleszczuk and H. Enderling are with the H. Lee Moffitt Cancer

Center & Research Institute, Tampa, FL 33612 USA (phone: 813-745-3562;
fax: 813-745-6497; e-mail: {jan.poleszczuk, heiko.enderling}@moffitt.org).

depend strongly on the traits of the individual cells. If cells
have a short doubling time and small probability to die
spontaneously during division, then the proliferating cells are
exclusively arranged in a thin rim at the tumor boundary,
which amounts to only about 10% of the whole population in
our example (Fig. 1A). For slowly dividing cells that are
susceptible to spontaneous death during division we observe
2-fold increase in the fraction of proliferating cells in a
thicker rim as well as deeper into the tumor (Fig. 1B).
Despite the larger proliferative fraction, however, overall
tumor growth is slower (45 vs. 69 days to grow from a single
cell to a population of 100,000 cells). On the other hand,
larger proliferative fraction can result in faster acquisition of
favorable phenotypes if spontaneous mutations were
considered in the system [4].

We measured the time needed to simulate tumor growth up to
about 20,000 cells starting from a single initial cell for three

Vectorization techniques for efficient agent-based model
simulations of tumor growth

Jan Poleszczuk and Heiko Enderling, ICBP Member

Figure 1. Exemplary tumor morphologies for different single cells traits. (A)
Single cell with low doubling time and low chance to die spontaneously
during division. (B) Slowly dividing cell with higher chance to undergo
spontaneous death during division. Simulation snapshots were taken at the
level of about 100,000 cells. Reported are the numbers of proliferating
(Nprolif) and quiescent (Nquiescent) cells.

Figure 2. Comparison of the computational speed for different
implementation techniques and lattice sizes. Reported are the averages and
standard deviations from 20 independent simulations

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 17, 2015. ; https://doi.org/10.1101/032086doi: bioRxiv preprint

https://doi.org/10.1101/032086
http://creativecommons.org/licenses/by/4.0/

different implementation approaches: 1) loop-based
approach, 2) partial vectorization, and 3) extended
vectorization. Comparison of the computational speed reveals
up to a 30-fold reduction for the extended vectorized
approach compared to a loop-based implementation (Fig. 2).
Moreover, using appropriate data structures in all three
implementation approaches made computational time
independent on the lattice size.

III. QUICK GUIDE TO THE METHODS

We consider a simple in silico agent-based model, in
which each cancer cell occupies a 10x10 µm grid point on a
2D rectangular lattice. Tumor cells populate the
computational lattice by cell migration and cell proliferation.
A cell can randomly migrate to (with probability pmig) or
place a daughter cell (with probability pprol) into one of the
eight adjacent lattice points subject to availability; if all
adjacent points are occupied the cell becomes quiescent.
Additionally, a cell can die spontaneously at a proliferation
attempt (with probability pdeath). Time is advanced at discrete
time intervals Δt = 1/24 day (1 hour). At each simulation
step, cells are considered in random order to minimize lattice
geometry effects and the behavior of each cell is updated.

A. Basic data structures
We represent the computational domain as an NxN

Boolean array (L). A true value in L indicates that the lattice
point is occupied. An additional integer vector is maintained
to store indices for all viable cells present in the system. This
additional variable avoids costly lattice searches for existing
cells, which otherwise have to be performed at every
simulation step. The domain boundaries are set to true in L,
but not considered in the cells vector.

B. Basic procedure
A standard loop-based approach to simulate the

considered agent-based model is be summarized in the
following steps

1. Shuffle cells using the MATLAB randperm function:
ix = randperm(length(cells));

2. For each cell check if there is available space in the
neighborhood and decide about its fate
for k = 1:length(ix)

 n = [];

 for i = -1:1

 for j = -N:N:N

 if ~L(cells(ix(k))+i+j)

 n = [n cells(ix(k))+i+j];

 end

 end

 end

if ~isempty(n)

 %decide about cell fate

end

 end

Note: variable n stores the indices of all free adjacent
spots for a currently investigated cell.

C. Partial vectorization

The nested for loops used in the loop-based approach to
search through a cell’s neighborhood can be avoided using
the following code
 aux = [-N-1 -N -N+1 -1 1 N-1 N N+1];

 n = cells(ix(k))+aux(randperm(8));

 ind = find(~L(n),1,'first');

 n = n(ind);

Where variable n (if non-empty) holds the index to a
randomly selected free spot in the cell neighborhood. Of
course variable aux must be defined outside of the main
simulation loop.

D. Extended vectorization
Rewriting the procedures in a vectorized manner is more

involved, but can be summarized in the following steps

1. Select all cells that have a free spot in the neighborhood
using vectorized routine
 vnC = 1:length(cells);

 aux = [-N-1 -N -N+1 -1 1 N-1 N N+1];

 S = L(bsxfun(@plus,cells,aux'));

 indxF = vnC(~all(S));

Variable indxF holds the indices of all cells that have at
least one vacant lattice spot in their 8-cell
neighborhood.

2. Using vectorized logical statements perform initial
decisions as to what will happen to each cell

 nC = length(indxF);

 P = rand(1,nC)<pprol;

 M = ~P & rand(1,nC)<pmig;

 Variables P and M hold the indices of the cells that will
attempt to proliferate and migrate, respectively.

3. Randomly shuffle only those cells that will attempt to
proliferate or migrate and, using a for loop, determine
individual cells fates.
act = find(P|M);

act = act(randperm(length(act)));

for ii = act

 %decide about cell fate

end

ACKNOWLEDGMENT
JP would like to thank Jacob Scott for the inspiration to

investigate the advantages of vectorized routines.

REFERENCES
[1] T. Alarcón, H. M. Byrne, and P. K. Maini, “A Cellular Automaton

Model for Tumour Growth in Inhomogeneous Environment”, J Theor
Biol, Vol. 225, No. 2, 2003, pp. 257-274.

[2] H. Enderling, D. Park, L. Hlatky, and P. Hahnfeldt, “The Importance
of Spatial Distribution of Stemness and Proliferation State in
Determining Tumor Radioresponse”, Math Model Nat Phenom, Vol.
4, No. 3, 2009, pp. 117-133.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 17, 2015. ; https://doi.org/10.1101/032086doi: bioRxiv preprint

https://doi.org/10.1101/032086
http://creativecommons.org/licenses/by/4.0/

[3] M. J. Piotrowska and S. D. Angus, “A Quantitative Cellular
Automaton Model of in Vitro Multicellular Spheroid Tumour
Growth”, J Theor Biol, Vol. 258, No. 2, 2009, pp. 165-178.

[4] J. Poleszczuk and H. Enderling, “Evolution and phenotypic selection
of cancer stem cells”, PLoS Comput Biol, Vol. 11, 2015, pp. 1-14.

[5] B. Ribba, T. Alarcón, K. Marron, P. K. Maini, and Z. Agur, “The Use
of Hybrid Cellular Automaton Models for Improving Cancer
Therapy”, 2004, pp. 444-453.

[6] J. Poleszczuk and H. Enderling, “A High-Performance Cellular
Automaton Model of Tumor Growth with Dynamically Growing
Domains” Appl Math, vol. 5, 2014, pp. 144–152.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 17, 2015. ; https://doi.org/10.1101/032086doi: bioRxiv preprint

https://doi.org/10.1101/032086
http://creativecommons.org/licenses/by/4.0/

