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 2 

ABSTRACT 23 
 24 
Human scene recognition is a rapid multistep process evolving over time from single 25 

scene image to spatial layout processing. We used multivariate pattern analyses on 26 

magnetoencephalography (MEG) data to unravel the time course of this cortical process. 27 

Following an early signal for lower-level visual analysis of single scenes at ~100ms, we 28 

found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms 29 

indexing neural representations robust to changes in unrelated scene properties and 30 

viewing conditions. For a quantitative explanation that captures the complexity of scene 31 

recognition, we compared MEG data to a deep neural network model trained on scene 32 

classification. Representations of scene size emerged intrinsically in the model, and 33 

resolved emerging neural scene size representation. Together our data provide a first 34 

description of an electrophysiological signal for layout processing in humans, and a novel 35 

quantitative model of how spatial layout representations may emerge in the human brain. 36 

 37 

 38 

 39 

 40 

 41 
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 3 

1 INTRODUCTION 47 

Perceiving the geometry of space is a core ability shared by all animals, with brain 48 

structures for spatial layout perception and navigation preserved across rodents, monkeys 49 

and humans (Epstein and Kanwisher, 1998, 1998; Doeller et al., 2008, 2010; Moser et al., 50 

2008; Epstein, 2011; Jacobs et al., 2013; Kornblith et al., 2013, 2013; Vaziri et al., 2014). 51 

Spatial layout perception, the demarcation of the boundaries and size of real-world visual 52 

space, plays a crucial mediating role in spatial cognition (Bird et al., 2010; Epstein, 2011; 53 

Kravitz et al., 2011a; Wolbers et al., 2011a; Park et al., 2014) between image-specific 54 

processing of individual scenes and navigation-related processing. Although the cortical 55 

loci of spatial layout perception in humans have been well described (Aguirre et al., 56 

1998; Kravitz et al., 2011b; MacEvoy and Epstein, 2011; Mullally and Maguire, 2011; 57 

Park et al., 2011; Bonnici et al., 2012), the dynamics of spatial cognition remain 58 

unexplained, partly because neuronal markers indexing spatial processing remain 59 

unknown. 60 

 61 

Operationalizing spatial layout as scene size, that is the size of the space a scene subtends 62 

in the real-world (Kravitz et al., 2011a; Park et al., 2011, 2014), we report here an 63 

electrophysiological signal of spatial layout perception in the human brain. Using 64 

multivariate pattern classification (Carlson et al., 2013; Cichy et al., 2014; Isik et al., 65 

2014) and representational similarity analysis (Kriegeskorte, 2008; Kriegeskorte and 66 

Kievit, 2013; Cichy et al., 2014) on millisecond-resolved magnetoencephalography data 67 

(MEG), we identified a marker of scene size around 250ms, preceded by and distinct 68 

from an early signal for lower-level visual analysis of scene images at ~100ms. 69 
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Furthermore, we demonstrated that the scene size marker was independent of both low-70 

level image features (i.e. luminance, contrast, clutter) and semantic properties (the 71 

category of the scene, i.e. kitchen, ballroom), thus indexing neural representations robust 72 

to changes in viewing conditions as encountered in real-world settings. 73 

 74 

To provide a quantitative explanation how space size representations emerge in cortical 75 

circuits, we compared brain data to a deep neural network model trained to perform scene 76 

categorization (Zhou et al., 2014, 2015), termed deep scene network. The deep scene 77 

network intrinsically exhibited receptive fields specialized for layout analysis, such as 78 

textures and surface layout information, without ever having been explicitly taught any of 79 

those features. We showed that the deep scene neural network model predicted the human 80 

neural representation of single scenes and scene space size better than a deep object 81 

model and standard models of scene and object perception (Riesenhuber and Poggio, 82 

1999; Oliva and Torralba, 2001). This demonstrates the ability of the deep scene model to 83 

approximate human neural representations at successive levels of processing as they 84 

emerge over time. 85 

 86 

Together our findings provide a first description of an electrophysiological signal for 87 

scene space processing in humans, and offer a novel quantitative and computational 88 

model of the dynamics of visual scene space representation in the cortex. Our results 89 

suggest that spatial layout representations naturally emerge in cortical circuits learning to 90 

differentiate visual environments (Oliva and Torralba, 2001). 91 
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2 MATERIALS AND METHODS 92 

2.1 Participants 93 

Participants were 15 right-handed, healthy volunteers with normal or corrected-to-normal 94 

vision (mean age ± s.d. = 25.87 ± 5.38 years, 11 female). The Committee on the Use of 95 

Humans as Experimental Subjects (COUHES) at MIT approved the experiment and each 96 

participant gave written informed consent for participation in the study, for data analysis 97 

and publication of study results. 98 

2.2 Stimulus material and experimental design 99 

The image set consisted of 48 scene images differing in four factors with two levels each, 100 

namely two scene properties: physical size (small, large) and clutter level (low, high); 101 

and two image properties: contrast (low, high) and luminance (low, high) (Figure 1A). 102 

There were 3 unique images for every level combination, for example 3 images of small 103 

size, low clutter, low contrast and low luminance. The image set was based on 104 

behaviorally validated images of scenes differing in size and clutter level, sub-sampling 105 

the two highest and lowest levels of factors size and clutter (Park et al., 2014). Small 106 

scenes were of size that would typically fit 2-8 people, whereas large scenes would fit 107 

hundreds to thousands. Similarly, low clutter level scenes were empty or nearly empty 108 

rooms, whereas high clutter scenes contained multiple objects throughout. The contrast 109 

and luminance was adjusted to specific values for each image: images of low and high 110 

contrast had root mean square values of 34% and 50% respectively; images of low and 111 

high luminance had root mean square values of 34% and 51% respectively. 112 

 113 
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Participants viewed a series of scene images while MEG data was recorded (Figure 1B). 114 

Images subtended 8° of visual angle in both width and height and were presented 115 

centrally on a gray screen (42.5% luminance) for 0.5s in random order with an inter-116 

stimulus interval (ISI) of 1-1.2s, overlaid with a central red fixation cross. Every 4 trials 117 

on average (range 3-5 trials, equally probable) a target image depicting concentric circles 118 

was presented prompting participants to press a button and blink their eyes in response. 119 

ISI between the concentric-circles and the next trial was 2s to allow time for eye blinks. 120 

Target image trials were not included in analysis. Each participant completed 15 runs of 121 

312s each. Every image was presented four times in a run, resulting in 60 trials per image 122 

per participant in total. 123 

2.3 MEG recording 124 

We recorded continuous MEG signals from 306 channels (Elektra Neuromag TRIUX, 125 

Elekta, Stockholm) at a sampling rate of 1000Hz. Raw data was band-pass filtered 126 

between 0.03 and 330Hz, and pre-processed using spatiotemporal filters (maxfilter 127 

software, Elekta, Stockholm). We used Brainstorm (Tadel et al., 2011) to extract peri-128 

stimulus MEG signals from –100 to +900ms with respect to stimulus onset, and then 129 

normalized each channel by its baseline (–100 to 0ms) mean and standard deviation, and 130 

temporally smoothed the time series with a 20ms sliding window. 131 

2.4 Multivariate pattern classification of MEG data 132 

Single image classification: To determine whether MEG signals can discriminate 133 

experimental conditions (scene images), data were subjected to classification analyses 134 

using linear support-vector machines (SVM) (Müller et al., 2001) in the libsvm 135 

implementation (www.csie.ntu.edu.tw/~cjlin/libsvm) with a fixed regularization 136 
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parameter C=1. For each time point t, the processed MEG sensor measurements were 137 

concatenated to 306-dimensional pattern vectors, resulting in M=60 raw pattern vectors 138 

per condition (Figure 1B). To reduce computational load and improve signal-to-noise 139 

ratio, we sub-averaged the M vectors in groups of k = 5 with random assignment, thus 140 

obtaining M/k averaged pattern vectors. We then measured the performance of the SVM 141 

classifier to discriminate between every pair (i,j) of conditions using a leave-one-out 142 

approach: M/k - 1 vectors were randomly assigned to the training test, and 1 vector to the 143 

testing set to evaluate the classifier decoding accuracy. The above procedure was 144 

repeated 100 times, each with random assignment of the M raw pattern vectors to M/k 145 

averaged pattern vectors, and the average decoding accuracy was assigned to the (i,j) 146 

element of a 48 x 48 decoding matrix indexed by condition. The decoding matrix is 147 

symmetric with an undefined diagonal. We obtained one decoding matrix 148 

(representational dissimilarity matrix or RDM) for each time point t. 149 

 150 

Representational clustering analysis for size: Interpreting decoding accuracy as a 151 

measure of dissimilarity between patterns, and thus as a distance measure in 152 

representational space (Kriegeskorte and Kievit, 2013; Cichy et al., 2014), we partitioned 153 

the RDM decoding matrix into within- and between-level segments for the factor scene 154 

size (Figure 2A). The average of between-size minus within-size matrix elements 155 

produced representational distances (percent decoding accuracy difference) indicative of 156 

clustering of visual representations by scene size. 157 

 158 
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Cross-classification: To assess whether scene size representations were robust to changes 159 

of other factors, we used SVM cross-classification assigning different levels of 160 

experimental factors to the training and testing set. For example, Figure 2C shows the 161 

cross-classification of scene size (small vs. large) across clutter, implemented by limiting 162 

the training set to high clutter scenes and the testing set to low clutter scenes. The 163 

procedure was repeated with reverse assignment (low clutter for training set and high 164 

clutter for testing set) and decoding results were averaged. The training set was 12 times 165 

larger (M = 720 raw pattern vectors) than for single-image decoding, as we pooled trials 166 

across single images that had the same level of clutter and size. We averaged pattern 167 

vectors by sub-averaging groups of k = 60 raw pattern vectors before the leave-one-out 168 

SVM classification. Cross-classification analysis was performed for the cross-169 

classification of the factors scene size (Figure 2D) and scene clutter (Supplementary 170 

Figure 3) with respect to changes across all other factors. 171 

2.5 Low and high-level computational models of image statistics 172 

We assessed whether computational models of object and scene recognition predicted 173 

scene size from our image material. For this we compared four models: two deep 174 

convolutional neural networks that were either trained to perform (1) scene or (2) object 175 

classification; (3) the GIST descriptor (Oliva and Torralba, 2001), i.e. a model 176 

summarizing the distribution of orientation and spatial frequency in an image  that has 177 

been shown to predict scene properties, among them size; and (4) HMAX model (Serre et 178 

al., 2005), a model of object recognition most akin in structure to low-level visual areas 179 

V1/V2. We computed the output of each of these models for each image as described 180 

below. 181 
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 182 

Deep neural networks 183 

The deep neural network architecture was implemented following Krizhevsky et al., 184 

2012. We chose this particular architecture because it was the best performing model in 185 

object classification in the ImageNet 2012 competition (Russakovsky et al., 2014), uses 186 

biologically-inspired local operations (convolution, normalization, max-pooling), and has 187 

been compared to human and monkey brain activity successfully (Güçlü and van Gerven, 188 

2014; Khaligh-Razavi and Kriegeskorte, 2014; Khaligh-Razavi et al., 2014). The network 189 

architecture had 8 layers with the first 5 layers being convolutional and the last 3 fully 190 

connected. For an enumeration of units and features for each layer see Table 3. We used 191 

the convolution stage of each layer as model output for further analysis. 192 

 193 

We constructed two deep neural networks that differed in the visual categorization task 194 

and visual material they were trained on. A deep scene model was trained on 216 scene 195 

categories from the Places dataset (available online at: http://places.csail.mit.edu/) (Zhou 196 

et al., 2015) with 1300 images per category. A deep object model was trained on 683 197 

different objects with 900,000 images from the ImageNet dataset (available online at: 198 

http://www.image-net.org/) (Deng et al., 2009) with similar number of images per object 199 

category (~1300). Both deep neural networks were trained on GPUs using the Caffe 200 

toolbox (Jia et al., 2014). In detail, the networks were trained for 450,000 iterations, with 201 

an initial learning rate of 0.01 and a step multiple of 0.1 every 100,000 iterations. 202 

Momentum and weight decay were kept constant at 0.9 and 0.0005 respectively. 203 

 204 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2015. ; https://doi.org/10.1101/032623doi: bioRxiv preprint 

https://doi.org/10.1101/032623
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

To visualize receptive fields (RFs) of model neurons in the deep scene network (Figure 205 

3B) we used a reduction method (Zhou et al., 2015). In short, for a particular neuron we 206 

determined the K images activating the neuron most strongly. To determine the empirical 207 

size of the RF, we replicated the K images many times with small random occluders at 208 

different positions in the image. We then passed the occluded images into the deep scene 209 

network and compared the output to the original image, constructing the discrepancy map 210 

that indicates which part of the image drives the neuron. We then recentered discrepancy 211 

maps and averaged, generating the final RF. To illustrate the RFs tuning we further plot 212 

the image patches corresponding to the top activation regions inside the RFs (Figure 3B). 213 

 214 

GIST 215 

For the GIST descriptor (Oliva and Torralba, 2001), each image was filtered by a bank of 216 

Gabor filters with 8 orientations and 4 spatial frequencies (32 filters). Filter outputs were 217 

averaged in a 4×4 grid, resulting in a 512-dimensional feature vector. The GIST 218 

descriptor represents images in terms of spatial frequencies and orientations by position, 219 

(code available: http://people.csail.mit.edu:/torralba/code/spatialenvelope/). 220 

 221 

HMAX 222 

We used the HMAX model as applied and described by Serre et al (Serre et al., 2005), a 223 

model inspired by the hierarchical organization of the visual cortex. In short, HMAX 224 

consists of two sets of alternating S and C layers, i.e. in total 4 layers. The S-layers 225 

convolve the input with pre-defined filters, and the C layers perform a max operation. 226 
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2.6 Linking computational models of vision to brain data 227 

We used representational dissimilarity analysis to compare the output of computational 228 

models to brain data.  First, we recorded the output of each model for each of the 48 229 

images of the image set. Then, to compare to human brain data, we calculated the pair-230 

wise dissimilarities between model outputs by 1- Spearman’s rank order correlation R. 231 

This formed 48x48 model dissimilarity matrices (RDMs), one for each layer of each 232 

model: 8 for the deep scene and deep object network, 1 for GIST, and 4 for HMAX. 233 

 234 

To compare models and brains, we determined whether images that were similarly 235 

represented in a computational network were also similarly represented in the brain. This 236 

was achieved by computing the similarity (Spearman’s R) of layer-specific model 237 

dissimilarity matrix with the time-point specific MEG decoding matrix for every subject 238 

and time point and averaging results. 239 

 240 

We then determined whether the computational models predicted the size of a scene. We 241 

formulated an explicit size model, i.e. a 48 × 48 matrix with entries of 1 where images 242 

differed in size and 0 otherwise. Equivalent matrices were produced for scene clutter, 243 

contrast and luminance (Supplementary Figure 1). Correlation of the explicit size model 244 

with any computational model RDM yielded a measure of how well computational 245 

models predicted scene size. 246 

Finally, we determined whether the above computational models accounted for neural 247 

representations of scene size observed in MEG data. For this, we reformulated the 248 

representational clustering analysis in a correlation framework. The two measures are 249 
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equivalent except that the correlation analysis takes into account the variability of the 250 

data, which the clustering analysis does not for the benefit of clear interpretability as 251 

percent change in decoding accuracy. The procedure had two steps. First, we calculated 252 

the similarity (Spearman’s R) of the MEG decoding accuracy matrix with the explicit size 253 

model for each time point and each participant. Second, we re-calculated the similarity 254 

(Spearman’s R) of the MEG decoding accuracy matrix with the explicit size model after 255 

partialling out all of the layer-specific RDMs of a given computational model. 256 

2.7 Statistical testing 257 

We used permutation tests for cluster-size inference, and bootstrap tests to determine 258 

confidence intervals of onset times for maxima, cluster onsets and peak-to-peak latency 259 

differences (Nichols and Holmes, 2002; Pantazis et al., 2005; Cichy et al., 2014). 260 

 261 

Sign permutation tests 262 

For the permutation tests, depending on the statistic of interest our null hypothesis was 263 

that the MEG decoding time series were equal to 50% chance level, or that the decoding 264 

accuracy difference of between- minus within-level segments of the MEG decoding 265 

matrix was equal to 0, or that the correlation values were equal to 0. In all cases, under 266 

the null hypothesis the sign of the observed effect in the MEG data is randomly 267 

permutable, corresponding to a sign-permutation test that randomly multiplies the 268 

participant-specific data with +1 or −1. We created 1,000 permutation samples, every 269 

time re-computing the statistic of interest. This resulted in an empirical distribution of the 270 

data, allowing us to convert our original data, as well as the permutation samples, into P-271 

values. We then performed cluster-size inference by setting a P = 0.05 cluster-definition 272 
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threshold on the original data and permutation samples, and computing a P = 0.05 cluster 273 

size threshold from the empirical distribution of the resampled data. 274 

 275 

Bootstrapping 276 

To calculate confidence intervals (95%) on cluster onset and peak latencies, we 277 

bootstrapped the sample of participants 1,000 times with replacement. For each bootstrap 278 

sample, we repeated the above permutation analysis yielding distributions of the cluster 279 

onset and peak latency, allowing estimation of confidence intervals. In addition, for each 280 

bootstrap sample, we determined the peak-to-peak latency difference for scene size 281 

clustering and individual scene image classification. This yielded an empirical 282 

distribution of peak-to-peak latencies. Setting P < 0.05, we rejected the null hypothesis of 283 

a latency difference if the confidence interval did not include 0. 284 

 285 

Label permutation tests 286 

For testing the significance of correlation between the computational model RDMs and 287 

the scene size model, we relied on a permutation test of image labels. This effectively 288 

corresponded to randomly permuting the columns (and accordingly the rows) of the 289 

computational model RDMs 1,000 times, and then calculating the correlation between the 290 

permuted matrix and the explicit size model matrix. This yielded an empirical 291 

distribution of the data, allowing us to convert our statistic into P-values. Effects were 292 

reported as significant when passing a P = 0.05 threshold. Results were FDR-corrected 293 

for multiple comparisons. 294 

 295 
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3 RESULTS 296 

Human participants (n = 15) viewed images of 48 real-world indoor scenes that differed 297 

in the layout property size, as well as in the level of clutter, contrast and luminance 298 

(Figure 1A) while brain activity was recorded with MEG. While often real-world scene 299 

size and clutter level correlate, here we de-correlated those stimulus properties explicitly 300 

by experimental design, based on independent behavioral validation (Park et al., 2014) to 301 

allow independent assessment. Images were presented for 0.5s with an inter-trial interval 302 

of 1-1.2s (Figure 1B). Participants performed an orthogonal object-detection task on an 303 

image of concentric circles appearing every four trials on average. Concentric circle trials 304 

were excluded from further analysis. 305 

 306 

To determine the timing of cortical scene processing we used a decoding approach: we 307 

determined the time course with which experimental conditions (scene images) were 308 

discriminated by visual representations in MEG data. For this, we extracted peri-stimulus 309 

MEG time series in 1ms resolution from -100 to +900ms with respect to stimulus onset 310 

for each subject. For each time point independently we classified scene images pair-wise 311 

by MEG sensor patterns (support vector classification, Figure 1C). Time-point specific 312 

classification results (percentage decoding accuracy, 50% chance level) were stored in a 313 

48×48 decoding accuracy matrix, indexed by image conditions in rows and columns 314 

(Figure 1C, inset). This matrix is symmetric with undefined diagonal. Repeating this 315 

procedure for every time point yielded a set of decoding matrices (for a movie of 316 

decoding accuracy matrices over time, averaged across subjects, see Supplementary 317 

Movie 1). Interpreting decoding accuracies as a representational dissimilarity measure, 318 
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each 48x48 matrix summarized, for a given time point, which conditions were 319 

represented similarly (low decoding accuracy) or dissimilarly (high decoding accuracy). 320 

The matrix was thus termed MEG representational dissimilarity matrix (RDM) (Cichy et 321 

al., 2014; Nili et al., 2014). 322 

 323 

Throughout, we determined random-effects significance non-parametrically using a 324 

cluster-based randomization approach (cluster-definition threshold P < 0.05, corrected 325 

significance level P < 0.05) (Nichols and Holmes, 2002; Pantazis et al., 2005; Maris and 326 

Oostenveld, 2007). 95% confidence intervals for mean peak latencies and onsets 327 

(reported in parentheses throughout the results) were determined by bootstrapping the 328 

participant sample. 329 

3.1 Neural representations of single scene images emerged early in cortical 330 

processing 331 

We first investigated the temporal dynamics of image-specific individual scene 332 

information in the brain. To determine the time course with which individual scene 333 

images were discriminated by visual representations in MEG data, we averaged the 334 

elements of each RDM matrix representing pairwise comparisons with matched 335 

experimental factors (luminance, contrast, clutter level and scene size) (Figure 1C). We 336 

found that the time course rose sharply after image onset, reaching significance at 50ms 337 

(45-52ms) and a peak at 97ms (94-102ms). This indicates that single scene images were 338 

discriminated early by visual representations, similar to single images with other visual 339 

content (Thorpe et al., 1996; Carlson et al., 2013; Cichy et al., 2014; Isik et al., 2014), 340 

suggesting a common source in early visual areas (Cichy et al., 2014). 341 
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  342 

Figure 1. Image set and single-image decoding. A) The stimulus set comprised 48 indoor scene 343 
images differing in the size of the space depicted (small vs. large), as well as clutter, contrast, and 344 
luminance level; here each experimental factor combination is exemplified by one image. The 345 
image set was based on behaviorally validated images of scenes differing in size and clutter level, 346 
de-correlating factors size and clutter explicitly by experimental design (Park et al., 2014). Note 347 

that size refers to the size of the real-world space depicted on the image, not the stimulus 348 
parameters; all images subtended 8 visual angle during the experiment. B) Time-resolved (1ms 349 
steps from -100 to +900ms with respect to stimulus onset) pair-wise support vector machine 350 
classification of experimental conditions based on MEG sensor level patterns. Classification 351 
results were stored in time-resolved 48 × 48 MEG decoding matrices. C) Decoding results for 352 

single scene classification independent of other experimental factors. Decoding results were 353 
averaged across the dark blocks (matrix inset), to control for luminance, contrast, clutter level and 354 
scene size differences. Inset shows indexing of matrix by image conditions. Horizontal line below 355 
curve indicates significant time points (n = 15, cluster-definition threshold P < 0.05, corrected 356 
significance level P < 0.05); gray vertical line indicates image onset. 357 
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3.2 Neural representations of scene size emerged later in time and were robust to 358 

changes in viewing conditions and other scene properties 359 

When is the spatial layout property scene size processed by the brain? To investigate, we 360 

partitioned the decoding accuracy matrix into two subdivisions: images of different 361 

(between subdivision light gray, +) and similar size level (within subdivision, dark gray, 362 

–). The difference of mean between-size minus within-size decoding accuracy is a 363 

measure of clustering of visual representations by size (Figure). Peaks in this measure 364 

indicate time points at which MEG sensor patterns cluster maximally by scene size, 365 

suggesting underlying neural visual representations allowing for explicit, linear readout 366 

(DiCarlo and Cox, 2007) of scene size by the brain. Scene size (Figure 2B) was 367 

discriminated first at 141ms (118 – 156ms) and peaked at 249ms (150 – 274ms), which 368 

was significantly later than the peak in single image classification (P = 0.001, bootstrap 369 

test of peak-latency differences). 370 
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 371 

Figure 2. Scene size is discriminated by visual representations. A) To determine the time 372 
course of scene size processing we determined when visual representations clustered by scene 373 
size. For this we subtracted mean within-size decoding accuracies (dark gray, –) from between-374 
size decoding accuracies (light gray, +). B) Scene size was discriminated by visual 375 
representations late in time (onset of significance at 141ms (118-156ms), peak at 249ms (150-376 
274ms). Gray shaded area indicates 95% confidence intervals determined by bootstrapping 377 
participants. C) Cross-classification analysis, exemplified for cross-classification of scene size 378 
across clutter level. A classifier was trained to discriminate scene size on high clutter images, and 379 
tested on low clutter images. Results were averaged following an opposite assignment of clutter 380 
images to training and testing sets. Before entering cross-classification analysis, MEG trials were 381 
grouped by clutter and size level respectively independent of image identity. A similar cross-382 
classification analysis was applied for other image and scene properties. D) Results of cross-383 
classification analysis indicated robustness of scene size visual representations to changes in other 384 
scene and image properties (scene clutter, luminance, and contrast). Horizontal lines indicate 385 
significant time points (n = 15, cluster-definition threshold P < 0.05, corrected significance level 386 
P < 0.05); gray vertical line indicates image onset. For result curves with 95% confidence 387 
intervals see Supplementary Figure 2. 388 
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Equivalent analyses for the experimental factors scene clutter, contrast, and luminance 389 

level yielded diverse time courses (Supplementary Figure 1, Table 1A). Importantly, 390 

representations of low-level image property contrast emerged significantly earlier than 391 

scene size (P = 0.004) and clutter (P = 0.006, bootstrap test of peak-latency differences). 392 

For the factor luminance, only a weak effect and thus no significant onset response was 393 

observed, suggesting a pre-cortical luminance normalization mechanism. 394 

 395 

To be of use in the real world, visual representations of scene size must be robust against 396 

changes of other scene properties, such as clutter level (i.e. space filled by different types 397 

and amounts of objects) and semantic category (i.e. the label by which we name it), and 398 

changes in viewing conditions, such as luminance and contrast. We investigated the 399 

robustness of scene size representations to all these factors using cross-classification 400 

(Figure 2C; for 95% confidence intervals on curves see Supplementary Figure 2). For this 401 

we determined how well a classifier trained to distinguish scenes at one clutter level 402 

could distinguish scenes at the other level, while collapsing data across single image 403 

conditions of same level in size and clutter. We found that scene size was robust to 404 

changes in scene clutter, luminance and contrast (Figure 2D; onsets and peaks in Table 405 

1B). Note that by experimental design, the scene category always differed across size 406 

level, such that cross-classification also established that scene size was discriminated by 407 

visual representations independent of the scene category. 408 

 409 

An analogous analysis for clutter level yielded evidence for viewing-condition 410 

independent clutter level representations (Supplementary Figure 3), reinforcing the notion 411 
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of clutter level as a robust and relevant dimension of scene representations in the human 412 

brain (Park et al., 2014). Finally, an analysis revealing persistent and transient 413 

components of scene representations indicated strong persistent components for scene 414 

size and clutter representations, with little or no evidence for contrast and luminance 415 

(Supplementary Figure 4). Persistence of scene size and clutter level representations 416 

further reinforces the notion of size and clutter level representations being important end 417 

products of visual computations kept online by the brain for further processing and 418 

behavioral guidance. 419 

 420 

In sum, our results constitute evidence for representations of scene size in human brains 421 

from non-invasive electrophysiology, apt to describe scene size discrimination under real 422 

world changes in viewing conditions. 423 

3.3 Neural representations of single scene images were predicted by deep 424 

convolutional neural networks trained on real world scene categorization 425 

Visual scene recognition in cortex is a complex hierarchical multi-step process, whose 426 

understanding necessitates a quantitative model that captures this complexity. Here, we 427 

evaluated whether an 8-layer deep neural network trained to perform scene classification 428 

on 205 different scene categories (Zhou et al., 2014) predicted human scene 429 

representations. We refer to this network as deep scene network (Figure 3A). 430 

Investigation of the receptive fields (RFs) of model neurons using a reduction method 431 

(Zhou et al., 2015) indicated a gradient of increasing complexity from low to high layers, 432 

and selectivity to whole objects, texture, and surface layout information (Figure 3B). This 433 
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suggests that the network might be able to capture information about both single scenes 434 

and scene layout properties. 435 

   436 

Figure 3. Predicting emerging neural representations of single scene images by 437 
computational models. A) Architecture of deep convolutional neural network trained on scene 438 
categorization (deep scene network). B) Receptive field (RF) of example deep scene neurons in 439 
layers 1, 2, 4, and 5. Each row represents one neuron. The left column indicates size of RF, and 440 
the remaining columns indicate image patches most strongly activating these neurons. Lower 441 
layers had small RFs with simple Gabor filter-like sensitivity, whereas higher layers had 442 
increasingly large RFs sensitive to complex forms. RFs for whole objects, texture, and surface 443 
layout information emerged although these features were not explicitly taught to the deep scene 444 
model. C) We used representational dissimilarity analysis to compare visual representations in 445 
brains with models. For every time point, we compared subject-specific MEG RDMs 446 
(Spearman’s R) to model RDMs and results were averaged across subjects. D) All investigated 447 
models significantly predicted emerging visual representations in the brain, with superior 448 
performance for the deep neural networks compared to HMAX and GIST. Horizontal lines 449 
indicate significant time points (n = 15, cluster-definition threshold P < 0.05, corrected 450 
significance level P < 0.05); gray vertical line indicates image onset. 451 
 452 
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To determine the extent to which visual representations learned by the deep scene model 453 

and the human brain are comparable, we used representational similarity analysis 454 

(Kriegeskorte, 2008; Cichy et al., 2014). The key idea is that if two images evoke similar 455 

responses in the model, they should evoke similar responses in the brain, too.  456 

 457 

For the deep neural network, we first estimated image response patterns by computing the 458 

output of each model layer to each of the 48 images. We then constructed layer-resolved 459 

48×48 representational dissimilarity matrices (RDMs) by calculating the pairwise 460 

dissimilarity (1-Spearman’s R) across all model response patterns for each layer output. 461 

 462 

We then compared (Spearman’s R) the layer-specific deep scene model RDMs with the 463 

time-resolved MEG RDMs and averaged results over layers, yielding a time course 464 

indicating how well the deep scene model predicted and thus explained scene 465 

representations (Figure 3D). To compare against other models, we performed equivalent 466 

analyses to a deep neural network trained on object-categorization (termed deep object 467 

network) and standard models of object (HMAX) and scene-recognition (GIST) (Oliva 468 

and Torralba, 2001; Serre et al., 2007). 469 

 470 

We found that the deep object and scene network performed similarly at predicting visual 471 

representations over time (Figure 3D, for details see Table 2A; for layer-resolved results 472 

see Supplementary Figure 5), and better than the HMAX and GIST models (for direct 473 

quantitative comparison see Supplementary Figure 6). 474 

 475 
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In sum, our results show that brain representations of single scene images were best 476 

predicted by deep neural network models trained on real-world categorization tasks, 477 

demonstrating the ability of the models to capture the complexity of scene recognition, 478 

and their semblance to the human brain representations. 479 

3.4 Representations of scene size emerged in the deep scene model 480 

Beyond prediction of neural representations of single scene images, does the deep scene 481 

neural network indicate the spatial layout property scene size? To visualize, we used 482 

multidimensional scaling (MDS) on layer-specific model RDMs, and plotted the 48 scene 483 

images into the resulting 2D arrangement color-coded for scene size (black= small, gray 484 

= large). We found a progression in the representation of scene size in the deep scene 485 

network: low layers showed no structure, whereas high layers displayed a progressively 486 

clearer representation of scene size (A). A similar, but weaker progression, was visible 487 

for the deep object network (Figure 4B). Comparable analysis for HMAX and GIST 488 

(Figure 4C,D) found no prominent representation of size. 489 
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 490 

Figure 4. Representation of scene size in computational models of object and scene 491 
categorization. A-D) Layer-specific RDMs and corresponding 2D multidimensional scaling 492 
(MDS) plots for a deep scene network, deep object network, GIST, and HMAX. MDS plots are 493 
color-coded by scene size (small = black; large = gray). E) Quantifying the representation of 494 
scene size in computational models. We compared (Spearman’s R) each model’s RDMs with an 495 
explicit size model (RDM with entries 0 for images of similar size, 1 for images of dissimilar 496 
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size). Results are color-coded for each model. F) Similar to (E) for clutter, contrast and luminance 497 
(results shown only for deep scene and object networks). While representations of the abstract 498 
scene properties size and clutter emerged with increasing layer number, the low-level image 499 
properties contrast and luminance successively abstracted away. Stars above bars indicate 500 
statistical significance. Stars between bars indicate significant differences between the 501 
corresponding layers of the deep scene vs. object network. Complete layer-wise comparisons 502 
available in Supplementary Figure 7.  (n = 48; label permutation tests for statistical inference, P < 503 
0.05, FDR-corrected for multiple comparisons). 504 
 505 

We quantified this descriptive finding by computing the similarity of model RDMs with 506 

an explicit size model (an RDM with entries 0 for images of similar size, 1 for images of 507 

dissimilar size; Figure 4E inset). We found a significant effect of size in all models (P < 508 

0.05, FDR-corrected, stars above bars indicate significance). The size effect was larger in 509 

the deep neural networks than in GIST and HMAX, it was more pronounced in the high 510 

layers, and the deep scene network displayed a significantly stronger effect of scene size 511 

than the deep object network in layers 6-8 (stars between bars; for all pair-wise layer-512 

specific comparisons see Supplementary Figure 7). A supplementary partial correlation 513 

analysis confirmed that the effect of size in the deep scene network was not explained by 514 

correlation with the other experimental factors (Supplementary Figure 8). 515 

 516 

Together, these results indicate the deep scene network captured scene size better than all 517 

other models, and that scene size representations emerge gradually in the deep neural 518 

network hierarchy. Thus representations of visual space can emerge intrinsically in neural 519 

networks constrained to perform visual scene categorization without being trained to do 520 

so directly. 521 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2015. ; https://doi.org/10.1101/032623doi: bioRxiv preprint 

https://doi.org/10.1101/032623
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

3.5 Neural representations of scene size emerged in the deep scene model 522 

The previous sections demonstrated that representations of scene size emerged in both 523 

neural signals (Figure 2) and computational models (Figure 4). To evaluate the overlap 524 

between these two representations, we combined representational similarity analysis with 525 

partial correlation analysis (Clarke and Tyler, 2014) (Figure 5A). 526 

 527 

We first computed the neural representations of scene size by correlating (Spearman’s R) 528 

the MEG RDMs with the explicit size model (black curve). We then repeated the process, 529 

but only after partialling out all layer-specific RDMs of a model from the explicit size 530 

model (color-coded by model) (Figure 5B). The reasoning is that if neural signals and 531 

computational models carry the same scene size information, the scene size effect will 532 

vanish in the latter case. 533 

 534 

When partialling out the effect of the deep scene network, the scene size effect was 535 

considerably reduced and was no longer statistically significant. In all other models, the 536 

effect was reduced but was still statistically significant (Figure 5B). Further, the reduction 537 

of the size effect was higher for the deep scene network than all other models (Figure 538 

5C). Equivalent analyses for scene clutter, contrast and luminance indicated that the deep 539 

scene and object networks abolished all effects, while other models did not 540 

(Supplementary Figure 9). 541 

 542 
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Together, these results show that only the deep scene model captured the neural 543 

representation of scene size in the human brain, singling it out as the best of the scene 544 

representation models tested here. 545 

 546 

 547 

Figure 5. The deep scene model accounts for more of the MEG size signal than other 548 
models. A) We combined representational similarity with partial correlation analysis to determine 549 
which computational models explained emerging representations of scene size in the brain. B) 550 
MEG representations of scene size (termed MEG size signal) before (black) and after (color-551 
coded by model) partialling out the effect of different computational models. Only partialling out 552 
the effect of the deep scene network abolished the MEG size signal. C) Difference in amount of 553 
variance partialled out from the size signal: comparing all models to the deep scene network. The 554 
deep scene network accounted for more MEG size signal than all other models (n = 15; cluster-555 
definition threshold P < 0.05, significance threshold P < 0.05; results corrected for multiple 556 
comparisons by 5 for panel B and 3 for panel C). 557 
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4 DISCUSSION 558 

We characterized the emerging representation of scenes in the human brain using 559 

multivariate pattern classification methods (Carlson et al., 2013; Cichy et al., 2014) and 560 

representational similarity analysis (Kriegeskorte, 2008; Kriegeskorte and Kievit, 2013) 561 

on combined MEG and computational model data. We found that neural representations 562 

of individual scenes and the low-level image property contrast emerged early, followed 563 

by the scene layout property scene size at around 250 ms. The neural representation of 564 

scene size was robust to changes in viewing conditions and scene properties such as 565 

contrast, luminance, clutter level and category. Our results provide novel evidence for an 566 

electrophysiological signal of scene processing in humans that remained stable under 567 

real-world viewing conditions. To capture the complexity of scene processing in the brain 568 

by a computational model, we trained a deep convolutional neural network on scene 569 

classification. We found that the deep scene model predicted representations of scenes in 570 

the brain and accounted for abstract properties such as scene size and clutter level better 571 

than alternative computational models, while abstracting away low-level image properties 572 

such as luminance and contrast level. 573 

4.1 A multivariate pattern classification signal for the processing of scene layout 574 

property scene size 575 

A large body of evidence from neuropsychology, neuroimaging and invasive work in 576 

humans and monkeys has identified locally circumscribed cortical regions of the brain 577 

dedicated to the processing of three fundamental visual categories: faces, bodies and 578 

scenes (Allison et al., 1994; Kanwisher et al., 1997; Aguirre et al., 1998; Downing et al., 579 

2001; Tsao et al., 2006; Kornblith et al., 2013). For faces and bodies, respective 580 
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electrophysiological signals in humans have been identified (Allison et al., 1994; Bentin 581 

et al., 1996; Jeffreys, 1996; Liu et al., 2002; Stekelenburg and de Gelder, 2004; Thierry et 582 

al., 2006). However, electrophysiological markers for scene-specific processing have 583 

been identified for the auditory modality only (Fujiki et al., 2002; Tiitinen et al., 2006), 584 

and a visual scene-specific electrophysiological signal had not been described until now. 585 

 586 

Our results provide the first evidence for an electrophysiological signal of visual scene 587 

size processing in humans. Multivariate pattern classification analysis on MEG data 588 

revealed early discrimination of single scene images (peak at 97ms) and the low-level 589 

image property contrast (peak at 74ms), whereas the abstract property of space size was 590 

discriminated later (peak at 249ms). While early scene-specific information in the MEG 591 

likely emerged from low-level visual areas such as V1 (Cichy et al., 2014), the 592 

subsequent scene size signal had properties commonly ascribed to higher stages of visual 593 

processing in ventral visual cortex: the representation of scene size was tolerant to 594 

changes occurring in real world viewing conditions, such as luminance, contrast, clutter 595 

level and category. The electrophysiological signal thus reflected scene size 596 

representations that could reliably be used for scene recognition in real world settings 597 

under changing viewing conditions (Poggio and Bizzi, 2004; DiCarlo and Cox, 2007; 598 

DiCarlo et al., 2012). This result paves the way to further studies of the representational 599 

format of scenes in the brain, e.g. by measuring the modulation of the scene-specific 600 

signal by other experimental factors. 601 

 602 
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The magnitude of the scene size effect, although consistent across subjects and 603 

statistically robust to multiple comparison correction, is small with a maximum of ~1%. 604 

Note however that the size effect, in contrast to single image decoding (peak decodability 605 

at ~79%), is not a measure of how well single images differing in size can be 606 

discriminated, but a difference measure of how much better images of different size can 607 

be discriminated rather than images of the same size. Thus, it is a measure of information 608 

about scene size over-and-above information distinguishing between any two single 609 

scenes. The magnitude of the size effect is comparable to effects reported for abstract 610 

visual properties such as animacy (1.9 and 1.1% respectively, Cichy et al., 2014). 611 

 612 

What might be the exact locus of the observed scene size signal in the brain? Previous 613 

research has indicated parametric encoding of scene size in parahippocampal place area 614 

(PPA) and retrosplenial cortex (Park et al., 2014), corroborating numerous studies 615 

showing that spatial properties of scenes such as boundaries and layout are represented in 616 

these cortical regions (Epstein and Kanwisher, 1998; Epstein et al., 1999; Wolbers et al., 617 

2011b). Both onset and peak latency of the observed scene size signal concurred with 618 

reported latencies for parahippocampal cortex (Mormann et al., 2008), suggesting that 619 

one or several nodes of the human spatial navigation network might be the source of the 620 

scene size signal. 621 

 622 

Last, we found that not only scene size representations, but also scene clutter 623 

representations were tolerant to changes in viewing conditions, and emerged later than 624 

the low-level image contrast representations. These results complement previous findings 625 
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in object perception research that representations of single objects emerge earlier in time 626 

than representations of more abstract properties such as category membership (Carlson et 627 

al., 2013; Cichy et al., 2014). 628 

4.2 Neural representations of abstract scene properties such as scene size are 629 

explained by a deep neural network model trained on scene classification 630 

Scene processing in the brain is a complex process necessitating a formal quantitative 631 

model that addresses this complexity. Here, our study of several models of scene and 632 

object recognition provided three novel results, each with fundamental theoretical 633 

implications. 634 

 635 

First, deep neural networks offered the best characterization of neural scene 636 

representations compared to other models tested. The superiority of high performing deep 637 

neural networks over simpler models indicates that hierarchical architectures might be 638 

necessary to capture the structure of single scene representations in the human brain. 639 

While previous research has established that deep neural networks capture object 640 

representations in human and monkey inferior temporal cortex well, we demonstrated 641 

that a deep neural network explained millisecond-resolved dynamics underlying scene 642 

recognition from processing of low- to high-level properties, better than other models of 643 

object and scene-processing tested. Concerning high-level abstract scene properties in 644 

particular, our results shed lights into the black box of cortical scene processing, 645 

providing novel insight both from the perspective of modeling, and of experimental brain 646 

science. From a modeling perspective, the near monotonic relationship between the 647 

representation of size and clutter level in the deep neural network and the network layer 648 
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number indicates that scene size is an abstract scene property emerging through complex 649 

multi-step processing. From the perspective of experimental brain science, our results 650 

provide an advance in understanding neural representations of the processing of abstract 651 

scene properties such as spatial layout. Neuronal responses in high-level visual cortex are 652 

often sparse and nonlinear, making a full explanation by simple mathematical models in 653 

low-dimensional spaces or basic image statistics unlikely (Groen et al., 2013; Rice et al., 654 

2014; Watson et al., 2014; Rice et al., 2014). Instead, our result concurs with the finding 655 

that complex deep neural networks performing well on visual categorization tasks 656 

represent visual stimuli similar to the human brain (Cadieu et al., 2013; Yamins et al., 657 

2014), and extends the claim to abstract properties of visual stimuli. 658 

 659 

The second novel finding is that a deep neural network trained specifically on scene 660 

categorization had superior representation of scene size compared to a deep neural 661 

network trained on objects. Importantly, it also offered the best account of neural 662 

representations of scene size in the MEG, indicating that the underlying algorithmic 663 

computations matched the neuronal computations in the human brain. This indicates that 664 

the constraints imposed by the task the network is trained on, i.e. object or scene 665 

categorization, critically influenced the represented features. This makes plausible the 666 

notion that spatial representations emerge naturally and intrinsically in neural networks 667 

performing scene categorization, such as in the human brain. It further suggests that 668 

separate processing streams in the brain for different visual content, such as scenes, 669 

objects or faces, might be the result of differential task constraints imposed by 670 

classification of the respective visual input (DiCarlo et al., 2012; Yamins et al., 2014). 671 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2015. ; https://doi.org/10.1101/032623doi: bioRxiv preprint 

https://doi.org/10.1101/032623
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

 672 

The third novel finding is that representations of abstract scene properties (size, clutter 673 

level) emerged with increasing layers in deep neural networks, while low-level image 674 

properties (contrast, luminance) were increasingly abstracted away, mirroring the 675 

temporal processing sequence in the human brain: representations of low-level image 676 

properties emerged first, followed by representations of scene size and clutter level. This 677 

suggests common mechanisms in both and further strengthen the idea that deep neural 678 

networks are a promising model of the processing hierarchies constituting the human 679 

visual system, reinforcing the view of the visual brain as performing increasingly 680 

complex feature extraction over time (Thorpe et al., 1996; Liu et al., 2002; Reddy and 681 

Kanwisher, 2006; Serre et al., 2007; Kourtzi and Connor, 2011; DiCarlo et al., 2012).  682 

 683 

However, we did not observe a relationship between layer-specific representations in the 684 

deep neural networks and temporal dynamics in the human brain. Instead, the MEG 685 

signal predominantly reflected representations in low neural network layers 686 

(Supplementary Figure 5). One reason for this might be that our particular image set 687 

differed strongly in low-level features, thus strongly activating early visual areas that are 688 

best modeled by low neural network layers. Activity in low-level visual cortex was thus 689 

very strong, potentially masking weaker activity in high-level visual cortex that is 690 

invariant to changes in low level features. Another reason might be that while early visual 691 

regions are close to the MEG sensors, creating strong MEG signals, scene-processing 692 

cortical regions such as PPA are deeply harbored in the brain, creating weaker MEG 693 

signals. Future studies using image sets optimized to drive low-and high level visual 694 
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cortex equally are necessary, to test whether layer-specific representations in deep neural 695 

networks can be mapped in both time and in space onto processing stages in the human 696 

brain. 697 

4.3 Conclusions 698 

Using a combination of multivariate pattern classification and computational models to 699 

study the dynamics in neuronal representation of scenes, we identified a neural marker of 700 

spatial layout processing in the human brain, and showed that a deep neural network 701 

model of scene categorization explains representations of spatial layout better than other 702 

models. Our results pave the way to future studies investigating the temporal dynamics of 703 

spatial layout processing, and highlight deep hierarchical architectures as the best models 704 

for understanding visual scene representations in the human brain. 705 
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7 TABLES 864 

A   
 Onset latency Peak latency 
Clutter level 56 (42 – 71) 107 (103 – 191) 
Luminance level 644 (68 – 709) 625 (146 – 725) 
Contrast level 53 (42 – 128) 74 (68 – 87) 
B   
Size across clutter level 226 (134 – 491) 283 (191 – 529) 
Size across luminance level 183 (138 – 244) 217 (148 – 277) 
Size across contrast level 138 (129 – 179) 238 (184 – 252) 

 865 
Table 1. Onset and peak latencies for MEG classification analyses. Onset and peak latency (n 866 
= 15, P < 0.05, cluster-level corrected, cluster-definition threshold P < 0.05) with 95% confidence 867 
intervals. A) Clutter, luminance and contrast level representation time course information. B) 868 
Time course of cross-classification for scene size. 95% confidence intervals are reported in 869 
brackets. 870 
 871 
 872 
 873 
 874 
 875 
 876 
 877 
A   
 Onset latency Peak latency 
GIST 47 (45 - 149) 80 (76 - 159) 
HMAX 48 (25 - 121) 74 (61 - 80) 
Deep object network 55 (20 - 61) 97 (83 – 117) 
Deep scene network 47 (23 - 59) 83 (79  - 112) 
B   
Deep scene network minus GIST 58 (50 - 78) 108 (81 - 213) 
Deep scene network minus HMAX 75 (62 - 86) 108 (97- 122) 
Deep scene network minus deep 
object network 

-  -  

 878 
Table 2. Onset and peak latencies for model-MEG representational similarity analysis. 879 
Onset and peak latency (n = 15, P < 0.05, cluster-level corrected, cluster-definition threshold P < 880 
0.05) with 95% confidence intervals. A) Correlation of models to MEG data. B) Comparison of 881 
MEG-model correlation for the deep scene network and all other models. 95% confidence 882 
intervals are reported in brackets. 883 
  884 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2015. ; https://doi.org/10.1101/032623doi: bioRxiv preprint 

https://doi.org/10.1101/032623
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

Layer Conv1 Pool/ 
Norm1 

Conv2 Pool/ 
Norm2 

Conv3 Conv4 Conv5 Pool 
5 

FC1 FC2 FC3 

Units 96 96 256 256 384 384 256 256 4096 4096 683/ 
216 

Feature 55×55 27×27 27×27 13×13 13×13 13×13 13×13 6×6 1 1 1 
 885 
Table 3: Number of units and features for each CNN layer. Units and features of the deep 886 
neural network architecture were similar as proposed in (Krizhevsky et al., 2012). All deep neural 887 
networks were identical with the exception of the number of nodes in the last layer (output layer) 888 
as dictated by the number of training categories, i.e. 683 for the deep object network, 216 for 889 
deep scene network. Abbreviations: Conv = Convolutional layer, Pool = Pooling layer; Norm = 890 
Normalization layer; FC1-3 = fully connected layers. The 8 layers referred to in the manuscript 891 
correspond to the convolution stage for layers 1-5, and the FC103 stage for layers 6-8 892 
respectively. 893 
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