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Abstract 
Modeling the properties and functions of DNA sequences is an important, but 
challenging task in the broad field of genomics. This task is particularly difficult for 
noncoding DNA, the vast majority of which is still poorly understood in terms of 
function. A powerful predictive model for the function of noncoding DNA can have 
enormous benefit for both basic science and translational research because over 
98% of the human genome is noncoding and 93% of disease-associated variants lie 
in these regions. To address this need, we propose DanQ, a novel hybrid 
convolutional and bi-directional long short-term memory recurrent neural network 
framework for predicting noncoding function de novo from sequence. In the DanQ 
model, the convolution layer captures regulatory motifs, while the recurrent layer 
captures long-term dependencies between the motifs in order to learn a regulatory 
“grammar” to improve predictions. DanQ improves considerably upon other 
models across several metrics. For some regulatory markers, DanQ can achieve 
over a 50% relative improvement in the area under the precision-recall curve 
metric compared to related models. 
 
Availability and implementation 
All source code is available at the github repository http://github.com/uci-
cbcl/DanQ. 
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Introduction 
 

The recent deluge of high throughput genomic sequencing data has prompted the 

development of novel bioinformatics algorithms that can integrate large, feature-rich 

datasets. Deep learning algorithms are attractive solutions for such problems because they 

are scalable with large datasets and are effective in identifying complex patterns from 

feature-rich datasets (LeCun et al., 2015). They are able to do so because deep learning 

algorithms utilize heuristics and specialized hardware to efficiently train deep neural 

networks (DNNs) that learn high levels of abstractions from multiple layers of non-linear 

transformations. DNNs have already been adapted for problems such as motif discovery 

(Alipanahi et al., 2015) and predicting the deleteriousness of genetic variants (Quang et 

al., 2015).  

 

There has been a growing interest to predict function directly from sequence, instead of 

from curated datasets such as gene models and multiple species alignment. Much of this 

interest is attributed to the fact that over 98% of the human genome is noncoding, the 

function of which is not very well-defined. A model that can predict function directly 

from sequence may reveal novel insights about these noncoding elements. Over 1,200 

genome-wide association studies have identified nearly 6,500 disease- or trait-

predisposing SNPs, 93% of which are located in noncoding regions (Hindorff et al., 

2014), highlighting the importance of such a predictive model. Convolutional neural 

networks (CNNs) are variants of DNNs that are appropriate for this task. CNNs use a 

weight-sharing strategy to capture local patterns in data such as sequences. This weight-

sharing strategy is especially useful for studying DNA because the convolution filters can 

capture sequence motifs, which are short, recurring patterns in DNA that are presumed to 

have a biological function. DeepSEA is a recently developed algorithm that utilizes a 

CNN for predicting DNA function (Zhou and Troyanskaya, 2015). The CNN is trained in 

a joint multi-task fashion to simultaneously learn to predict large-scale chromatin-

profiling data, including transcription factor (TF) binding, DNase I sensitivity and 

histone-mark profiles across multiple cell types, allowing the CNN to learn tissue-

specific functions. It significantly outperforms gkm-SVM (Ghandi et al., 2014), a related 
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algorithm that can also predicts the regulatory function of DNA sequences, but uses a 

support vector machine instead of a CNN for predictions. To predict the effect of 

regulatory variation, both gkm-SVM (Lee et al., 2015) and DeepSEA use a similar 

strategy of predicting the function of both the reference and allele sequences and 

processing the score differences.  

 

Another variation of DNNs is the recurrent neural network (RNN). Unlike a CNN, 

connections between units of a RNN form a directed cycle. This creates an internal state 

of the network that allows it to exhibit dynamic spatial behavior. A bi-directional long 

short-term memory network (BLSTM) is a variant of the RNN that combines the outputs 

of two RNNs, one processing the sequence from left to right, the other one from right to 

left. Instead of regular hidden units, the two RNNs contain LSTM blocks, which are 

“smart” network units that can remember a value for an arbitrary length of time. 

BLSTMs can capture long-term dependencies and have been effective for other machine 

learning applications such as phoneme classification (Graves and Schmidhuber, 2005), 

speech recognition (Graves et al., 2013), machine translation (Sundermeye et al., 2014), 

human action recognition (Zhu et al., 2015), and sentiment analysis (Li et al., 2015). 

Although BLSTMs are effective for studying sequential data, they have not been applied 

for DNA sequences.  

 

Hence, we propose DanQ, a hybrid framework that combines CNNs and BLSTMs (Fig. 

1). The first layers of the DanQ are designed to scan sequences for motif sites through 

convolution filtering. Whereas the convolution step of the DeepSEA model contains three 

convolution layers and two max pooling layers in alternating order to learn motifs, the 

convolution step of the DanQ model is much simpler and contains one convolution layer 

and one max pooling layer to learn motifs. The max pooling layer is followed by a 

BLSTM layer. Our rationale for including a recurrent layer after the max pooling layer is 

that motifs can follow a regulatory “grammar” governed by physical constraints that 

dictate the in vivo spatial arrangements and frequencies of combinations of motifs, a 

feature associated with tissue-specific functional elements such as enhancers (Quang and 

Xie, 2014; Quang et al., 2015b). Following the BLSTM layer, the last two layers of the 
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DanQ model are a dense layer of rectified linear units and a multi-task sigmoid output, 

similar to the DeepSEA model.  

 

DanQ surpasses other methods for predicting the properties and function of DNA 

sequences across several metrics. In addition, we show that the convolution kernels 

learned by the model can be converted to motifs, many of which significantly match 

known motifs. We expect DanQ to provide novel insights into noncoding genomic 

regions and contribute to understanding the potential functions of complex disease- or 

trait-associated genetic variants. 

 

Methods 
 
Features and data 
 
The DanQ framework uses the same features and data as the DeepSEA framework. 

Briefly, the human GRCh37 reference genome was segmented into non-overlapping 200-

bp bins. Targets were computed by intersecting 919 ChIP-seq and DNase-seq peak sets 

from uniformly processed ENCODE and Roadmap Epigenomics data releases, yielding a 

length 919 binary target vector for each sample. Each sample input consists of a 1,000-bp 

sequence centered on a 200-bp bin that overlaps at least one TF binding ChIP-seq peak, 

and is paired with the respective target vector. Based on this information, we expected 

that each target vector would contain at least one positive value; however, we found that 

about 10% of all target vectors were all negatives. Each 1,000-bp DNA sequence is one-

hot encoded into a 1,000 × 4 binary matrix, with columns corresponding to A, G, C and 

T. Training, validation, and testing sets were downloaded from 

http://deepsea.princeton.edu/media/code/deepsea_train_bundle.v0.9.tar.gz. Samples were 

stratified by chromosomes into strictly nonoverlapping training, validation and testing 

sets. The validation set was not used for training or testing. Reverse complements are also 

included, effectively doubling the size of each dataset. 
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For evaluating performance on the test set, the predicted probability for each sequence 

was computed as the average of the probability predictions for the forward and reverse 

complement sequence pairs, similar to DeepSEA’s evaluation experiments. 

 
DanQ model and training 
 
For detailed specifications of the architectures and hyperparameters used in this study, 

see Supplementary Note. Dropout (Srivastava et al., 2014) is included to randomly set a 

proportion of neuron activations from the max pooling and BLSTM layers to a value of 0 

in each training step to regularize the DanQ models.  

 

All weights are initialized by randomly drawing from U(-0.05,0.05) and all biases are 

initially set to 0.  In addition to random initialization, an alternative strategy is to 

initialize kernels from known motifs: a random subsection of a kernel is set equal to the 

values of the position frequency matrix minus 0.25, and its corresponding bias is 

randomly drawn from U(-1.0,0.0). We tried both in our implementation.  

 

Neural network models are trained using the RMSprop algorithm (Tielemanand Hinton 

2012) with a minibatch size of 100 to minimize the average multi-task binary cross 

entropy loss function on the training set. Validation loss is evaluated at the end of each 

training epoch to monitor convergence. The first model we trained contains 320 

convolution kernels with random initial weights, referred to as DanQ, took 60 epochs to 

fully train, and each epoch of training takes approximately 6 hours. The second model we 

trained, which we designated as DanQ-JASPAR because half of the kernels are initialized 

with motifs from the JASPAR database (Mathelier  et al., 2015), contains 1024 

convolution kernels, took 30 epochs to fully train, and each epoch of training takes 

approximately 12 hours.  

 

Our implementation utilizes the Keras 0.2.0 library (https://github.com/fchollet/keras) 

with the Theano 0.7.1 (Bastien et al., 2012; Bergstra et al., 2010) backend. An NVIDIA 

Titan Z GPU was used for training the model.   
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Logistic regression 
 
For benchmark purposes, we also trained a logistic regression (LR) baseline model. 

Unlike the DanQ and DeepSEA models, the LR model does not process raw sequences as 

inputs. Instead, the LR model uses zero-mean and unit variance normalized counts of k-

mers of lengths 1-5bp as features. The LR model was regularized with a small L2 weight 

regularization of 1e-6.  Similar to the training of the DanQ models, the LR model was 

trained using the RMSprop algorithm with a minibatch size of 100 to minimize the 

average multi-task binary cross entropy loss function on the training set. Validation loss 

is evaluated at the end of each training epoch to monitor convergence. We note that this 

method of training is equivalent to training 919 individual single-task LR models.  

 
 
Results  
 

We first train a DanQ model containing 320 convolution kernels for 60 epochs, 

evaluating the average multi-task cross entropy loss on the validation set at the end of 

each epoch to monitor the progress of training. To regularize the model, we also include 

dropout to randomly set a proportion of neuron activations from the max pooling and 

BLSTM layers to a value of 0 in each training step. For detailed specifications of the 

hyperparameters and model architecture, see Supplementary Note. 

 

For benchmarking purposes, we compare a fully trained DanQ model to a LR baseline 

model and the published DeepSEA model. To compare performance among models, we 

first calculated the area under the receiver operating characteristics curve (ROC AUC) for 

each of the 919 binary targets on the test set (Fig. 2). In terms of the ROC AUC score, 

DanQ outperforms the DeepSEA model for two of the targets as shown in the examples 

at the top of Fig. 2, although this performance difference is relatively small. This pattern 

extends to the remaining targets as DanQ outperforms DeepSEA for 94.1% of the targets, 

although the difference is again comparatively small with an absolute improvement of 

around 1-4% for most targets. Despite the simplicity of the LR models, the ROC AUC 

statistics suggests that LR is an effective predictor, with ROC AUC scores typically over 
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70%. Given the sparsity of positive binary targets (~2%), the ROC AUC statistic is 

highly inflated by the class imbalance, a fact overlooked in the original DeepSEA paper. 

 

A better metric to measure the performance is the area under precision-recall curve (PR 

AUC) (Fig. 3). Neither the precision nor recall take into account the number of true 

negatives, thus the PR AUC metric is less prone to inflation by the class imbalance than 

the ROC AUC metric is. As expected, we found the PR AUC metric to be more balanced, 

as demonstrated by how the LR models now achieve a PR AUC below 5% for the two 

examples at the top of Fig. 3, far below the performance of the other two models. 

Moreover, the performance gap between DanQ between DeepSEA is much more 

pronounced under the PR AUC statistic than under the ROC AUC statistic. For the two 

examples shown, the absolute improvement is over 10% and the relative improvement is 

over 50% under the PR AUC metric, and 97.6% of all DanQ PR AUC scores surpass 

DeepSEA PR AUC scores. These results show that adding recurrent connections 

significantly increases the modeling power of DanQ.  

 

Using a similar approach described in the DeepBind method (Alipanahi et al., 2015), we 

converted the kernels from the convolution layer of the DanQ models to position 

frequency matrices, or motifs. Then, we aligned these motifs to known motifs using the 

TOMTOM algorithm (Gupta et al., 2007). Of the 320 motifs learned by the DanQ model, 

166 significantly match known motifs (E<0.01) (Fig. 4A, Fig S1, Supplemental File). 

Next, we aligned and clustered the 320 motifs together into 118 clusters using the RSAT 

matrix clustering tool (Medina-Rivera et al., 2015), and confirmed that the model learned 

a large variety of informative motifs (Fig. 4B and 4C).  

 

Given the large scope of the data, we conjectured that our current model did not exhaust 

the entire space of useful motif features despite the large variety of motifs learned. 

Moreover, weight initialization is known to play crucial role for the performance neural 

networks (Sutskever et al., 2013) and we hypothesized that a better initialization strategy 

can further improve the performance of our neural network. Therefore, we trained a 

larger model containing 1024 convolutional kernels of which about half are initialized 
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with known motifs from JASPAR (Mathelier  et al., 2015) and found this alternative way 

of initialization can further improve the performance of DanQ (Table S1, Fig. S2). We 

are actively refining the architecture and initialization, and we will provide regular 

updates on the best model. We will also provide motifs from these models in MEME 

minimal format, a flexible format compatible with most motif-related programs, as a 

resource to the community. 

 

Discussion 

In conclusion, DanQ is a powerful method for predicting the function of DNA directly 

from sequence alone, making it a valuable asset for studying the function of noncoding 

DNA. Its hybrid architecture allows it to simultaneously learn motifs and a complex 

regulatory “grammar” between the motifs. The additional modeling capacity afforded by 

the recurrent connections allows DanQ to significantly outperform DeepSEA, a pure 

CNN model that lacks recurrent modeling. This performance gap is demonstrated across 

several metrics, including a direct comparison of AUC statistics between the two models. 

We argue that the PR AUC statistic is a much more balanced metric than the ROC AUC 

statistic to assess performance in this case due to the massive class imbalance. In fact, the 

performance gap can be quite drastic under the PR AUC statistic, reaching well over a 

50% relative improvement for some epigenetic marks. Nevertheless, despite the 

significant improvement in performance, there is still much room for improvement 

because most of the PR AUC scores are below 70% for either model.  

 

There are several avenues of future interest to explore. First, we are actively exploring 

how to extend the model to process genetic variants in order to predict their functional 

consequences. Second, the model can be made fully recurrent so it can process sequences 

of arbitrary length, such as whole chromosome sequences, to generate sequential outputs. 

In contrast, our current setup can only processes sequences of constant length with static 

outputs. A fully recurrent architecture may also benefit our effort to study variants since 

it would allow us to explore the long-range consequences of genetic variants, as well as 

the cumulative effects of SNPs that are in linkage disequilibrium with each other. Finally, 

we are committed to updating and improving the DanQ model. This involves improving 
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the model architecture and incorporating new ChIP-seq and DNase-seq datasets from 

more cell types as they become available. We are also interested in incorporating other 

types of data, such as methylation, nucleosome positioning, and even possibly 

transcription. To the best of our knowledge, this is the first application of a hybrid 

convolution and recurrent network architecture for the purpose of predicting function de 

novo from DNA sequences. We expect this hybrid architecture will be continually 

explored for the purpose of studying biological sequences. 
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Figure 1. A graphical illustration of the DanQ model: An input sequence is first one hot 
encoded into a 4-row bit matrix. A convolution layer with rectifier activation acts as a 
motif scanner across the input matrix to produce an output matrix with a row for each 
convolution kernel and a column for each position in the input (minus the width of the 
kernel). Max pooling reduces the size of the output matrix along the spatial axis, 
preserving the number of channels. The subsequent BLSTM layer considers the 
orientations and spatial distances between the motifs. BLSTM outputs are flattened into a 
layer as inputs to a fully connected layer of rectified linear units. The final layer performs 
a sigmoid nonlinear transformation to a vector that serves as probability predictions of 
the epigenetic marks to be compared via a loss function to the true target vector. 
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Figure 2. (top) ROC curves for the GM12878 EBF1 and H1-hESC SIX5 targets 
comparing the performance of the three models. (bottom) A direct comparison of ROC 
AUC between DanQ and DeepSEA for each of the 919 targets, showing that DanQ 
outperforms DeepSEA for 94.1% of the targets in terms of ROC AUC.   
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Figure 3. (top) PR curves for the GM12878 EBF1 and H1-hESC SIX5 targets comparing 
the performance of the three models. (bottom) A direct comparison of PR AUC between 
DanQ and DeepSEA for each of 919 targets, showing that DanQ outperforms DeepSEA 
for 97.6% of the targets in terms of PR AUC.   
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Figure 4. (a) Three convolution kernels (top) visualized and aligned with EBF1, TP63, 
and CTCF motif logos (bottom) from JASPAR using TOMTOM. Significance values of 
the match are displayed below motif names. (b) All 320 convolution kernels are 
converted to sequence logos and aligned with RSAT. The heatmaps are colored 
according to the information content of the respective nucleotide at each position. (c) 
Same as (b), except that the heatmap is colored by the sum of the information content of 
each letter. 
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Supplementary note: 
 
Detailed specifications of the architectures and hyperparameters of the DanQ models 
used in this study. Numbers to the right of the forward slash indicate values unique to the 
DanQ-JASPAR model, a larger model in which about half of the convolution kernels are 
initialized with motifs from the JASPAR database. 
 
Model Architecture: 
 

1. Convolution layer (320/1024 kernels. Window size: 26/30. Step size: 1.) 
2. Pooling layer (Window size: 13/15. Step size: 13/15.) 
3. Bi-directional long short term memory layer (320/512 forward and 320/512 

backward LSTM neurons) 
4. Fully connected layer (925 neurons) 
5. Sigmoid output layer 

 
Regularization Parameters: 
 
Dropout proportion (proportion of outputs randomly set to 0): 

Layer 2: 20% 
Layer 3: 50% 
All other layers: 0% 
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Table S1. Accuracy and cross-entropy loss on training, validation, and testing sets for 
each of the models. The DanQ model initialized with JASPAR motifs performed the best 
across all metrics, as indicated in bold. Note that due to the huge class imbalance, all 
models achieved high accuracies. 
 

 Training Validation Testing 

 Loss Accuracy Loss Accuracy Loss Accuracy 
Predict all 0’s N/A 97.84% N/A 98.05% N/A 97.94% 

LR 0.0798 97.90% 0.0743 98.09% 0.0771 97.99% 
DeepSEA 0.0551 98.20% 0.0509 98.36% 0.0554 98.21% 

DanQ 0.0539 98.23% 0.0491 98.39% 0.0538 98.24% 
DanQ-JASPAR 0.0521 98.26% 0.0482 98.40% 0.0533 98.24% 
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IRF1 (4.26e-8)  Foxa2 (2.74e-6) Gata1 (3.74e-7)  znf143 (2.78e-5) 

 
 

CEBPB (2.24e-7) YY1 (2.07e-6)  Ets1 (1.23e-9)  GRHL1 (7.01e-12) 

 
 

RFX2 (1.39e-9)  NFKB1 (3.88e-6) NRF1 (4.47e-6)  HNF4A (3.15e-12) 

 
 

Figure S1. Examples of convolution kernels from the DanQ model converted to motif 
logos. The top four motifs did not significantly match  (E < 0.01) any vertebrate-related 
motifs according to TOMTOM. Each of the remaining twelve panels shows the logo of 
the motif discovered by DanQ (lower logo) aligned with the best matching motif in the 
databases (upper logo), along with the name of the best matching transcription factor and 
significance value of the match.  
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Figure S2. A comparison of ROC and PR AUC statistics for each of the 919 binary 
targets between the DanQ-JASPAR and DeepSEA models. 96.6% and 98.6% of ROC 
and PR AUC scores are greater for the DanQ-JASPAR model than they are for the 
DeepSEA model, respectively. 
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