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Abstract

In the dawning era of large-scale biomedical data, multidimensional phenotype vectors will play an

increasing role in examining the genetic underpinnings of brain features, behavior and disease. For ex-

ample, shape measurements derived from brain MRI scans are multidimensional geometric descriptions

of brain structure and provide an alternate class of phenotypes that remains largely unexplored in genetic

studies. Here we extend the concept of heritability to multidimensional traits, and present the first compre-

hensive analysis of the heritability of neuroanatomical shape measurements across an ensemble of brain

structures based on genome-wide SNP and MRI data from 1,320 unrelated, young and healthy individuals.

We replicate our findings in an extended twin sample from the Human Connectome Project (HCP). Our

results demonstrate that neuroanatomical shape can be significantly heritable, above and beyond volume,

and can serve as a complementary phenotype to study the genetic determinants and clinical relevance of

brain structure.
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Introduction

The exponential progress in genomic technologies has accelerated the examination of the genetic underpin-

nings of complex phenotypes, such as psychiatric and neurological disorders, many of which are highly heri-

table [1, 2]. For example, large-scale genome-wide association studies (GWAS) have provided insights about

common genetic variants linked with a range of clinical conditions [3–6]. Most prior genetic studies have

focused on univariate (scalar) phenotypes, such as diagnosis or a quantitative measurement. However, with

the emergence of large-scale data collection efforts, such as the Human Connectome Project (HCP; http:

//www.humanconnectome.org) and the UK Biobank (http://www.ukbiobank.ac.uk), each sub-

ject can be linked to a high-dimensional phenotype vector, which might include imaging measurements or

electronic health record. Such phenotypically rich studies open up the opportunity to analyze collections of

multidimensional phenotypes, which can be more informative than scalar traits.

Brain imaging is playing an increasing role in the study of the relationship between genetic variants,

neuroanatomy, behavior and disease susceptibility [7–10]. To date, most structural neuroimaging genetics

studies have utilized the size, average cortical thickness, or surface area of a brain region to yield important

discoveries about the genetic basis of brain morphology [see e.g., 11–14]. While these measurements capture a

few basic dimensions of anatomical variability, they provide a limited description of the underlying geometry.

Neuroanatomical shape measurements — multidimensional geometric descriptions of brain structure —

have attracted increasing attention in medical image analysis. Shape measurements characterize isometry-

invariant (in particular, independent of location and orientation) geometric attributes of an object, which

provide a rich description of an anatomical structure and can encompass volumetric variation. Such mea-

surements may thus offer increased sensitivity and specificity in examining the clinical relevance and genetic

underpinnings of brain structure. Recent studies have shown that the shape of subcortical brain regions and

cortical folding patterns provide information that is not available in volumetric measurements and is pre-

dictive of disease status, onset and progression in schizophrenia [15–17], autism [18, 19], bipolar disorder

[20, 21], Alzheimer’s disease [22–25], and other mental disorders [26, 27]. There is also increasing evidence

that genetic variants may have influences on brain morphology that can be captured by shape measurements

[28–32].

This paper makes two major contributions to the investigation of the genetic basis of neuroanatomical

shape. First, we extend the theoretical concept of heritability to multidimensional traits, such as the shape

descriptor of an object, and propose a novel method to estimate the heritability of multidimensional traits
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based on genome-wide single nucleotide polymorphism (SNP) data from unrelated individuals (known as

SNP heritability). Our estimation method builds on genome-wide complex trait analysis (GCTA) [33, 34]

and phenotype correlation-genetic correlation (PCGC) regression [35], and generalizes these techniques to

the multivariate setting. Second, using structural magnetic resonance imaging (MRI) and SNP data from

1,320 unrelated individuals collected as part of the Harvard/Massachusetts General Hospital (MGH) Brain

Genomics Superstruct Project (GSP) [36, 37], we present the first comprehensive heritability analysis of the

shape of an ensemble of brain structures, quantified by the truncated Laplace-Beltrami Spectrum (LBS) (also

known as the “Shape-DNA”) [38–40], in this young (18-35 years) and healthy cohort, and devise a strategy

to visualize primary modes of shape variation. We also replicate our findings in an extended twin sample (72

monozygotic twin pairs, 69 dizygotic twin pairs, 253 full siblings of twins and 55 singletons) from the Human

Connectome Project (HCP) [41].

The truncated LBS is a multidimensional shape descriptor, which can be obtained by solving an eigen-

value problem on the 2D boundary surface representation of an object. It is invariant to the representation

of the object including parameterization, location and orientation, and thus does not require spatial align-

ment with a population template, making it computationally efficient and robust to registration errors. LBS

also depends continuously on topology-preserving deformations, and is thus suitable to quantify differences

between shapes. Recent empirical evidence suggests that the LBS-based shape descriptor provides a dis-

criminative characterization of brain anatomy and offers state-of-the-art performance for a range of shape

retrieval and segmentation applications [42, 43]. A collection of the descriptors of brain structures, known

as the BrainPrint, can provide an accurate and holistic representation of brain morphology, and has been

successfully applied to subject identification, sex and age prediction, brain asymmetry analysis, twin studies,

and computer-aided diagnosis of dementia [40, 44]. Our LBS-based heritability analyses demonstrate that

neuroanatomical shape can be significantly heritable, above and beyond volume, and yield a complementary

phenotype that offers a unique perspective in studying the genetic determinants of brain structure.

Results

Heritability of the volume of neuroanatomical structures. To benchmark our shape results, we first com-

puted SNP heritability estimates for the volumetric measurements of an array of brain regions using the GSP

sample. Table 1 lists these heritability estimates after adjusting for intracranial volume (ICV or head size) as a

covariate. Point estimates of the heritability of volumetric measurements suggested that several neuroanatomi-
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cal structures have moderately heritable volumes. In particular, the caudate, corpus callosum, lateral ventricle,

3rd and 4th ventricles, pallidum, putamen and thalamus all had volume heritability estimates greater than 25%.

Table 1 further includes p-values for the statistical significance of the heritability estimates. The parametric

(Wald) and non-parametric (permutation-based) p-values were virtually identical, confirming the accuracy of

the standard error estimates we computed (see Methods). We observe that none of the volume heritability

estimates were statistically significant after correcting for multiple comparisons (false discovery rate or FDR

at q = 0.05), possibly due to sample size limitations. Only the volumes of the caudate, corpus callosum

and 3rd ventricle achieved a heritability that was nominally significant in our sample (uncorrected p < 0.05).

Table 1 also includes test-retest reliability estimates of volume after regressing out ICV, computed as Lin’s

concordance correlation coefficient [45] using measurements from 42 subjects with repeated scans on separate

days. Almost all the structures had a volume estimate reliability greater than 0.75 except for the pallidum.

There was no significant correlation between the reliability and heritability estimates of volume (p = 0.828).

Heritability of the shape of neuroanatomical structures. Neuroanatomical shape measurements provide a

geometric characterization and a rich description of brain structure. We therefore hypothesize that analyzing

the shape variation of neuroanatomical structures can identify genetic influences beyond captured by volumet-

ric measurements. Fig. 1 and Table 2 show the SNP heritability estimates of the shape of an ensemble of brain

structures using the GSP sample. These estimates were computed based on LBS descriptors normalized for

size and explicitly including the volume of the corresponding structure as a covariate in the analysis to account

for potential volume effects. A number of structures showed moderate to high SNP heritability. Specifically,

the shape of the caudate, cerebellum, corpus callosum, hippocampus, 3rd ventricle and putamen exhibited

heritability estimates greater than 25%. All these estimates were statistically significant after correcting for

an FDR at q = 0.05. We observe that this is in contrast with the case of volume, where despite a similar

heritability range, no estimate reached FDR-corrected significance. The main reason for this discrepancy is

the theoretically guaranteed reduced standard errors in SNP heritability estimates of multidimensional traits

(see Methods for a theoretical treatment). The shape of the accumbens area was also marginally significantly

heritable with an uncorrected p-value less than 0.05. As in the case of volume, the parametric (Wald) p-values

were virtually identical to the permutation p-values, suggesting that our standard error estimates are accurate

(see Methods).

Table 2 also lists test-retest reliability estimates for the shape of different structures. Analogous to the case

of volume, we quantified reliability as the average Lin’s concordance correlation coefficient of individual com-
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Structure ĥ2SNP SE Wald p-value Perm p-value Reliability

Accumbens Area 0.001 0.281 0.500 1.000 0.797

Amygdala 0.141 0.281 0.308 0.305 0.864

Caudate 0.657 0.281 0.010 0.009 0.947

Cerebellum 0.084 0.281 0.383 0.382 0.989

Corpus Callosum 0.538 0.281 0.028 0.029 0.882

Hippocampus 0.005 0.281 0.493 0.492 0.939

Lateral Ventricle 0.331 0.281 0.119 0.120 0.995

3rd Ventricle 0.500 0.281 0.038 0.040 0.832

4th Ventricle 0.381 0.281 0.087 0.089 0.986

Pallidum 0.300 0.281 0.142 0.142 0.642

Putamen 0.328 0.281 0.121 0.122 0.934

Thalamus 0.252 0.281 0.184 0.186 0.867

Table 1: SNP heritability estimates ĥ2SNP of the volume of brain structures using the GSP sample. The

standard errors (SE) were computed using an approximation, which, given the empirical genetic similarity

matrix, only depends on the sample size. p-values were obtained by the Wald test and the permutation infer-

ence (based on 10,000 permutations), respectively. The strong agreement between the parametric and non-

parametric p-values indicates that the estimated SE values are accurate. Estimates with uncorrected significant

p-values (< 0.05) are shown in bold. Test-retest reliability of the volumetric measurements was computed

as Lin’s concordance correlation coefficient using measurements from 42 subjects with repeated scans on

separate days.
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Figure 1: SNP heritability estimates of the shape of brain structures in the GSP sample. Top: lateral

view. Bottom: medial cross-section.
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Structure ĥ2SNP SE Wald p-value Perm p-value Reliability

Accumbens Area 0.237 0.135 0.039 0.039 0.418

Amygdala 0.061 0.139 0.330 0.327 0.670

Caudate 0.499 0.188 0.004 0.005 0.759

Cerebellum 0.452 0.192 0.009 0.009 0.844

Corpus Callosum 0.264 0.133 0.023 0.022 0.622

Hippocampus 0.347 0.169 0.020 0.019 0.866

Lateral Ventricle 0.190 0.153 0.107 0.105 0.890

3rd Ventricle 0.500 0.157 0.001 0.001 0.761

4th Ventricle 0.005 0.208 0.490 0.491 0.633

Pallidum 0.061 0.117 0.299 0.299 0.402

Putamen 0.413 0.148 0.003 0.003 0.781

Thalamus Proper 0.086 0.143 0.274 0.276 0.552

Table 2: SNP heritability estimates ĥ2SNP of the shape of brain structures using the GSP sample. Standard

errors (SE) are less than those corresponding to volume heritability. p-values were obtained by the Wald test

and the permutation inference (based on 10,000 permutations), respectively. The strong agreement between

the parametric and non-parametric p-values indicates that the SE estimates are accurate. Estimates with un-

corrected significant p-values (< 0.05) are shown in bold. False discovery rate (FDR) corrected significant

p-values (< 0.05) are shown in red. Test-retest reliability of the shape measurements were computed as the

average Lin’s concordance correlation coefficient of individual components of the LBS-based shape descriptor

from 42 subjects with repeated scans on separate days.

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2016. ; https://doi.org/10.1101/033407doi: bioRxiv preprint 

https://doi.org/10.1101/033407
http://creativecommons.org/licenses/by-nc-nd/4.0/


ponents of the multidimensional shape descriptor from 42 subjects with repeat scans on separate days. These

results suggest that the LBS-based shape descriptors were overall less reliable than volumetric measurements,

with half of the structures exhibiting a shape reliability less than 0.75. This is likely due to the increased

sensitivity of shape to segmentation differences relative to the volume. Furthermore, there was a marginally

significant correlation between reliability and heritability of shape (Pearson’s r = 0.562 and p = 0.057).

We conclude that close to 30% of the variation in shape heritability across structures can be attributed to the

reliability of the shape descriptor. This suggests that for structures that exhibited low shape heritability (e.g.,

amygdala), a more accurate image segmentation and shape analysis pipeline might yield an increased estimate

of heritability. We further conducted a sensitivity analysis of shape heritability estimates, with respect to the

two free parameters of the LBS-based shape descriptor: number of eigenvalues incorporated and amount of

smoothing applied to the surface mesh representing the geometry of the object. Supplementary Fig. 1 shows

that the heritability estimates were largely robust to variations in these parameters.

We sought to replicate these findings in the HCP sample, in which subjects are healthy and have a similar

age range as the GSP sample. We selected 590 non-Hispanic/Latino Europeans aged between 22 and 35,

comprising 72 monozygotic (MZ) twin pairs, 69 dizygotic (DZ) twin pairs, 253 full siblings of twins and

55 singletons (single birth individuals without siblings). We estimated the shape heritability for brain struc-

tures that had significantly heritable shapes in the GSP sample using an ACE model (A: additive genetics; C:

common environment; E: unique or subject-specific environment), where the additive genetic similarity was

derived from pedigree information and the common environment term reflected household sharing between

subjects. We also obtained the standard error of the shape heritability estimates using a block bootstrapping

procedure (see Methods). All the shapes we analyzed were significantly heritable in the HCP sample: accum-

bens area 0.309 ± 0.081; caudate 0.583 ± 0.062; cerebellum 0.653 ± 0.060; corpus callosum 0.558 ± 0.068;

hippocampus 0.363 ± 0.095; 3rd ventricle 0.536 ± 0.067; putamen 0.483 ± 0.106. We also observe that the

HCP shape heritability estimates were consistently larger than the GSP estimates, which is theoretically ex-

pected because the SNP heritability estimated from unrelated GSP subjects only captured the genetic variation

tagged by common SNPs in the data set, and is thus a lower bound for the classical narrow-sense heritability

estimated from familial data such as the HCP sample.

Visualizing the principal mode of shape variation. The LBS-based shape descriptor is suitable to efficiently

and accurately extract intrinsic properties of the shape of brain structures from a large number of individuals,

but is not designed to visually inspect shape differences. Here, we propose a strategy to visualize the principal
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mode of shape variation. Specifically, it can be shown that the first principal component (PC) of the multi-

dimensional LBS-based shape descriptor captures the greatest shape variation and has the largest impact on

the overall heritability estimate of the shape (see Methods). We thus visualized shape variation along the first

PC of the shape descriptor for brain structures with significantly heritable shapes in the GSP sample: right

caudate, cerebellum, corpus callosum, right hippocampus, 3rd ventricle, and left putamen. The illustrations of

contralateral structures (i.e., left caudate, left hippocampus and right putamen), which showed similar shape

variation, are provided in Supplementary Fig. 2. In each panel of Fig. 2, the structure is represented with a

sample-specific population average, on which average shapes at the two extremes (±2 standard deviation or

SD) of the principal axis with identical volume (−2 SD, blue; +2 SD, red) are depicted. Blue regions indicate

where shapes around the −2 SD are larger than shapes around the +2 SD, and vice versa for the red regions.

The first PC of the right caudate captured 77% of the shape variation and had a SNP heritability estimate

of 0.88. Moving along the principal mode of shape variation, the right caudate had a larger (smaller) head with

a corresponding shorter (longer) tail. For the cerebellum, the first PC explained 69% of the shape variation

and had a SNP heritability of 0.61. A clear expansion (contraction) of the anterior lobe and a corresponding

contraction (expansion) of the posterior lobe can be observed along the principal axis. The first PC of the

corpus callosum captured 41% of the shape variation and had a SNP heritability of 0.41. The principal

mode captured an expansion (contraction) of the middle corpus callosum along the dorsoventral axis and

a corresponding shrinking (enlargement) of the anterior and posterior part of the structure. For the right

hippocampus, the first PC explained 69% of the shape variation, had a SNP heritability of 0.47, and exhibited

dorsoventral widening (narrowing) of the body and corresponding lateral and anterior-posterior contraction

(expansion). The first PC of the 3rd ventricle captured 69% of the shape variation and had a SNP heritability

estimate of 0.80. The principal mode captured an enlargement (shrinking) of the posterior protrusions and an

expansion (contraction) of the lateral walls, coupled with a corresponding contraction (expansion) of the roof

of the cleft. Finally, first PC of the left putamen explained 61% of the shape variation, had a SNP heritability

of 0.70, and captured lateral widening (narrowing) and a corresponding contraction (expansion) along the

dorsoventral and anterior-posterior axes.

Discussion

This work makes two contributions to neuroscience and genetic research. First, we extend the concept of her-

itability to multidimensional traits and present an analytic strategy that generalizes SNP heritability analysis.
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Figure 2: The principal mode of shape variation for brain structures with significantly heritable shape in

the GSP sample. Each structure is represented with a sample-specific population average, on which average

shapes at the two extremes (±2 standard deviation or SD) along the first principal component (PC) of the

shape descriptor (−2 SD, blue; +2 SD, red) are depicted. Anatomical orientation is indicated with embedded

coordinate axes. I: Inferior, S: Superior, A: Anterior, P: Posterior, L: Left, R: Right.
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The heritability estimator we propose for multidimensional traits has reduced uncertainty in its point estimate

relative to univariate estimates, and thus offers more statistical power. Our empirical analyses confirmed this

theoretical expectation. Moreover, and in the same line, we provide methods that can easily adjust for covari-

ates in multivariate models, and also both parametric and nonparametric inferential tools that can assess the

significance of a heritability estimate. Our approach opens the door to the genetic characterization of shape

measurements and other multidimensional traits.

Second, we use the proposed approach to quantify the SNP heritability of the shape of an ensemble of

anatomical structures spanning the human brain in a group of young and healthy subjects. The shape of cau-

date, cerebellum, corpus callosum, hippocampus, 3rd ventricle and putamen exhibited moderate to high heri-

tability (i.e., greater than 25%), after controlling for volume. All of these estimates achieved FDR-corrected

significance at q = 0.05. This is in contrast to the volume heritability estimates of the same set of brain

structures on the same sample, none of which reached FDR-corrected significance. Although our heritability

analysis of volume, which was used to benchmark the shape analysis, may be less informative compared to

more powerful twin studies and large-scale meta-analyses in the literature, the increased statistical power and

the additional information shape analysis can provide relative to volumetric analysis demonstrate the useful-

ness of our methods and underscore the potential of leveraging multidimensional traits when analyzing data

sets with moderate sample sizes.

Using the extended twin data from the HCP, we also replicated significant shape heritability estimates

observed in the GSP sample. Our HCP estimates were consistently larger than the GSP estimates, which is

theoretically expected because SNP heritability estimated from the unrelated sample in GSP does not capture

genetic contributions (e.g., from rare variants) that are not tagged by genotyped SNPs, and thus explains a

smaller proportion of the phenotypic variation. However, additional factors may contribute to the difference

between SNP and familial heritability estimates, which include improper modeling of shared environment,

assortative mating, genetic interaction (epistasis), suboptimal statistical methods for heritability estimation,

and differences in sample characteristics such as age range, ethnic background and environmental exposures

[35, 46–51]. Dissecting the discrepancy in heritability estimates from familial and unrelated data is an area

under active investigation. More systematic future work is required to fully disentangle this problem.

A handful of prior neuroimaging studies have explored the shape of certain brain structures as potential

phenotypes in examining genetic associations. For example, Qiu et al. [28] and Shi et al. [29] reported influ-

ences of the apolipoprotein E (APOE) ε4 allele on hippocampal morphology in depressive and Alzheimer’s

disease patients. Variants involved in the regulation of the FKBP5 gene were recently associated with hip-
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pocampal shape [30]. A meta-study [32] identified a GWAS significant SNP that exerts its effect on the shape

of putamen bilaterally. Prior studies have also estimated heritability of shape based on familial relatedness. In

a recent study, the heritability of the shape of subcortical and limbic structures was estimated using data from

multigenerational families with schizophrenia [31]. In other related work, Mamah et al. [52] and Harms et al.

[53] revealed shape abnormalities in basal ganglia structures (caudate, putamen and globus pallidus) and the

thalamus in siblings of schizophrenia patients. An application of the LBS-based shape descriptor to twin data

found increased shape similarity of brain structures in MZ twin pairs relative to DZ twins, indicating genetic

influences on brain morphology [40], although heritability was not estimated.

However, to date, outside of these notable exceptions, most structural imaging genetics studies have uti-

lized scalar measurements (e.g., volume, thickness, area) as phenotypes. In the present study, we accounted

for potential volume effects in our shape analyses by normalizing the LBS-based shape descriptor for size

and additionally including the volumetric measurement of the corresponding structure as a covariate when

estimating heritability. Our results show that shape measurements provide a rich and novel set of phenotypes

for exploring the genetic basis of brain structure, and may identify novel genetic influences on the brain that

are not detectable with conventional analyses based on the volume of structures.

There are several biological mechanisms that might lead to shape differences with minimal effect on the

overall size of the structure. These include localized volumetric effects that are confined to subfields, sub-

nuclei or other sub-regions that make up the structure. Shape analysis may provide significant information

about neurodevelopmental abnormalities, such as those associated with neuronal migration, synaptogenesis,

synaptic pruning and myelination. Shape measurements might for example shed light on morphogenetic

mechanisms that involve mechanical tensions along axons, dendrites and glial processes [54]. Thus, shape

measurements are particularly promising phenotypes for studying neurodevelopmental disorders. Neurode-

generative processes and other pathologies, many of which are known to be genetically influenced, can also

impact neuroanatomical shape by exerting focal and/or selective insults. For example, in Alzheimer’s disease,

morphological alterations in the hippocampus may only target certain subfields [55].

The shape analysis literature offers an expanding list of methods to quantify and characterize shape [43]. A

major advantage of the LBS-based shape descriptor [38] employed in this study is that it is robust to intensity

variation across scans and does not require the nonlinear spatial registration of the object with a population

template, which can be computationally demanding and prone to error. In this paper, we also present a

novel strategy to visualize the principal mode of shape variation across the population. For brain structures

with significantly heritable shapes, we demonstrated that the principal mode explains a large portion of the
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overall shape variation and is often highly heritable. This approach can thus shed light on the global genetic

influences on brain structures, and is complementary to studies that rely on nonlinear group-wise registration

to characterize localized genetic influences on shape variation.

In the present study, in light of the similar shape variation of bilateral brain structures as observed in Fig.

2 and Supplementary Fig. 2, and to increase signal-to-noise ratio and statistical power, we combined the left

and right structures in our shape heritability analysis. SNP heritability estimates of the shape of bilateral brain

structures using the GSP sample are provided in Supplementary Table 1. The results indicate that the genetic

influences on several anatomical structures (e.g., caudate) may be lateralized, although with the current sample

size we are not able to claim that the lateral difference is significant. It will be interesting to investigate the

laterality of brain structures from the genetic perspective when we have a better understanding of the genetic

basis of brain morphology and when a data set with larger sample size becomes available.

The heritability analysis of multidimensional traits developed here can be applied to phenotypes other than

shape that are intrinsically multivariate. Another application might involve heritability or genetic association

analyses combining related traits to obtain more stable effect estimates. For example, it can be used as an

alternative to principal component analysis (PCA) and factor analysis when investigating the genetic basis

of various psychometric or behavioral traits. Also, voxel- or vertex-level neuroimaging measurements are

often noisy, and analyzing these measurements in homogeneous brain regions in a multivariate fashion may

increase the reliability and reproducibility of the results. Finally, the empirical genetic similarity matrix can

be computed with other SNP grouping strategies (e.g., based on genes, pathways, functional annotations and

previous GWAS findings) to model the genetic influences from a specific genomic region or partition the

heritability of multidimensional traits, as in Yang et al. [56].

Methods

Variance component models. We start with a brief review of variance component models (also known

as random effects models) for the heritability analysis of univariate (scalar) traits, which provide a general

statistical framework that can handle both familial designs and unrelated individuals randomly sampled from

the population. Assuming, for the moment, no covariate needs to be adjusted, and a trait can be partitioned

into the sum of additive genetic effect g, common (or shared) environment c, and unique (subject-specific)

environment e, the variance component model takes the following form:

y = g + c+ e, g ∼ N(0, σ2
AK), c ∼ N(0, σ2

CΛ), e ∼ N(0, σ2
EI), (1)
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where y = [y1, · · · , yN ]> is a vector comprising quantitative traits from N individuals, σ2
A, σ2

C and σ2
E are the

additive genetic variance, common environmental variance and unique environmental variance, respectively,

K is a genetic similarity matrix, Λ quantifies shared environment between pairs of individuals, and I is an

identity matrix.

In familial studies, K is twice the kinship matrix, K = 2Φ, and indicates expected additive genetic

covariance among individuals. The ij-th entry of the kinship matrix, φij , known as the kinship coefficient,

defines genetic relatedness for subjects i and j, and in general can be derived from pedigree information

[57, 58]. Λ is a matrix that usually reflects household sharing between pairs of individuals. For example, in

the present study, φij = 1/2 for MZ twins and φij = 1/4 for DZ twins and full siblings, and we assume that

twin pairs and their non-twin siblings share the same environment and the corresponding elements in Λ are 1.

When modeling unrelated individuals randomly sampled from the population, K is the empirical genetic

similarity matrix for each pair of individuals estimated from genome-wide SNP data, and the corresponding

variance component parameter σ2
A is the total additive genetic variance tagged by common SNPs spanning the

genome. We note that in unrelated subject studies σ2
A does not capture contributions (e.g., from rare variants)

that are not assayed by the genotyping microarray, and thus needs to be interpreted differently from σ2
A in

familial studies, although we use the same notation here for simplicity. In addition, the common environmental

matrix Λ is often assumed to vanish when analyzing unrelated individuals, in which case Eq. (1) becomes the

classical model used in genome-wide complex trait analysis (GCTA) [33, 34].

The heritability of a univariate (scalar) trait is defined as

h2 =
σ2
A

σ2
P

:=
σ2
A

σ2
A + σ2

C + σ2
E

, (2)

where σ2
P is the phenotypic variance. In familial studies, h2 measures the narrow-sense heritability of a trait,

while in unrelated subject studies, h2 measures additive heritability attributable to common genetic variants

(known as SNP heritability and often denoted as h2SNP), and provides a lower bound for the narrow-sense

heritability estimated by familial studies.

Heritability of multidimensional traits. We now consider an M -dimensional trait Y = [y1, · · · ,yM ] =

[yim]N×M . We model Y by a multivariate variance component model:

Y = G+C +E, (3)

whereG,C andE areN×M matrices, and represent additive genetic effects, common environmental factors
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and unique environmental factors, respectively. We have the following distributional assumptions:

vec(G) ∼ N(0,ΣA ⊗K), vec(C) ∼ N(0,ΣC ⊗Λ), vec(E) ∼ N(0,ΣE ⊗ I), (4)

where vec(·) is the matrix vectorization operator which converts a matrix into a vector by stacking its columns,

⊗ is the Kronecker product of matrices, ΣA = [σArs ]M×M is the genetic covariance matrix, whose rs-th

element σArs is the genetic covariance between yr and ys, ΣC = [σCrs ]M×M is the common environmental

covariance matrix, and ΣE = [σErs ]M×M is the unique environmental covariance matrix. The distributional

assumptions in Eq. (4) indicate that both the genetic effects and the environmental factors can be correlated

across trait dimensions. When the trait is a scalar, the multivariate model (3) degenerates to the univariate

model specified in Eq. (1). Analogous to the discussion above, K is derived from pedigree information in

familial studies and empirically estimated from genome-wide SNP data in unrelated subject studies. As a

result, ΣA denotes the genetic covariance due to common SNPs when analyzing unrelated subjects.

We define the heritability of a multidimensional trait as

h2 =
tr[ΣA]

tr[ΣP ]
:=

tr[ΣA]

tr[ΣA] + tr[ΣC ] + tr[ΣE]
, (5)

where ΣP = [σPrs ]M×M is the phenotypic covariance matrix and tr[·] is the trace operator of a matrix. This

definition measures the proportion of the total phenotypic variance tr[ΣP ] that can be explained by the total

additive genetic variance tr[ΣA], and yields a heritability measure that is bounded between 0 and 1. When

the trait is univariate, ΣA, ΣC , and ΣE become scalars, and Eq. (5) reduces to the classical definition of

heritability in Eq. (2). We use h2SNP in place of h2 in unrelated subject studies to emphasize that it only captures

genetic influences due to common genetic variants and is a lower bound for the narrow-sense heritability

estimated using familial designs.

Properties of multidimensional heritability. Our definition of heritability is invariant to rotations of the

data. For a linear transformation T applied to the trait dimensions in model (3), i.e.,

Y T = GT +CT +ET , (6)

using the properties of vectorization and the Kronecker product, the covariance structure of the transformed
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trait Y T can be computed as follows:

cov
[
vec(Y T )

]
= cov

[
vec(GT )

]
+ cov

[
vec(CT )

]
+ cov

[
vec(ET )

]
= cov

[
(T> ⊗ I)vec(G)

]
+ cov

[
(T> ⊗ I)vec(C)

]
+ cov

[
(T> ⊗ I)vec(E)

]
= (T> ⊗ I)(ΣA ⊗K)(T ⊗ I) + (T> ⊗ I)(ΣC ⊗Λ)(T ⊗ I) + (T> ⊗ I)(ΣE ⊗ I)(T ⊗ I)

= (T>ΣAT )⊗K + (T>ΣCT )⊗Λ + (T>ΣET )⊗ I.

(7)

Therefore, the transformed heritability is

h2T =
tr[T>ΣAT ]

tr[T>ΣAT ] + tr[T>ΣCT ] + tr[T>ΣET ]
=

tr[ΣA(TT>)]

tr[ΣP (TT>)]
. (8)

When T is an orthogonal matrix satisfying TT> = T>T = I , we have h2T = h2.

The definition of heritability in Eq. (5) can also been written as

h2 =
tr[ΣA]

tr[ΣP ]
=

∑
m σAmm∑
m σPmm

=
∑
m

γmh
2
m, (9)

where γm = σPmm/
∑

m σPmm with
∑

m γm = 1, and h2m = σGmm/σPmm is the heritability of the m-th

component of the trait. Therefore, our definition of the heritability of a multidimensional trait is essentially a

weighted average of the heritability of its individual components.

A moment-matching estimator for unrelated subject studies. The model (3) can in principle be fitted using

likelihood-based methods. However, this can be computationally expensive when the dimension of the trait

is moderate. Here we derive an alternative moment-matching estimator for unrelated subject studies where

the common environmental matrix Λ vanishes. Specifically, the multivariate model Y = G + E and its

distributional assumptions vec(G) ∼ N(0,ΣA ⊗K) and vec(E) ∼ N(0,ΣE ⊗ I) lead to the following

relationship:

cov[yr,ys] = σArsK + σErsI, 1 6 r, s 6M. (10)

Therefore, an unbiased estimator of σArs and σErs can be obtained by regressing yry>s , the empirical estimate

of the phenotypic covariance matrix cov[yr,ys], onto the the empirical genetic similarity matrix K and

identity matrix I . In particular, we consider the following multiple regression problem:

vec(yry
>
s ) = σArsvec(K) + σErsvec(I) + εrs, (11)

where εrs is the residual of this regression. This approach is essentially the Haseman-Elston regression for

the classical heritability analysis [59, 60], and has been extended recently to handle various study designs in-

cluding case-control studies, and more generally termed as phenotype correlation-genetic correlation (PCGC)
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regression [35]. The ordinary least squares (OLS) estimator of the multiple regression problem (11) satisfies

the linear system:  tr[K2] tr[K]

tr[K] tr[I]

 σArs

σErs

 =

 y>r Kys
y>r ys

 , (12)

and can be explicitly written as

σ̂Ars =
y>r (NK − tr[K]I)ys
Ntr[K2]− tr2[K]

:=
1

vK
y>r (K − τI)ys,

σ̂Ers =
y>r (tr[K2]I − tr[K]K)ys

Ntr[K2]− tr2[K]
:=

1

vK
y>r (κI − τK)ys,

(13)

where we have defined τ = tr[K]/N , κ = tr[K2]/N and vK = tr[K2]−tr2[K]/N = N(κ−τ 2). Therefore,

it can be seen that unbiased estimates of the genetic and environmental covariance matrices are as follows:

Σ̂A =
1

vK
Y >(K − τI)Y , Σ̂E =

1

vK
Y >(κI − τK)Y . (14)

Let Σ̂P = Σ̂A + Σ̂E , the SNP heritability of a multidimensional trait can then be estimated as

ĥ2SNP =
tr[Σ̂A]

tr[Σ̂P ]
=

tr[Σ̂A]

tr[Σ̂A] + tr[Σ̂E]
. (15)

For scalar traits, Eq. (15) degenerates to the classical Haseman-Elston regression estimator.

Sampling variance of the point estimator. We now derive the variance of ĥ2SNP. For notational simplicity,

we denote QA = (K − τI)/vK , QE = (κI − τK)/vK , and also tA = tr[Σ̂A] = tr[Y >QAY ], tE =

tr[Σ̂E] = tr[Y >QEY ], tP = tA + tE . Let t = (tA, tE)> and define f(t) = tA/(tA + tE) = tA/tP . Using a

Taylor expansion, we can approximate the variance of the function f as follows:

var[ĥ2SNP] = var[f(t)] ≈ ∂f(t)

∂t
cov[t]

∂f(t)

∂t>
, (16)

where
∂f(t)

∂t
=

(
∂f(t)

∂tA
,
∂f(t)

∂tE

)
=

(
tE
t2P
,
−tA
t2P

)
. (17)

To compute cov[t], we define Vrs = cov[yr,ys] = σArsK + σErsI , and notice that for any symmetric

matricesQα andQβ ,

cov
{
tr[Y >QαY ], tr[Y >QβY ]

}
=

∑M
r,s=1 cov

{
y>r Qαyr,y

>
s Qβys

}
= 2

∑M
r,s=1 tr[QαVrsQβVrs].

(18)
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Therefore,

cov[t] = 2
M∑

r,s=1

 tr[QAVrsQAVrs] tr[QAVrsQEVrs]

tr[QEVrsQAVrs] tr[QEVrsQEVrs]

 . (19)

Eq. (19) can be computationally expensive for a moderate or large M . We approximate Eq. (19) by using

two assumptions that are often made when estimating the sampling variance of the heritability estimator in the

study of unrelated individuals [61]: (1) the off-diagonal elements in the empirical genetic similarity matrixK

are small, such that K ≈ I and Vrs = σArsK + σErsI ≈ σArsI + σErsI = σPrsI; and (2) the phenotypic

covariance ΣP is known or can be estimated with very high precision. Using assumption (1), the covariance

of t can be simplified as follows:

cov[t] ≈ 2
∑M

r,s=1 σ
2
Prs

 tr[Q2
A] tr[QAQE]

tr[QEQA] tr[Q2
E]



= 2tr[Σ2
P ]

 tr[Q2
A] tr[QAQE]

tr[QEQA] tr[Q2
E]



=
2tr[Σ2

P ]

vK

 1 −τ

−τ κ

 ≈ 2tr[Σ2
P ]

vK

 1 −1

−1 1

 .
(20)

Therefore,

var[ĥ2SNP] = var[f(t)] ≈ ∂f(t)

∂t
cov[t]

∂f(t)

∂t>

≈ 2tr[Σ2
P ]

vKt4P
· (tE,−tA)

 1 −1

−1 1

 tE

−tA


=

2tr[Σ2
P ]

vKt4P
(tA + tE)2 =

2tr[Σ2
P ]

vKt2P
=

2

vK
· tr[Σ2

P ]

tr2[Σ̂P ]

≈ 2

vK
· tr[Σ̂2

P ]

tr2[Σ̂P ]
,

(21)

where in the last approximation we have used assumption (2) and replaced ΣP with its empirical estimate

Σ̂P = Σ̂A + Σ̂E . We note that given the empirical genetic similarity matrix K, the estimator (21) only

depends on the sample size and the phenotypic covariance structure.

For scalar traits, tr[Σ̂2
P ] = tr2[Σ̂P ], and the estimator (21) degenerates to var[ĥ2SNP] ≈ 2/vK , which

coincides with existing results in the literature [61]. In general, the covariance matrix Σ̂P is non-negative
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definite. Let µ1 > µ2 > · · · > µM > 0 denote its eigenvalues, we have

tr[Σ̂2
P ]

tr2[Σ̂P ]
=

∑M
i=1 µ

2
i(∑M

i=1 µi

)2 6 1. (22)

This inequality becomes an equality if and only if rank[Σ̂P ] = 1, i.e., the M traits are perfectly correlated.

Therefore, combining multiple traits reduces the variability of heritability estimates relative to analyzing each

trait individually.

Statistic inference. To measure the significance of a heritability estimate, a p-value can be computed by

conducting a Wald test. Since the null hypothesis, H0 : h2SNP = 0, lies on the boundary of the parameter

space, the Wald test statistic is distributed as

ĥ4SNP

var[ĥ2SNP]
∼ 1

2
χ2
0 +

1

2
χ2
1, (23)

a half-half mixture of χ2
0, a chi-squared distribution with all probability mass at zero, and χ2

1, a chi-squared

distribution with 1 degrees of freedom [62].

Alternatively, permutation inference can be used by shuffling the rows and columns of the empirical ge-

netic similarity matrix K. For each permutation r = 1, 2, · · · , Nperm, we record the heritability estimate

ĥ2SNP(r) computed from the permuted data. Then for an observed heritability estimate ĥ2SNP, the permutation

p-value can be computed as [63]

pperm =
#{ĥ2SNP(r) > ĥ2SNP}

Nperm

. (24)

Heritability estimation in familial studies. A moment-matching estimator can be analogously derived for

familial data analysis but has low statistical efficiency due to the strong correlation between the genetic sim-

ilarity matrix K and the common environmental matrix Λ. Therefore, when analyzing the HCP data, we

estimate the heritability of each individual component of a multidimensional trait using the restricted maxi-

mum likelihood (ReML) algorithm and combine these estimates using a variance-weighted average as derived

in Eq. (9).

To estimate the variance of the heritability estimate of a multidimensional trait, we employ a block boot-

strapping procedure whereby families are randomly resampled with replacement to produce a bootstrap sam-

ple and the heritability is re-estimated. This procedure is repeated for Nboots times (Nboots = 1, 000 in the

present study) to yield bootstrap heritability estimates ĥ2(b), b = 1, 2, · · · , Nboots. The variance of the heri-
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tability estimate is then estimated as [64]

var[ĥ2] =
1

Nboots − 1

Nboots∑
b=1

(
ĥ2(b)− ĥ2(·)

)2
, (25)

where ĥ2(·) =
∑Nboots

b=1 ĥ2(b)/Nboots.

Modeling covariates. When covariates or nuisance variables need to be adjusted, model (3) becomes a

multivariate linear mixed effects model:

Y = XB +G+C +E, (26)

with the distributional assumptions vec(G) ∼ N(0,ΣA ⊗K), vec(C) ∼ N(0,ΣC ⊗ Λ) and vec(E) ∼

N(0,ΣE ⊗ I), where X is an N × q matrix of covariates, and B is a q ×M matrix of fixed effects. We

employ a strategy described in [65] to removes the covariate matrix from the model. Specifically, there

exists an N × (N − q) matrix U , satisfying U>U = I(N−q)×(N−q), UU> = P0, and U>X = 0, where

P0 = I −X(X>X)−1X>. The matrix U> projects the data from the N dimensional space onto an N − q

dimensional subspace:

Ỹ := U>Y = U>G+U>C +U>E := G̃+ C̃ + Ẽ, (27)

where vec(G̃) ∼ N
(
0,ΣA ⊗ (U>KU)

)
, vec(C̃) ∼ N

(
0,ΣC ⊗ (U>ΛU)

)
, and vec(Ẽ) ∼ N(0,ΣE ⊗ I).

The transformed model is the same as model (3) and thus all estimation and inferential methods developed

above can be applied.

The Brain Genomics Superstruct Project (GSP). The Harvard/Massachusetts General Hospital (MGH)

Brain Genomics Superstruct Project (GSP) is a neuroimaging and genetics study of brain and behavioral phe-

notypes. More than 3,500 native English-speaking adults with normal or corrected-to-normal vision were

recruited from Harvard University, MGH, and the surrounding Boston communities. To avoid spurious ef-

fects resulting from population stratification, we restricted our analyses to 1,320 young adults (18-35 years)

of non-Hispanic European ancestry with no history of psychiatric illnesses or major health problems (age,

21.54±3.19 years; female, 53.18%; right-handedness, 91.74%). All participants provided written informed

consent in accordance with guidelines set by the Partners Health Care Institutional Review Board or the

Harvard University Committee on the Use of Human Subjects in Research. For further details about the

recruitment process, participants, and imaging data acquisition, we refer the reader to Holmes et al. [36, 37].
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The Human Connectome Project (HCP). The Human Connectome Project (HCP) collects imaging, behav-

ioral, and demographic data from a large population of healthy adults and aims to shed light on anatomical

and functional connectivity within the healthy human brain. We used preprocessed structural MRI data from

the WU-Minn HCP consortium and selected subjects that have a similar age range (22-35 years) and ancestry

(non-Hispanic/Latino European) as the GSP sample. The 590 subjects we analyzed (age, 29.21±3.45 years;

female 55.93%) come from 249 families and comprise 72 monozygotic (MZ) twin pairs, 69 dizygotic (DZ)

twin pairs, 253 full siblings of twins and 55 singletons (single birth individuals without siblings). Further

details about the recruitment process, imaging data acquisition and MRI data preprocessing can be found in

[41, 66].

Genetic analysis. We used PLINK 1.90 (https://www.cog-genomics.org/plink2) [67], to prepro-

cess the GSP genome-wide SNP data. Major procedures included sex discrepancy check, removing population

outliers, spuriously related subjects and subjects with low genotype call rate (< 97%). Individual markers that

contained an ambiguous strand assignment and that did not satisfy the following quality control criteria were

excluded from the analyses: genotype call rate > 97%, minor allele frequency (MAF) > 1%, and Hardy-

Weinberg equilibrium p > 1×10−6. 574,632 SNPs remained for analysis after quality control. We performed

a multidimensional scaling (MDS) analysis to ensure that no clear population stratification and outliers ex-

ist in the sample (Supplementary Fig. 3). The genetic similarity matrix was estimated from all genotyped

autosomal SNPs.

Laplace-Beltrami Spectrum based shape descriptor. The intrinsic geometry of any 2D or 3D manifold can

be characterized by its Laplace-Beltrami Spectrum (LBS) [38, 39], which is obtained by solving the following

Laplacian eigenvalue problem (or Helmoltz equation):

∆f = −λf, (28)

where ∆ is the Laplace-Beltrami operator, a generalization of the Laplacian in the Euclidean space to mani-

folds, f is a real-valued eigenfunction defined on a Riemannian manifold, and λ is the corresponding eigen-

value. Eq. (28) can be solved by the finite element method, yielding a diverging sequence of eigenval-

ues 0 6 λ1 6 λ2 6 · · · ↑ +∞. An implementation of the algorithm is freely available (http://

reuter.mit.edu/software/shapedna). The first M eigenvalues of the LBS can be used to define

a description of the object, which provides a numerical fingerprint or signature of the shape, and is thus

known as (length-M ) “Shape-DNA”.
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Shape analysis pipeline. We used FreeSurfer (http://freesurfer.net) [68], version 4.5.0, a freely

available, widely used, and extensively validated brain MRI analysis software package, to process the GSP

structural brain MRI scans and label subcortical brain structures. HCP MRI scans were preprocessed by the

WU-Minn HCP consortium, and the label files of subcortical structures have been made available [41, 66].

Surface meshes of brain structures were obtained via marching cubes from subcortical segmentations. We

created triangular meshes on the boundary surfaces for 20 structures. We then geometrically smoothed these

meshes and solved the eigenvalue problem of the 2D Laplace-Beltrami operator on each of these represen-

tations, yielding the LBS-based shape descriptor [40]. A python implementation of this pipeline is freely

available (http://reuter.mit.edu/software/brainprint).

Heritability analyses of neuroanatomical shape. We treated the length-M LBS-based shape descriptor of

each structure as a multidimensional trait and quantified its heritability. In the case of a closed manifold

without a boundary, the first eigenvalue is always zero and was thus removed from analysis. Theoretical and

empirical evidence have confirmed that the eigenvalues grow linearly and their variance grows quadratically

[38, 40]. To avoid that higher eigenvalues dominate the phenotypic covariance, we re-weighted the m-th

eigenvalue for the i-th subject as [38]:

λ̃i,m = λi,m/m, i = 1, 2, · · · , N, m = 1, 2, · · · ,M. (29)

This ensures a balanced contribution of lower and higher eigenvalues on the phenotypic covariance. The LBS

also depends on the overall size of the structure. To measure the genetic influences on the shape that are

complementary to volume, we further scaled the eigenvalues as:

˜̃
λi,m = λ̃i,m · V 2/3

i , i = 1, 2, · · · , N, m = 1, 2, · · · ,M, (30)

where Vi is the volume of the structure for the i-th subject. Since scaling the eigenvalues by a factor η results

in scaling the underlying manifold by a factor η−1/2 [38], the normalization (30) ensures that the volumes of

the structure are identical across individuals.

We combined the left and right structures in our heritability analyses by averaging their volumetric mea-

surements and concatenating their re-weighted and scaled shape descriptors into one multidimensional trait.

We included age, gender, handedness, scanner group, console group, and the top ten principal components

of the empirical genetic similarity matrix as covariates when analyzing the GSP sample, and included age,

gender and handedness as covariates when analyzing the HCP sample. To remove potential size effect, we

always explicitly included the volume of the corresponding structure as a covariate in our shape analyses.
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The number of eigenvalues incorporated in the LBS-based shape descriptor and the amount of smoothing

applied to the surface mesh are crucial study designs, which might have an impact on heritability estimates. In

particular, incorporating a very small number of eigenvalues may be insufficient to characterize the shape of a

structure, while very large eigenvalues typically capture fine-scale details, which can be noise and thus might

reduce sensitivity. In this study, we reported results obtained by incorporating 50 eigenvalues in the shape

descriptor and applying 3 iterations of geometric smoothing to the surface mesh. We conducted sensitivity

analyses and confirmed that in the present shape analysis the results were largely robust to different parameter

settings (Supplementary Fig. 1).

Visualizing the principal mode of shape variation. We note that, as shown above, our definition of the heri-

tability of a multidimensional trait is a variance-weighted average of individual components, and is invariant to

the rotation of the trait vector. Therefore, an equivalent definition of the heritability of a length-M LBS-based

shape descriptor is the variance-weighted average of the heritability of the firstM principal components (PCs)

of the descriptor, because principal component analysis (PCA) is essentially a rotation of the data. The first

PC thus explains the greatest shape variation and has the largest impact on the overall heritability estimate of

the shape.

To visualize shape variation along the first PC of the shape descriptor for a given structure, we first

aligned the structures from all subjects to a template, fsaverage, which is a population average distributed

with FreeSurfer [68], using a 7-parameter (global scaling plus 6-parameter rigid body transformation) reg-

istration with linear interpolation. Both individual structures and the template were represented with binary

label maps, where voxels within the corresponding segmentation label had one and the remainder of the vol-

ume had zero values. The registration algorithm maximized the overlap, measured with the Dice score [69],

between the corresponding label maps (the fixed template and moving subject which was interpolated and

thresholded at 0.5). Note that LBS is invariant to the spatial position and orientation of an object, and we had

normalized the shape descriptor for volume in all the analyses. Thus this registration has no impact on the

results of our heritability analyses. We then created a sample-specific population average of the structure by

computing a weighted average of the interpolated subject images. In particular, each subject was associated

with a weight equal to a Gaussian kernel centered around the mean of the first PC and evaluated at the subject’s

first PC of the shape descriptor. The width of the kernel was selected such that 500 shapes received non-zero

weights. The isosurface of the resulting probability map at 0.5 was used to represent the average shape of the

structure, and all visualizations were presented on this surface.
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The same Gaussian kernel was used to generate average probability images for shapes centered at the two

extremes (±2 standard deviation or SD) of the principal axis. These average probability images were offset to

achieve identical volumes when thresholded at 0.5. The difference of the two extreme shapes were depicted on

the sample-specific population average, by visualizing the difference in the probability values. Blue indicated

that the average shape at −2 SD achieved a higher probability value and thus was larger in those regions than

the average shape at the +2 SD. For red regions, the opposite was true.

Data availability. The Brain Genomics Superstruct Project (GSP) data analyzed during the current study

are publicly available at http://neuroinformatics.harvard.edu/gsp/. The Human Connectome

Project (HCP) data analyzed during the current study are publicly available at

http://www.humanconnectome.org. Other data are available from the corresponding author on rea-

sonable request.
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