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ABSTRACT In all populations, as the time runs, crossovers break apart ancestor haplotypes, forming

smaller blocks at each generation. Some blocks, and eventually all of them, become identical by

descent because of the genetic drift. We have in this paper developed and benchmarked a theoretical

prediction of the mean length of such blocks and used it to study a simple population model assuming

panmixia, no selfing and drift as the only evolutionary pressure. Besides, we have on the one hand

derived, for any user defined error threshold, the range of the parameters this prediction is reliable

for, and on the other hand shown that the mean length remains constant over time in ideally large

populations.
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Identity by descent (IBD) was formally defined for two alleles only, and the definition was sub-

sequently extended to a pair of chromosome segments. Two segments are said to be identical by

descent if they are copies of a common ancestor segment without having undergone any mutation.

Eventually, Stam (1980) proposed to widen the analyses of identity by descent into an entire popula-

tion by studying every individual as a pair of chromosome segments. Henceforth, a portion of the

chromosome will be referenced as a segment and a portion of a segment will be referenced as a block.

In a population undergoing genetic drift, as the time runs, crossovers break apart the ancestor

haplotypes, forming smaller blocks at each generation. Some blocks might be identical by descent,

in which case they are called “IBD blocks”. In this paper, we will focus on 1) the distribution in the
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population of the length of an IBD block, and 2) the distribution of the number and the total length

of IBD blocks per individual.

The theoretical framework dealing with these distributions uses a particular population model in

order to take account of recombinations: the individuals of this population are diploid, and, following

the idea of Stam (1980), they are modeled as a pair of homologous segments with a fixed length

L (in Morgan). The population size, denoted N, is considered constant over generations, there is

no evolutionary pressure but the genetic drift, and the generations do not overlap. Moreover, the

segments of the founder – or initial – population are all different, that is, none of the 2N segments are

identical by descent. Finally, the model assumes panmixia without selfing as in Stam (1980), so that

two homologous segments of an individual are necessarily derived from two different individuals.

In this model, a segment can be considered as either a discrete or a continuous object. These two

ways of modeling are rarely equivalent (Bickeböller and Thompson 1996a,b), and it is not always

obvious to know which model should be used. To make the mathematical analyses easier, the

segment is here considered as a continuous object: the recombination process can thus be modeled

with a classic Poisson process with a rate equal to 1, neglecting crossover interference (Fisher 1949,

1954; Stam 1980; Donnelly 1983; Bickeböller and Thompson 1996a,b; Ball and Stefanov 2005; Chapman

and Thompson 2002, 2003; Cannings 2003; Martin and Hospital 2011).

Theory of junctions

In order to describe the transmission over time of IBD blocks in such population, Fisher (1949)

developed the so-called theory of junctions. A junction is here a crossover point delimiting two blocks

coming from different founders. When considering two segments, it is possible to distinguish two

types of junctions: external junctions, which are the edges of IBD blocks, and internal junctions, which

are the other junctions (see Figure 1).

An edge of an IBD block is either an external junction or one of the segment edges. Then, knowing

the segment length and the number of external junctions, it is possible to infer the distribution in the

population of the length of an IBD block. Let JN,t be the expected number of IBD block edges per

individual at generation t. In order to compute JN,t, Fisher (1949) introduced HN,t and ZN,t, which

are respectively the expected non IBD proportion of a segment and the expected number of external
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Figure 1 Two segments (1) and (2) of an individual, some time after founding. The different colors
represent different founder segments. The white and black bar on the right indicates IBD (white)
and non IBD (black) blocks, and each dotted line indicates a junction denoted either E if it is an
external junction, or I if it is an internal junction.

junctions per Morgan within the segment (that is, excluding the segment edges). Besides, let us call

IBD segment edge (ISE) a segment edge that is also an edge of an IBD block, and IN,t the expected

number of ISE. Fisher (1949) estimated IN,t as 2 · (1− HN,t) and deduced the following equation:

JN,t = L · ZN,t + IN,t = L · ZN,t + 2 · (1− HN,t)

Therefore, the expected number MN,t of IBD blocks per individual is (Fisher 1949):

MN,t = JN,t/2 = 0.5 · L · ZN,t + 1− HN,t (1)

Fisher (1949) figured out a theoretical expression of both HN,t and ZN,t only for some very par-

ticular cases of relatedness shared by the individuals because of the complexity of the problem.

Using identity relations between three genes and their recurrence relations, Stam (1980) derived an

expression of HN,t and ZN,t for any case of relatedness (see Appendix A for the their formulation).

We recall that all these expressions stand for one individual.

Thereby, Fisher (1949) and Stam (1980) described the identity by descent in a population at a specific

time. Our objective here is to study the evolution of the identity by descent over time with a simple

population model. To this end, we have developed and benchmarked a prediction of the expected

length of an IBD block.
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Model and methods

Simulations

We have implemented a program generating pseudo-data to compare the predictions with. This

program simulates over generations the aforementioned population model. Here, a segment is

modeled not as a set of nucleotides but as a continuous object, and hence the program records on the

one hand the starting and ending edges of each block and on the other hand the origin of this block,

which is the label of the founder segment this block belonged to.

With this program, we have simulated 10000 replicates over 3000 generations, with 10 different

population sizes (from 10 to 100 individuals) and with a segment length ranging from 1 to 5 Morgan.

The program has been implemented in C++ (version C++11, compiled with g++ 4.9.2), and graphical

outputs have been obtained with R (version 3.2.2).

Length of identical by descent blocks

Let XN,t be the expected length of one IBD block. Stam (1980) and Chapman and Thompson

(2003), assuming both that the dispatching of junctions over a genome followed a stationary process,

obtained the following formulation of XN,t:

XN,t =
L (1− HN,t)

0.5 · L · ZN,t
(2)

There is however a problem with this assumption: XN,t as formulated in equation (2) tends to

infinity as t tends to infinity, whereas the length of an IBD block necessarily ranges from 0 to L. The

problem comes from ZN,t that tends to zero as t tends to infinity (see Appendix A). The formulation

of ZN,t is correct though, and its asymptotic behavior is indeed expected: genetic drift makes every

segment identical after a while, making thus the number of external junctions ZN,t tend towards

zero. The use, however, of the multiplicative inverse of ZN,t is incorrect, implying that the stationary

process assumption is seemingly incompatible with a study of XN,t over time.

Using equation (1), it is possible to derive another expression of XN,t:
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XN,t =
Length per individual of the segment that is IBD

Number per individual of IBD blocks

=
L (1− HN,t)

MN,t

=
L (1− HN,t)

(0.5 · L · ZN,t) + (1− HN,t)
(3)

For the problem mentioned above, only equation (3) will hereafter be considered.

Predictions and observations

The theoretical predictions used in this paper are summarized in Table 1. We recall that, according to

equation (3), XN,t is a combination of HN,t, ZN,t and IN,t.

Description prediction observation

Non IBD proportion ĤN,t hN,t

Number of external junctions ẐN,t zN,t

Number of ISE ÎN,t iN,t

Length of one IBD block X̂N,t xN,t

Table 1 Predictions and observations.

Of all observations, only the average length xN,t of an IBD block could be defined in different ways.

We have chosen here to define xN,t as:

xN,t =
∑N

i=1 ∑ni
j=1 lij

∑N
i=1 ni

(4)

with ni the number of IBD blocks in the ith individual and lij the length of the jth block in the ith

individual. Thus, xN,t is defined not as an individual wise but as a population wise observation.

The focused range of time and the prediction error

We can see on Figure 2 and 3 that XN,t begins with a high peak, due to the fact that all the founder

segments are different. Since we are not interested in this artifactual peak, we will hereafter focus

Identical by descent block length 5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2015. ; https://doi.org/10.1101/032482doi: bioRxiv preprint 

https://doi.org/10.1101/032482
http://creativecommons.org/licenses/by-nc/4.0/


N 10 20 30 40 50 60 70 80 90 100

ĤN,t 5.96 2.90 1.92 1.26 1.01 0.93 0.75 0.64 0.55 0.48

ẐN,t 6.73 3.20 2.41 1.40 1.13 1.17 0.94 0.78 0.70 0.59

ÎN,t 2.81 1.09 0.82 0.60 0.55 0.46 0.47 0.53 0.41 0.48

X̂N,t 48.11 41.12 35.88 34.54 32.92 30.96 29.58 28.82 28.42 27.67

Table 2 The thousandfold value of the average prediction error p̃e of the different predictions HN,t,
ZN,t, IN,t and XN,t.

on a range of time starting at TN,min, the time at which xN,t reaches its minimum after the peak,

and ending at generation 3000. The latter is a fixed value, and the former mainly depends on the

population size (see Appendix B).

The fit between predictions and observations was ascertained using the prediction error pe. With

ât the value at generation t of a prediction and at the value of the corresponding observation, we

have pe{ât} = |ât − at|/max
t

at.

We have also provided the average value over time of the prediction error, denoted p̃e. Our main

interest being XN,t, we have searched which component of XN,t had the greatest prediction error:

HN,t, ZN,t, IN,t or their combination.

Results

The prediction error

Figure 2 shows the prediction and the observation of XN,t over time, for various population sizes

and segment lengths. The average prediction error over TN,min to generation 3000 are summarized in

Table 2.

Table 2 shows that the average prediction error p̃e{X̂N,t} is at least ten times greater than the other

average prediction errors, whatever the population size: it seems that a large part of p̃e{X̂N,t} comes

from the combination of HN,t, ZN,t and IN,t rather than from each prediction.

We have plotted the prediction error pe{X̂N,t} on Figure 3. This figure shows that the error is not

constant over time, and has rather a pattern divisible in three phases. Let α be a fixed error threshold,

ranging from 0 to 1. We define the first phase as the phase during which pe{X̂N,t} is less than α;
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Figure 2 Comparing theoretical prediction and simulation values of XN,t, with a population size
of 10 (black line), 30 (red line), 50 (green line) or 70 individuals (blue line). The solid lines are the
estimations, and the dotted lines are the observations (10000 replicates, denoted sim in the legend).
The different lines of the same color corresponds to the different segment length, ranging from 1 to
5 Morgan.
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N 10 20 30 40 50 60 70 80 90 100

µ 124.67 277.28 442.39 614.83 795.89 979.67 1167.78 1357.06 1554.44 1749.39

σ 29.67 58.83 86.28 112.39 142.44 168.11 193.78 220.50 251.00 277.61

R2 98.88 98.97 98.86 98.54 98.76 98.45 98.17 98.21 98.40 98.13

Table 3 The parameters (the mean µ and the standard deviation σ) of the fitted normal distribution
and the R-squared (in percent) of this fitting.

Time Description Formulation R2

T1,α Beginning of the transition phase µ−
√
−2σ2 log α 99.70

T2,α Ending of the transition phase µ +
√
−2σ2 log α 99.15

Table 4 The beginning and the ending times of the transition phase, their formulation and the R-
squared of the formulation. α is a real number ranging from 0 to 1, µ and σ are respectively the
mean and the standard deviation of the fitted normal distribution.

then the transition phase during which pe{X̂N,t} is greater than α; finally, the final phase during which

pe{X̂N,t} is less than α again. Figure 3 shows that the transition phase, during which pe{X̂N,t} is the

greatest, corresponds to the increasing phase of XN,t.

Figure 3 also shows that pe{X̂N,t} is almost a Gauss-like function and so a normal density func-

tion, up to a multiplicative constant. After having fitted pe{X̂N,t} for each population size to a

normal gaussian function (see Appendix C), we have deduced the parameters of this function and

summarized them in Table 3.

According to this fitting and for any value of α, we have finally derived the beginning time

T1,α and the ending time T2,α of the transition phase (summarized in Table 4). Between TN,min and

T1,α and from T2,α until generation 3000, the average prediction error is less than α. Furthermore,

using the linear regressions of µ and σ, we have derived that the T1,α ' 18.17N − 92.95 + (2.74N +

3.74)
√
−2 log α) (for further details, see Appendix C):

The minimum length of IBD blocks

Figure 3 shows that our prediction of the expected length of an IBD block is reliable during the first

phase, between TN,min and T1,α. During this phase, XN,t increases only slightly, hence its narrow

value range. Besides, the first phase lasts longer as the population size increases, since T1,α increases
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Figure 3 A superposition of the prediction error pe{X̂N,t}, xN,t and X̂N,t for a population of 100 in-
dividuals, α of 0.01 (the dashed horizontal line) and a segment length of 1 Morgan. The black solid
line is X̂N,t, the black dotted line is xN,t and the solid gray line is the prediction error pe{X̂N,t},
scaled for visual purposes. Its axis is on the right. The blue region corresponds to the first phase,
the pink region to the transition phase and the green region to the final phase.
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ten times faster than TN,min does (see Appendix B). Consequently, for a fixed threshold α, the larger a

population is, the flatter XN,t seems to be. The minimum value of XN,t during the first phase can be

estimated as 3/2N according to the method of Newton (see Appendix B).

Discussion

Knowing that the minimum value of XN,t during the first phase can be estimated as 3/2N, XN,t

could therefore be, in an ideally large population, considered constant and equal to 3/2N during

the first phase. As Table 3 and Table 4 show, the duration of the first phase rapidly increases with

the population size, flattening XN,t and making the ideally large population assumption stand even

for a population with 100 individuals, whose first phase lasts about 1,600 generations. It is hence

consistent to assume that most populations deriving from highly diverse founders are likely to be

in the first phase nowadays, only if it is consistent to assume the model of Haldane, a constant

population size and that genetic drift is the only evolutionary pressure.

Mutations were neglected here because the genome was modeled as a continuous object. Indeed,

mutations are points, and punctual items do not exist in such continuous models. Compared with the

discrete approach, the continuous approach has the advantage of easing the mathematical analyses,

but in counterpart it has the shortcoming to assume that there is at the first sight no mutation (it is

possible to extend the continuous approach with the infinite allele or the infinite site assumption

though), whereas the occurrence of recombination is on average of the same order of magnitude as

the occurrence of mutations (the recombination rate is around 10−8 per nucleotide per generation for

humans). Neglecting mutations is therefore an important limitation to overcome in the future.

Finally, an extension of this framework will consist on the one hand in theoretically determining

the variance of the distribution of XN,t and on the other hand in focusing on the impact of the founder

population and its structure: assuming that every founder segment is different, as we did here

(according to Stam 1980), is more than unlikely in a real population. It will be important in further

studies to assess whether this structure changes the whole dynamic or only, as for a Markovian

process, the beginning of the process.
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Appendices

A. Mathematical formulation of H and Z

The exact expression of HN,t and ZN,t was described by Stam (1980) and reads:
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HN,t =
1− λ3

λ1 − λ3
λt

1 −
1− λ1

λ1 − λ3
λt

3

ZN,t = (c1 + c2 t) λt
1 + (c3 + c4 t) λt

3 + c5 λt
5 + c6 λt

6

with ci’s and λi’s values depending on N, as follows:

λ1 = (N − 1 +
√

N2 + 1)/2N

λ3 = (N + 1 +
√

N2 + 1)/2N

λ5 = (a + D)/2N2

λ6 = (a− D)/2N2

c1 = − 2N√
N2 + 1

(
N

N2 + 1
+

(N2 − 2)(N +
√

N2 + 1) + 2
N2 + (N − 2)

√
N2 + 1

)

c2 =
N2 + N + 2 + (N + 2)

√
N2 + 1

N2 + 1

c3 =
2N√

N2 + 1

(
N

N2 + 1
+

an + bn
√

N2 + 1 + cn · D + dn · D
√

N2 + 1
ad + bd

√
N2 + 1 + cd · D + dd · D

√
N2 + 1

)

c4 =
N2 + N + 2− (N + 2)

√
N2 + 1

N2 + 1

c5 =
N
D

4N5 − 6N4 + 2N3 − 16N2 + 32N − 16 + D(4N3 − 12N + 8)
4N3 − 5N2 + 4N − 4

c6 =
N
D
−4N5 + 6N4 − 2N3 + 16N2 − 32N + 16 + D(4N3 − 12N + 8)

4N3 − 5N2 + 4N − 4

with

a = N + (N − 1)(N − 2)

D =
√

a2 + 2N(N − 1)(N − 2)

an = N5 − N4 − N3 + 2N2 − 2N

bn = −N4 + N3 + 2N2 − 2N
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cn = −N2 + 3N − 2

dn = −2 + N

ad = −N5 + 3N4 − 4N3 + 6N2 − 8N + 4

bd = N4 − 2N3 + 2N2 − 4N + 4

cd = N3 − 2N + 2

dd = −N2 + N

To ease mathematical analyses, we have also derived the series expansion as N tends towards

infinity of those coefficients:

λ1 = 1− 1/2N + o(N−2)

λ3 = −1/2N + o(N−2)

λ5 = 1− 3/2N + o(N−2)

λ6 = −1/2N + o(N−2)

c1 = −2N − 2 + 1/N + o(N−2)

c2 = 2 + 3/N + o(N−2)

c3 = 7/2N + o(N−2)

c4 = −1/N + o(N−2)

c5 = 2N + 2− 3/N + o(N−2)

c6 = 0.5− 15/8N + o(N−2)

Hence, we can derive that:

HN,t ' (1 + 1/2N) exp{−t/2N}

ZN,t ' (−2N − 2 + 2t) exp{−t/2N}+ 2N exp{−3t/2N}
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It is now trivial to deduce that ZN,t tends towards zero as t tends towards infinity.

B. The minimum value of X

We have derived with a linear regression on simulations that TN,min ' 1.87N − 1.27 with an adjusted

R-squared of 0.9992 and that min
t
{XN,t} ' 1/(0.66N + 2.40) with an adjusted R-squared of 1.

Besides, using the Newton’s method on theoretical expressions of the predictions, we have derived

that min
t
{XN,t} ' 1/(0.66N + 2.80). Both approximations of min

t
{XN,t} are equivalent and could

roughly be approximated as 3/2N.

C. Normal adjustment

We estimated here the parameters µ and σ of the fitted normal distribution of pe as follows:

µ = TN,min + 0.5(pe−1
]TN,min,tmax]

{e−0.5}+ pe−1
]tmax,3000]{e

−0.5})

σ = 0.5(pe−1
]TN,min,tmax]

{e−0.5} − pe−1
]tmax,3000]{e

−0.5})

with tmax the time at which pe reaches its maximum and pe−1
A the inverse function of pe on A.

The coefficient of determination R2 of the normal fitting was computed as follows:

R2 = 1−
∑3000

t=TN,min
(pe{X̂N,t} − S · fµ,σ{t})2

∑3000
t=TN,min

(pe{X̂N,t} − p̃e{X̂N,t})2

with S a corrective coefficient (equal to ∑3000
t=TN,min

pe{X̂N,t}) to make pe have its integration over the

real numbers equal to 1, fµ,σ the density function of the normal distribution with a mean µ and a

standard deviation σ, and p̃e{X̂N,t} the average value of pe over TN,min to the generation 3000.

With a linear regression, we have derived that µ ' 18.17N − 92.95 with an adjusted R-squared of

0.9773 and σ ' 2.74N + 3.47 with an adjusted R-squared of 0.9959.
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