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Abstract  16 

Background 17 

Oncology drugs are only effective in a small proportion of cancer patients. Our 18 

current ability to identify these responsive patients before treatment is still poor in 19 

most cases. Thus, there is a pressing need to discover response markers for marketed 20 

and research oncology drugs in order to improve patient survival, reduce healthcare 21 

costs and enhance success rates in clinical trials. Screening these drugs against a large 22 

panel of cancer cell lines has been employed to discover new genomic markers of in 23 

vitro drug response, which can now be further evaluated on more accurate tumour 24 

models. However, while the identification of discriminative markers among thousands 25 
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of candidate drug-gene associations in the data is error-prone, an appraisal of the 26 

effectiveness of such detection task is currently lacking.  27 

Results 28 

Here we present a new non-parametric method to measuring the discriminative power 29 

of a drug-gene association. This is enabled by the identification of an auxiliary 30 

threshold posing this task as a binary classification problem. Unlike parametric 31 

statistical tests, the adopted non-parametric test has the advantage of not making 32 

strong assumptions about the data distorting the identification of genomic markers. 33 

Furthermore, we introduce a new benchmark to further validate these markers in vitro 34 

using more recent data not used to identify the markers. The application of this new 35 

methodology has led to the identification of 128 new genomic markers distributed 36 

across 61% of the analysed drugs, including 5 drugs without previously known 37 

markers, which were missed by the MANOVA test initially applied to analyse data 38 

from the Genomics of Drug Sensitivity in Cancer consortium. 39 

Introduction 40 

Cancer is a leading cause of morbidity and mortality in industrialised nations, with 41 

failed treatment being often life-threatening. While a wide range of drugs are now 42 

available to treat cancer patients, in practice only a small proportion of them respond 43 

to these drugs [1]. Worse yet, our current ability to identify responsive patients before 44 

treatment is still poor in most cases [2]. This situation has a negative impact on patient 45 

survival (the tumour keeps growing until an effective drug is administered), 46 

healthcare costs (very expensive drugs are ineffective, and thus wasted, on most 47 

cancer patients [1, 3]) and the success rates of oncology clinical trials (10% fall in 48 

Phase II studies, with the number of phase III terminations doubling in recent years 49 
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[4]). Therefore, there is a pressing need to understand and predict this aspect of 50 

human variation to make therapy safer and more effective by determining which 51 

drugs will be more appropriate for any given patient.  52 

The analysis of tumour and germline DNA has been investigated as a way to 53 

personalise cancer therapies for quite some time [5]. However, the recent and 54 

comprehensive flood of new data from much cheaper and faster Next Generation 55 

Sequencing technologies along with the maturity of more established molecular 56 

profiling technologies represents an unprecedented opportunity to study the molecular 57 

basis of drug response. These data have shown that drug targets often present genomic 58 

alterations across patient tumours [6]. At the molecular level, these somatic mutations 59 

affect the abundance and function of gene products driving tumour growth and hence 60 

may influence disease outcome and/or response to therapy [7]. Therefore, there is 61 

opportunity for genetic information to aid the selection of effective therapy by relating 62 

the molecular profile of tumours to their observed sensitivity to drugs. Research on 63 

the identification of drug-gene associations to be used as predictive biomarkers of in 64 

vitro drug response is carried out on human cancer tumour-derived cell lines [8–10]. 65 

Cell lines allow relatively quick and cheap experiments that are generally not feasible 66 

on more accurate disease models [11]. Here the molecular profile of the untreated cell 67 

line is determined and a phenotypic readout is measured to assess the intrinsic cell 68 

sensitivity or resistance to the tested drug. In addition to biomarker discovery [8–10], 69 

these data sets have also been used to enable pharmacogenomic modelling [12–14], 70 

pharmacotranscriptomic modelling [15, 16], QSAR modelling [17, 18], drug 71 

repositioning [18, 19] and molecular target identification [19–21], among other 72 

applications. 73 
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Our study focuses on the Genomics of Drug Sensitivity in Cancer (GDSC) data 74 

analysed by Garnett et al. [9] and publicly released after additional curation [22]. The 75 

released data set comprises 638 human tumour cell lines, representing a broad 76 

spectrum of common and rare cancer types. One benefit of looking at a large number 77 

of cell lines is that the pool of data becomes larger, which is crucial for in vitro 78 

biomarker discovery. These authors profiled each cell line for various genetic 79 

abnormalities, including point mutations, gene amplifications, gene deletions, 80 

microsatellite instability, frequently occurring DNA rearrangements and changes in 81 

gene expression. Next, the sensitivity of 130 drugs against these cell lines was 82 

measured with a cell viability assay in vitro (cell sensitivity to a drug was summarised 83 

by the half-maximal inhibitory concentration or IC50 of the drug-cell pair). A p-value 84 

was calculated for 8637 drug-gene associations using a MANOVA test (PMANOVA), 85 

with 396 of those associations being above a FDR=20% Benjamini-Hochberg [23] 86 

adjusted threshold and thus deemed significant (details in the Methods section). 87 

Overall, it was found that only few drugs had strong genomic markers, with no 88 

actionable mutations being identified for 14 drugs. 89 

However, a statistically significant drug-gene association is not necessarily a useful 90 

genomic marker of in vitro drug response. There are two types of errors at this inter-91 

association level: a false association (type I error or false positive) or a missed 92 

association (type II error or false negative). False negatives are the most worrying 93 

types of errors because these are hard to detect and can have particularly adverse 94 

consequences (e.g. missing a genomic marker able to identify tumours sensitive to a 95 

drug for which no marker has been found yet). Indeed, significant p-values are merely 96 

intended to highlight potential discoveries among thousands of possibilities and thus 97 
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their practical importance still have to be evaluated for the problem at hand [24–26]. 98 

For example, a significant drug-gene association can be become non-significant with 99 

the availability of more data and hence be revealed as a spurious correlation. Another 100 

possibility is that the association is significant but its effect is tiny and thus of little 101 

consequence for identifying sensitive tumours. In this context, the practical 102 

importance of a potential marker is measured by how well the gene mutation 103 

discriminates between cell lines from an independent test set according their 104 

sensitivity to a given drug. Importantly, while a parametric test such as MANOVA 105 

makes strong modelling assumptions [27] (e.g. normality and equal variances in the 106 

distribution of residuals), the distribution of drug responses of the compared groups of 107 

cell lines is often skewed, contain outliers and/or have different variances. 108 

Consequently, p-values from the MANOVA test may be more prone to Type I and 109 

Type II errors than statistical tests requiring milder assumptions. Thus, research 110 

intended to identify more appropriate statistical procedures for biomarker discovery 111 

on comprehensive pharmacogenomic resources such as GDSC is crucial to make the 112 

most out of these valuable data. 113 

Here we will investigate the impact that the choice of the statistical test has on the 114 

systematic identification of genomic markers of drug sensitivity on GDSC 115 

pharmacogenomic data. The assessment will be carried out by comparing drug-gene 116 

associations identified by the MANOVA test with those identified by Pearson‟s chi-117 

squared test. The latter is a non-parametric test [28] and hence it does not make 118 

strong modelling assumptions distorting the detection task. This chi-squared test is 119 

applied to binary classification and hence we propose here an auxiliary threshold to 120 

enable its application to this problem. Furthermore, the largest discrepancies between 121 
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both statistical tests on the training data set will be visualised and discussed with 122 

respect to the discriminative power of its significant and non-significant drug-gene 123 

associations. In addition, we will introduce a benchmark using a more recent GDSC 124 

dataset than that employed for the identification of statistically significant drug-gene 125 

associations and use it to validate in vitro the single-gene markers arising from each 126 

statistical test. This is timely research because the issue of systematically validating 127 

markers in vitro has not been addressed yet and thus it is currently unknown to which 128 

extent the limitations of the statistical test affect genomic marker discovery.  129 

Results 130 

Improved measurement of discriminative power by the chi-squared test 131 

Genomic markers of drug response aim at identifying gene alterations that best 132 

discriminate between tumours regarding their sensitivity to a given drug. The 133 

ANOVA family of statistical tests attempts to determine how discriminative is the 134 

gene alteration by comparing the intra-group variances with the inter-group variances 135 

based on several strong assumptions about the data [29]. In order to enable the 136 

application of the non-parametric chi-squared test, a suitable IC50 threshold is required 137 

to define two auxiliary classes of cell lines, those most sensitive to the drug and those 138 

most resistant to the drug, which permits posing biomarker evaluation as a binary 139 

classification problem. Such threshold cannot be a fixed IC50 value for all drugs due to 140 

the different IC50 ranges across drugs (otherwise, all cell lines would be sensitive to 141 

the most potent drugs). Likewise, it would not be meaningful to fix the same IC50 142 

threshold for all drug-gene associations within a given drug (for example, using the 143 

mean of the drug‟s IC50s along with a rare mutation would result in a threshold 144 

splitting the WT cell lines in about half regardless of how more sensitive the mutant 145 
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cell lines could be). For each drug-gene association, this issue can be overcome by 146 

characterising the typical sensitivity of each group of cell lines (i.e. those with the 147 

mutated gene and those with the WT gene) and calculating the threshold as the mean 148 

of the sensitivities of both groups. However, if each group was characterised by the 149 

mean of its IC50 values, the presence of strong outliers and/or a highly skewed IC50 150 

distribution would distort the position of the threshold. Thus, we characterise each 151 

group of cells by its median IC50 and define this mutation-dependent threshold as the 152 

mean of both medians (e.g. the dotted red line of the scatter plot in Figure 2A). This 153 

definition is advantageous in that the size of each group and their outliers do not alter 154 

the position of this decision boundary, which is equidistant to both classes and leads 155 

to an intuitive notion of class membership as distance from the threshold. 156 

Once this IC50 threshold is calculated, the mutation-based prediction of drug response 157 

of a cell line can be categorised as a true positive (TP), true negative (TN), false 158 

positive (FP) or false negative (FN). These relative measures of drug sensitivity are 159 

only intended to quantify the discrimination between mutated and WT cell lines and 160 

must not be mistaken by absolute measures of drug sensitivity (e.g. a cell line can be 161 

defined as sensitive to a drug if its IC50 is better than the median IC50 of all cell lines 162 

for that drug, however such threshold may poorly measure how different are the drug 163 

responses of mutated and WT tumours). From this contingency table at the intra-164 

association level, the discrimination offered by a drug-gene association can be 165 

summarised by its Matthews Correlation Coefficient (MCC) [30], as specified in the 166 

Methods section. Since cells are now partitioned into four non-overlapping categories 167 

with respect to their response to a drug, the chi-squared test statistic (denoted as χ
2
) 168 

can be computed from this 2x2 contingency table to identify those drug-gene 169 
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associations with statistically significant discriminative power (χ
2
 measures how far is 170 

the contingency table obtained by the classification method from the values that 171 

would be expected by chance). The process is sketched in Figure 2 and leads to an 172 

alternative set of p-values from the chi-squared test (Pχ2), whose definitions and 173 

calculations are provided in the Methods section. To establish which associations are 174 

significant according to the chi-squared test, we also calculated for this case the 175 

FDR=20% Benjamini-Hochberg adjusted threshold (0.00940155). Overall, 403 176 

statistically significant drug-gene associations were found using the chi-squared test 177 

from the same set of 8637 associations that were downloaded (i.e. seven significant 178 

associations more than with the MANOVA test). Importantly, only 171 associations 179 

of these markers were found by the MANOVA test. These deviations of the 180 

MANOVA test with respect to the results provided by the non-parametric test will be 181 

investigated in the next section to highlight potential false and missed biomarkers. 182 

A last aspect to discuss about the proposed methodology is the duality of MCC and χ
2
. 183 

In statistics, MCC is known as the φ coefficient, which was introduced [31] by Yule 184 

in 1912 and later rediscovered [30] by Matthews in 1975 as the MCC (interestingly, 185 

despite being more recent, the MCC has become a much more popular metric for 186 

binary classification than the φ coefficient [32–37]). As χ
2
= n∙φ

2
 holds[31], so does 187 

χ
2
=n∙MCC

2
 with n being the number of tested cell lines for the considered drug and 188 

thus MCC will be highly correlated with Pχ2. To avoid confusion, we will use φ to 189 

refer to discrimination at this intra-association level (i.e. to identify the markers) and 190 

reserve MCC for the validation of the identified markers as a separate binary 191 

classification problem at the inter-association level that we will introduce later. Figure 192 

3A presents the number of drug-gene associations for each number of tested cell lines, 193 
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from which it is observed that each drug has only been tested on a subset n of the 638 194 

cell lines (i.e. gene associations for a given drug will be all evaluated on the same 195 

number of cell lines n). Two distinctive groups of drugs emerge: those tested on 196 

around 300 cell lines (red bars) and those tested around 450 cell lines (black bars). 197 

Figure 3B shows that φ and -logPχ2 are highly correlated even across different n (for 198 

associations with the same n, a perfect Pearson and Spearman correlation is obtained 199 

as expected – data not shown). Given the observed φ distribution of n values, all 200 

markers with an φ of 0.15 or more are found unlikely to have arisen by chance. This 201 

connexion is useful in that φ is widely used [32–37] but without establishing its 202 

statistical significance for the tackled problem instance.   203 

Potential false-positive and false-negative markers of the MANOVA test 204 

We have introduced a new method directly measuring the discriminative power of a 205 

drug-gene association using the φ along with its significance using Pχ2. We analyse 206 

next those associations where the MANOVA test deviates the most from this non-207 

parametric test. First, we identified the association with the largest difference between 208 

PMANOVA and Pχ2 among those not significant by the chi-squared test. The left scatter 209 

plot in Figure 4 shows that this drug-gene association (GW441756-FLT3) 210 

discriminates poorly between mutant and WT cell lines despite a very low 211 

PMANOVA~10
-10

. In contrast, a high Pχ2~10
-1

 is obtained which means that the chi-212 

squared test rejected this potential false positive of the MANOVA test.  213 

Conversely, to assess the consistency of the MANOVA test, we searched for the drug-214 

gene association with smallest Pχ2 among those with a similar PMANOVA to that of 215 

GW441756-FLT3, which is Dasatinib-BCR_ABL (Figure 4 right). The BCR_ABL 216 

translocation is a highly discriminative marker of Dasatinib sensitivity (φ =0.65), as 217 

evidenced by the barely overlapping drug response distributions from each set of cell 218 
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lines. Note that, whereas the p-value for Dasatinib-BCR_ABL is of the same 219 

magnitude as that for GW441756-FLT3 using the MANOVA test (PMANOVA~10
-10

), 220 

the p-values for the same associations using the chi-squared test are almost 27 orders 221 

of magnitude apart. Thus, unlike the chi-squared test, the MANOVA test is unable to 222 

detect the extreme difference in discriminative power offered by these two drug-gene 223 

associations. 224 

The next experiment consists in searching for the largest discrepancy in the opposite 225 

direction. First, we identified the association with the largest difference between 226 

PMANOVA and Pχ2, this time among those not significant by the MANOVA test. The 227 

left scatter plot in Figure 5 shows marked difference in the two drug response 228 

distributions of this drug-gene association (Dasatinib-CDKN2a.p14), suggesting that 229 

this is a potential false negative of the MANOVA test despite a high PMANOVA~10
-1

. In 230 

contrast, a low Pχ2~10
-9

 is obtained, which means that the chi-squared test detected 231 

this potential false negative of the MANOVA test. Conversely, to assess again the 232 

consistency of the MANOVA test, we searched for the drug-gene association with 233 

smallest PMANOVA among those with a similar Pχ2 to that of Dasatinib-CDKN2a.p14, 234 

which is SB590885-BRAF (Figure 5 right). Whereas the p-values for Dasatinib-235 

CDKN2a.p14 and SB590885-BRAF differ 27 orders of magnitude using the 236 

MANOVA test, the p-values for the same associations have similar p-values using the 237 

chi-squared test (Pχ2~10
-9

). Thus, unlike the chi-squared test, the MANOVA test is 238 

unable to detect that both markers have similar discriminative power as also indicated 239 

by the MCC (SB590885-BRAF has a φ of 0.29 for 0.35 of Dasatinib-CDKN2a.p14). 240 

Validation of single-gene markers on a more recent GDSC data set 241 

We propose a new benchmark based on using the most recent comparable GDSC data 242 

as test sets. For the 127 drugs in common between releases 1 and 5, two non-243 
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overlapping data sets are generated per drug. Training sets from data in release 1 244 

along with their logIC50s for the considered drug, which were used to identify 245 

genomic markers as previously explained. Further, test sets contain the new cell lines 246 

tested with the drug in release 5. Thereafter, the significant drug-gene associations 247 

from each statistical test are evaluated on these test sets. A cell line sensitivity 248 

threshold was previously defined in order to discriminate between those resistant or 249 

sensitive to the considered drug. For each drug, we calculated the threshold as the 250 

median of all the logIC50 values from training set cell lines. Consequently, cell lines 251 

with logIC50 lower than such threshold are sensitive to the drug of interest, whereas 252 

those with logIC50 higher the threshold are resistant. Lastly, classification performance 253 

of a marker on its test set is summarised with the MCC. 254 

Figure 6 presents a comparison between detection methods using this benchmark. The 255 

three compared methods are those based on the chi-squared test (B), the MANOVA 256 

test (C) and their consensus (A; the association is significant if it is significant by both 257 

tests). We can see that the consensus method is the most predictive (full results in 258 

additional file 1), followed by associations only significant with the chi-squared test 259 

(additional file 2) and those only significant by the MANOVA test (additional file 3). 260 

These results show that the overall predictive value of the markers revealed by the 261 

chi-squared test is higher than that arising from the MANOVA test and also that the 262 

consensus of both tests is more predictive than any of these two tests alone. While 263 

most of the markers provide better prediction than random classification (MCC=0 264 

[38]), their generally low test set MCC values regardless of the employed detection 265 

method highlight how hard is to identify predictive markers of drug response. 266 

We also use this framework to further validate in vitro the markers shown in Figures 4 267 

and 5 as examples. The GW441756-FLT3 marker provides an MCC of 0.10 on the 268 
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test despite having weak discriminative power on the training set and hence this is a 269 

false negative of the chi-squared test. The Dasatinib-BCR_ABL marker obtains an 270 

MCC of 0.21 on the test set. Dasatinib-CDKN2a.p14 provides MCC=0.13 on the test 271 

set. Therefore, the chi-squared test detected this confirmed false negative of the 272 

MANOVA test. SB590885-BRAF is a true positive of both tests since its MCC on the 273 

test set is 0.27.  274 

128 new markers unearthed by the chi-squared test and validated in vitro  275 

The rest of the study will focus on unearthing these missed discoveries using the chi-276 

squared test and further in vitro validation based on a test set made of more recent 277 

GDSC data. Indeed, these new genomic markers constitute additional knowledge that 278 

can be extracted from existing data, i.e. without requiring any further experiment. In 279 

the data released by the GDSC, the 396 genomic markers from the MANOVA test 280 

were distributed among 116 drugs, leaving the remaining 14 drugs without any maker.  281 

Of the 403 single-gene markers identified by the chi-squared test, 187 were not found 282 

by the MANOVA test and could not be evaluated on the test set because there are 283 

only 127 drugs in common between the training and test sets and some markers did 284 

not have mutant test set cell lines (i.e. test set MCC cannot be evaluated for these 285 

markers because these yield no prediction). For the same reasons, the situation is 286 

similar for the MANOVA test: only 182 of the 396 MANOVA-significant drug-gene 287 

associations were not found by chi-squared test and could not be evaluated on the test 288 

set. Further, there are 128 of the 187 associations from the chi-squared test with test 289 

set MCC greater than zero (115 of the 182 associations from the MANOVA test). 290 

Figure 7 shows two examples of new chi-squared markers for drugs with previously-291 

proposed MANOVA markers. The scatter plot at the top left identified the mutational 292 

status of CDK2NA as a new marker of sensitivity to Temsirolimus, which was missed 293 
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by the MANOVA test. This marker predicts well which cell lines are sensitive to this 294 

drug (MCC of 0.30 on the test set; top right plot). The second example is shown at the 295 

bottom of Figure 7. The EWS_FLI1 translocation is also a new response marker for 296 

the drug BMS-754807, which was also missed by the MANOVA test. This marker 297 

provides good predictive performance on cell lines not used to identify the markers 298 

(MCC of 0.25 on the test set; bottom right plot). Overall, we have found new markers 299 

unearthed by the chi-squared test in 77 of the 127 drugs (see additional file 2 ).   300 

New genomic markers are particularly valuable in those drugs for which no marker is 301 

known yet. From our analysis, we have also identified seven new markers with MCC 302 

better than random classification for the five drugs for which the MANOVA test did 303 

not find any potential marker [9]: NU-7441, Cyclopamine, BI-2536, Gemcitabine and 304 

Epothilone B (see Additional file 2). Figure 8 shows the performance of two of these 305 

markers. On the right, the mutational status of the NOTCH1 gene is the most 306 

discriminative marker for the development drug BI-2536 (MCC=0.23 on the test set). 307 

On the left, EWS_FLI1-positive cell lines exhibit increased sensitivity to Gemcitabine 308 

(MCC=0.18 on the test set).  309 

Discussion 310 

To improve the search of genomic markers of drug response, we have presented a new 311 

non-parametric approach that directly measures the discriminative power of a drug-312 

gene association by posing it as a binary classification problem. This change of 313 

perspective has been enabled by the introduction of an auxiliary threshold that is 314 

tailored to each association. Thus, discrimination can be measured with the χ
2
 statistic 315 

and its significance with the chi-squared test, which provides a better alignment of the 316 

statistical and biological significance of a drug-gene association. Furthermore, we 317 
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have shown that, since φ is linked to χ
2
, the significance of a φ value can also be 318 

calculated with the chi-squared test.  319 

Next,  the chi-squared test has been applied to the identification of genomic markers 320 

from GDSC data and these markers compared to those arising from the MANOVA 321 

test[9]. Unlike the chi-squared test, statistical tests from the ANOVA family are 322 

parametric and thus expected to lead to inaccuracies when the data do not conform to 323 

the underlying modelling assumptions [27, 28]. Unlike the MANOVA test, the chi-324 

squared test has the drawback of requiring the binarisation of logIC50 values, which 325 

leads to all misclassification errors having the same weight on the chi-squared test 326 

statistic regardless of the magnitude of this error. The largest discrepancies arising 327 

from both sets of p-values have been discussed in detail as shown in Figures 4 and 5, 328 

which provide examples of false negatives of both tests.  False positive markers of 329 

either test are less important because they do not represent new knowledge, but 330 

resource-consuming false alarms, and may also become true positives with the arrival 331 

of more data. 332 

Using the new benchmark, we have carried out a systematic comparison across 8637 333 

drug-gene associations for which a p-value from the MANOVA test had been 334 

calculated in the GDSC study[9]. The MANOVA test highlighted 396 of these 335 

associations as statistically significant, for 403 from the chi-squared test looking at the 336 

same data. However, only 171 associations were deemed statistically significant by 337 

both tests. Ultimately, we have found that 216 of the 396 MANOVA-significant 338 

markers offer better than random performance. These drug-gene associations are those 339 

with positive MCC in additional files 1 and 3. 340 
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We have also found that 229 of the 403 χ
2
-significant markers offer better than 341 

random performance. Of these 229, 128 are new markers only detected by the chi-342 

squared test (see additional file 2) and hence are false negatives of the MANOVA test. 343 

Temsirolimus-CDK2NA, 17AAG-CDK2NA or BMS-754807-EWS_FLI1 are among 344 

the most predictive of these new in vitro markers. Furthermore, we also identified 7 345 

new markers with MCC better than random classification for the 5 drugs for which 346 

the MANOVA test did not find any marker [9]: NU-7441, Cyclopamine, BI-2536, 347 

Gemcitabine and Epothilone B. Overall, the predictive value of the markers revealed 348 

by the chi-squared test is higher than that arising from the MANOVA test and also 349 

that the consensus of both tests is more predictive than any of these two tests alone 350 

(see Figure 6). The former means that the chi-squared test should be preferred over 351 

the MANOVA test for this problem, the latter showing that the consensus of both 352 

tests highlights markers that are more likely to be predictive than those that are 353 

significant by only one of the tests. 354 

Regarding best practices to compare two statistical tests for biomarker discovery, it 355 

could be argued that it is better to base the comparison on the ability of the tests to 356 

identify clinical markers. However, there are several reasons why this is inadequate. 357 

First of all, only a fraction of GDSC drugs have FDA-approved markers. Second, 358 

whereas clinical markers are so discriminative that are easily found by both methods, 359 

the challenge is to identify more subtle markers in the data. Indeed, the goal of the 360 

GDSC study was to search for still unknown markers to increase the ratio of patients 361 

that could benefit from personalised treatments (low for most clinical markers) as well 362 

as to find new markers for those drugs without clinical markers. Lastly, a gene 363 

mutation discriminative of in vitro drug response may be discriminative of human 364 
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drug response, without still having been assessed in the clinic. A validation based on 365 

comparing the tests on clinical markers will be thus blind to the MANOVA test 366 

missing these discoveries. 367 

Predictive biomarkers are highly sought after in drug development and clinical 368 

research [39, 40]. A vast amount of cancer genomics data is nowadays being 369 

generated [41] and thus there is an urgent need for their accurate analysis [42]. In the 370 

area of drug sensitivity marker discovery, recent multilateral efforts have been made 371 

[43, 44] to investigate the consistency of high-throughput pharmacogenomic data, 372 

which are collectively important to promote an optimal use of this valuable data by 373 

the relevant communities [45]. However, the impact of the strong modelling 374 

assumptions made by standard parametric tests on the discovery of genomic markers 375 

from data has not been analysed until now. Therefore, this study is important in a 376 

number of ways. First, these new genomic markers of in vitro drug response represent 377 

testable hypothesis that can now be evaluated on more relevant disease models to 378 

humans. Second, they may also constitute further evidence supporting newly 379 

proposed oncology targets [46]. Third, beyond the exploitation of these results, the 380 

widespread application of this methodology should lead to the discovery of new 381 

predictive biomarkers of in vitro drug response on existing data, as it has been the 382 

case here with the GDSC. Indeed, this new approach has been demonstrated on a 383 

large-scale drug screening against human cancer cell lines, but it can also be applied 384 

to other biomarker discovery problems such as those adopting more accurate disease 385 

models (e.g. primary tumours [47, 48], patient-derived xenografts [49, 50] or patients 386 

[51, 52]), those employing other molecular profiling data (e.g. transcriptomics [53], 387 

secretome proteomics [54], epigenomics [55] or single-cell genomics [56]) or those 388 
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involving drug combinations [57]. Looking more broadly, the methodology can also 389 

be applied to large-scale drug screening against human or non-human molecularly-390 

profiled pathogen cultures, such as those in antibacterial or agricultural research. 391 

Methods 392 

GDSC data 393 

From release 1.0 of the Genomics of Drug Sensitivity in Cancer (GDSC) [22], we 394 

downloaded the following data files: gdsc_manova_input_w1.csv and 395 

gdsc_manova_output_w1.csv.  396 

In gdsc_manova_input_w1.csv, there are 130 unique drugs as camptothecin was 397 

tested twice, drug ids 195 and 1003, and thus we only kept the instance that was more 398 

broadly tested (i.e. drug ID 1003 on 430 cell lines). Thus, effectively a panel of 130 399 

drugs was screened against 638 cancer cell lines, leading to 47748 IC50 values (57.6% 400 

of all possible drug-cell pairs). Downloaded “IC50” values are more precisely the 401 

natural logarithm of IC50 in µM units (i.e. negative values represent drug responses 402 

more potent than 1µM). We converted each of these values into their logarithm base 403 

10 in µM units, which we denote as logIC50 (e.g. logIC50=1 corresponds to 404 

IC50=10µM), as in this way differences between two drug response values are directly 405 

given as orders of magnitude in the molar scale.  406 

gdsc_manova_input_w1.csv also contains genetic mutation data for 68 cancer genes, 407 

which were selected as the most frequently mutated cancer genes [9], characterising 408 

each of the 638 cell lines. For each gene-cell pair, a „x::y‟ description was provided by 409 

the GDSC, where „x‟ identifies a coding variant and „y‟ indicates copy number 410 

information from SNP6.0 data. As in Garnett et al. [9], a gene for which a mutation is 411 

not detected is considered to be wild-type (wt). A gene mutation is annotated if: a) a 412 
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protein sequence variant is detected (x ≠{wt,na}) or b) a deletion/amplification is 413 

detected. The latter corresponds to a copy number (cn) variation different from the wt 414 

value of y=0<cn<8. Furthermore, three translocations were considered (BCR_ABL, 415 

MLL_AFF1 and EWS_FLI1). For each of these gene fusions, cell lines are identified 416 

as fusion not-detected or the identified fusion is given (i.e. wt or mutated with respect 417 

to the gene fusion, respectively). The microsatellite instability (msi) status of each cell 418 

line was also determined. Full details can be found in the original publication [9]. 419 

Statistically significant drug-gene associations with the MANOVA test 420 

Garnett et al.[9] carried out a fixed-effects MANOVA statistical test based on the 421 

genomic features specified in the previous section. An nx2 dose–response matrix 422 

consisting of IC50 and slope parameter for the n cell lines was constructed for each 423 

drug. A linear (no interaction terms) model was claimed to explain these observables 424 

from the genomic features as input and the tissue type as co-variate. Since this 425 

procedure was not fully specified (e.g. no test statistic choice or implementation 426 

information was provided), we used their results (gdsc_manova_output_w1.csv) and 427 

hence we did not recalculate them. This file contains 8701 drug-gene associations 428 

with p-values. As we are considering all those involving the 130 unique drugs (i.e. 429 

removing the camptothecin duplicate), we are left with 8637 drug-gene associations 430 

with p-values of which 396 were above a FDR=20% Benjamini-Hochberg adjusted 431 

threshold (0.00840749) and thus deemed significant according to this test. As usual 432 

[9], each statistically significant drug-gene association was considered to be a 433 

genomic marker of in vitro drug response. 434 

Measuring the discriminative power of a genomic marker with the chi-squared 435 
test 436 

Let the training data for the association between the i
th

 drug and the j
th

 gene be 437 
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    {(         
   

   
   

)}
   

    

 

where ni is the number of cell lines screened against the i
th

 drug and k denotes the 438 

considered cell line. The sets of mutated and WT cell lines with respect to the j
th

 gene, 439 

MTj and WTj, be 440 

    {      
   

  }                     {      
   

  } 

Next, the logIC50 threshold is defined as the average of the two median responses 441 

from each set (see subsection “Improved measurement of discriminative power by the 442 

chi-squared test”). 443 

Thus, for each association between the i
th

 drug and the j
th

 gene, two steps are 444 

carried out to pose its evaluation as an intra-association binary classification 445 

problem. 446 

Step 1: 447 

              ({         
   

}
      

) 

              ({         
   

}
      

) 

        (               )   

 448 

Step 2: 449 

if (               ) then mutant cell lines tend to be more 450 

sensitive to the drug and hence this is a genomic marker of drug 451 
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sensitivity. Consequently, positives are defined as cell lines with logIC50 452 

<         and negatives are defined as cell lines with logIC50 ≥          453 

else if         ≥          then mutant cell lines tend to be more 454 

resistant to the drug and hence this is a genomic marker of drug 455 

resistance. Therefore, negatives are defined as cell lines with logIC50 < 456 

        and positives are defined as cell lines with logIC50 ≥          457 

At this point, the set of all the cell lines tested with a given drug can be partitioned 458 

into four categories as defined in Figure 2: true positive (TP), true negative (TN), 459 

false positive (FP) or false negative (FN). From this contingency table, the 460 

discrimination offered by a drug-gene association can be summarised by the 461 

Matthews Correlation Coefficient (MCC) [30]  462 

    
           

√                               
 

By the above definition of positives and negatives, MCC can only take values from 0 463 

(gene mutation has absolutely no discriminative power) to 1 (gene mutation perfectly 464 

predicts whether cell lines are sensitive or resistant to the drug). Also, note that both 465 

the definition of the logIC50 threshold and the existence of mutated and wt cell lines in 466 

every association guarantees a non-zero value of the denominator in the MCC formula 467 

and thus MCC is always defined in this study. As previously explained, we report 468 

MCC as φ whenever this is calculated with the mutation-dependent threshold on 469 

training data (i.e. GDSC release 1.0). 470 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 27, 2017. ; https://doi.org/10.1101/033092doi: bioRxiv preprint 

https://doi.org/10.1101/033092


21 

 

Statistically significant drug-gene associations with the chi-squared test 471 

For each of the 8637 drug-gene associations, the chi-squared test statistic was 472 

computed from the 2x2 contingency table [29] to identify those drug-gene 473 

associations with statistically significant discriminative power. The formula to 474 

compute the chi-squared test statistic is  475 

   ∑ ∑
          

   

 

   

 

   

 

where Olm are the four categories in the table (TP,TN,FN,FP) and Elm are the 476 

corresponding expected values under the null hypothesis that this partition has arisen 477 

by chance. Thus, expected values are calculated with 478 

             
  

 
                    

  

 
 

             
  

 
                    

  

 
 

For instance, the expected value of TP, E(TP), is the number of predicted positives 479 

(PP) times the probability of a cell being a positive given as the proportion of 480 

observed positives (OP) in the n tested cells.   481 

This chi-squared test statistic follows a χ
2
 distribution with one degree of freedom and 482 

thus each p-value was computed with the R package pchisq from its corresponding χ
2
 483 

value,   
   as  484 

            
        

where pdfχ2 is the probability density function of the chi-square distribution. The 485 

process is sketched in Figure 2 and leads to an alternative set of p-values from the chi-486 
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squared test (Pχ2). To establish which associations are significant according to the chi-487 

squared test, we also calculated for this case the FDR=20% Benjamini-Hochberg 488 

adjusted threshold (0.00940155), that is  489 

                   

To facilitate reproducibility and the use of this methodology to analyse other 490 

pharmacogenomics data sets, the R script to calculate φ, chi-squared test statistic and 491 

Pχ2 from gdsc_manova_input_w1.csv is available on request. 492 

Benchmark to validate genomic markers on more recent GDSC data 493 

This benchmark is based on using more recent GDSC data as test sets. With this 494 

purpose, we downloaded new data from the latest release using the same experimental 495 

techniques to generate pharmacogenomic data and panel of selected genes as in 496 

release 1 (gdsc_manova_input_w5.csv). This release 5 contains 139 drugs tested on 497 

708 cell lines comprising 79,401 logIC50 values (80.7% of all possible drug-cell 498 

pairs). For the 127 drugs in common between releases 1 and 5, two non-overlapping 499 

data sets are generated per drug. Training sets using data in release 1 (the minimum, 500 

average and maximum numbers of cell lines across training data sets are 237, 330 and 501 

467, respectively), along with their logIC50s for the considered drug. These sets were 502 

used to identify genomic markers as previously explained. Test sets contain the new 503 

cell lines tested with the drug in release 5 (the minimum, average and maximum 504 

numbers of cell lines in the test data sets are 42, 171 and 306, respectively). Thus, a 505 

total of 254 data sets were assembled and analysed for this study. 506 

The significant drug-gene associations from each statistical test are next evaluated on 507 

these test sets (this is the inter-association classification problem). A cell line 508 
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sensitivity threshold was previously defined to discriminate between those resistant or 509 

sensitive to a given drug. For each drug, we calculated the threshold as the median of 510 

all the logIC50 values from training set cell lines. Consequently, cell lines with logIC50 511 

lower than such threshold are sensitive to the drug of interest, whereas those with 512 

logIC50 higher the threshold are resistant.  Lastly, classification performance of a 513 

marker on its test set is summarised with the MCC (this is different from φ, which has 514 

the same expression but uses a different threshold aimed instead at measuring the 515 

degree of separation between mutant and WT cell lines in the training set). 516 
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723 
Fig 1. Released GDSC data. (A) Garnett et al.[9] analysed a slightly different dataset 724 

than the one that was later released. In the released dataset, a panel of 130 drugs was 725 

tested against 638 cancer cell lines, leading to 47748 IC50 values (57.6% of all 726 

possible drug-cell pairs). For each cell line, 68 cancer genes were sequenced and their 727 

mutational status determined, plus three translocations and a microsatellite instability 728 

status. (B) A dataset Dij can be compiled for each drug-gene combination comprising 729 

the ni cell responses to the i
th

 drug (in our case, each response as the logarithm base 10 730 

of IC50 in µM units), with xj
(k) 

being a binary variable indicating whether the j
th

 gene 731 

is mutated or not in the k
th

 cell line. Next, a p-value was calculated for each drug-gene 732 

pair using the MANOVA test. Those pairs with p-values below an adjusted threshold 733 

of 0.00840749 were considered statistically significant (396 of the 8637 drug-gene 734 

associations).  735 
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736 
Fig 2. Measuring the discriminative power of a genomic marker with φ and the 737 

chi-squared test. (A) Scatter plot showing the logIC50 of n=284 cell lines screened 738 

against the marketed drug Dasatinib. The left boxplot shows BCR_ABL positive cell 739 

lines, whereas the boxplot on the right shows cell lines without this mutation (the 740 

median of each group appears as a black horizontal line within the boxplot). The red 741 

dotted line is the IC50 threshold, which is defined as the mean of both medians. (B) 742 

Contingency table showing the number of training set cell lines in each of the four 743 

non-overlapping categories (TP, FN, FP, TN), where positives are cell lines below the 744 

threshold in the case of a sensitising mutation (above the threshold if the mutation 745 

induces resistance). φ and χ
2
 are functions of these metrics and summarise binary 746 

classification performance, as further described in the Methods section. BCR_ABL is 747 

a very strong marker of Dasatinib sensitivity as shown in the scatter plot and 748 

highlighted by both statistical tests (PMANOVA=1.4∙10
-10

, Pχ2=6.4∙10
-28

), offering 749 

unusually high discrimination between cell lines according to their relative drug 750 

sensitivity (φ=0.65).  751 
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 752 

Fig 3. φ vs. -logPχ2 across all the 8637 drug-gene associations from GDSC. (A) 753 

Number of drug-gene associations for each number of tested cell lines (n). Two 754 

distinctive groups of drugs emerge: those tested on around 300 cell lines (red bars) 755 

and those tested around 450 cell lines (black bars). (B) φ versus -logPχ2 across the 756 

drug-gene associations (same colour code). The Spearman and Pearson correlations 757 

between both metrics are 0.99 and 0.82, respectively. The vertical blue line marks the 758 

significance cutoff for the chi-squared test. The plot shows that all markers with an φ 759 

of 0.15 or more are too discriminative to have arisen by chance (above an φ of 0.12 if 760 

we restrict to the markers evaluated with more data shown as black crosses). 761 
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 762 

Fig 4. Potential false-positive marker of the MANOVA test incorrectly rejected 763 

by the chi-squared test. (left) The scatter plot for the drug-gene association 764 

(GW441756-FLT3) with the largest -logPMANOVA among those not significant 765 

according to the chi-squared test. Hence, mutated-FLT3 is a marker of sensitivity to 766 

the experimental drug GW441756 according to the MANOVA test, but not according 767 

to the chi-squared test. In the plotted training set, this marker offers practically no 768 

discriminative power as further evidenced by a φ of just 0.05 and similar drug 769 

response (logIC50) distributions of mutated and WT cell lines. However, this marker 770 

provides an MCC of 0.10 on the test and hence this is a false negative of the chi-771 

squared test. (right) Conversely, to assess the consistency of the MANOVA test, we 772 

searched for the drug-gene association with largest -logPχ2 among those with a similar 773 

-logPMANOVA to that of GW441756-FLT3, which is Dasatinib-BCR_ABL. Whereas 774 

the p-value for Dasatinib-BCR_ABL is of the same magnitude as that for GW441756-775 

FLT3 using the MANOVA test (PMANOVA~10
-10

), the p-values for the same 776 
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associations using the chi-squared test differ is almost 27 orders of magnitude. Thus, 777 

unlike the chi-squared test, the MANOVA test is unable to detect the extreme 778 

difference in discriminative power offered by these two drug-gene associations. 779 

Indeed, the BCR_ABL translocation is a highly discriminative marker of Dasatinib 780 

sensitivity (φ=0.65), as also evidenced by the barely overlapping drug response 781 

distributions from each set of cell lines. This is confirmed in the test set, where the 782 

Dasatinib-BCR_ABL marker obtains an MCC of 0.21. 783 

 784 

785 
Fig 5. Potential false-negative marker of the MANOVA test detected by the chi-786 

squared test. (left) The scatter plot for the drug-gene association (Dasatinib-787 

CDKN2a.p14) with the largest -logPχ2 among those not significant according to the 788 

MANOVA test. Hence, mutated-CDKN2a.p14 is a potential marker of sensitivity to 789 

the marketed drug Dasatinib according to the chi-squared test, but not according to the 790 

MANOVA test. However, this marker has predictive value as it provides MCC=0.13 791 
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on the test set. Therefore, the chi-squared test detected this potential false negative of 792 

the MANOVA test. (right) Conversely, to assess the consistency of the MANOVA 793 

test, we searched for the drug-gene association with largest -logPMANOVA among those 794 

with a similar -logPχ2 to that of Dasatinib-CDKN2a.p14, which is SB590885-BRAF. 795 

Whereas the p-values for Dasatinib-CDKN2a.p14 and SB590885-BRAF differ in 27 796 

orders of magnitude using the MANOVA test, the p-values for the same associations 797 

have similar p-values using the chi-squared test (Pχ2~10
-9

). Thus, unlike the chi-798 

squared test, the MANOVA test is unable to detect that both markers have similar 799 

discriminative power (SB590885-BRAF has a φ of 0.29 for 0.35 of Dasatinib-800 

CDKN2a.p14). SB590885-BRAF is a true positive of both tests as its MCC on the test 801 

set is 0.27. 802 

 803 

 804 

Fig 6. Test set performance of three methods to identify single-gene markers. 805 

The methods are evaluated by their ability to correctly classify more recently-tested 806 

cell lines as sensitive or resistant to the considered drug via the MCC on the test set. 807 
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There is no overlap between test sets and those employed to identify all drug-gene 808 

associations (training sets). The three compared methods are those based on the chi-809 

squared test (B), the MANOVA test (C) and their consensus (A; the association is 810 

significant if it is significant by both tests). We can see that the consensus method is 811 

the most predictive, followed by associations only significant with the chi-squared test 812 

(B) and those only significant by the MANOVA test (C). These results show that the 813 

overall predictive value of the markers revealed by the chi-squared test is higher than 814 

that arising from the MANOVA test and also that the consensus of both tests is more 815 

predictive than any of these two tests alone. While most of the markers provide better 816 

prediction than random classification (MCC=0), their generally low test set MCC 817 

values regardless of the employed detection method highlight how hard is to identify 818 

predictive markers of drug sensitivity. 819 
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 820 

Fig 7. Examples of new genomic markers for drugs with previously-821 

proposedMANOVA markers. (top) The mutational status of the CDKN2A gene is 822 

found to be the most discriminative marker for the approved drug Temsirolimus 823 
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(MCC=0.30 on the test set,), which was missed by the MANOVA test 824 

(PMANOVA=9∙10
-3

). (bottom) The EWS_FLI1 translocation is found to be the most 825 

discriminative marker for the development drug BMS-754807 (MCC=0.25 on the test 826 

set), which was also missed by the MANOVA test (PMANOVA=0.01). While both tests 827 

are being applied to exactly the same data, only the chi-squared test could identify 828 

these confirmed false negatives of the MANOVA test. 829 

 830 

 831 

Fig 8. Examples of new genomic markers for drugs without previously-832 

proposed known MANOVA markers. (left) The EWS_FLI1 translocation is found to 833 

be the most discriminative marker for the approved drug Gemcitabine (MCC=0.18 on 834 

the test set), which was missed by the MANOVA test (PMANOVA=0.06). (right) The 835 

mutational status of the NOTCH1 gene is found to be the most discriminative marker 836 

for the development drug BI-2536 (MCC=0.23 on the test set), which was also missed 837 

by the MANOVA test (PMANOVA=0.03).  838 
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Additional files 839 

Additional file 1 – results.127drugs.A-Consensus.xls 840 
Number of training cell lines (nTrain), prevalence of gene mutation, p-values, number 841 

of test set cell lines (nTest) and MCC on the test set (MCC.tst) for each significant 842 

drug-gene association from the consensus method evaluated on the test set. 843 

Additional file 2 – results.127drugs.B-ChiSquare.xls 844 
Number of training cell lines (nTrain), prevalence of gene mutation, p-values, number 845 

of test set cell lines (nTest) and MCC on the test set (MCC.tst) for each significant 846 

drug-gene association from the chi-squared test evaluated on the test set. 847 

Additional file 3 – results.127drugs.C-MANOVA.xls 848 
 Number of training cell lines (nTrain), prevalence of gene mutation, p-values, 849 

number of test set cell lines (nTest) and MCC on the test set (MCC.tst) for each 850 

significant drug-gene association from the MANOVA test evaluated on the test set. 851 
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