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 9 

Summary  10 

Temporally precise movement patterns underlie many motor skills and innate actions, 11 

yet the flexibility with which the timing of such stereotyped behaviors can be modified is 12 

poorly understood. To probe this, we induced adaptive changes to the temporal 13 

structure of birdsong. We find that the duration of specific song segments can be 14 

modified without affecting the timing in other parts of the song. We derive formal 15 

prescriptions for how neural networks can implement such flexible motor timing. We 16 

find that randomly connected recurrent networks, a common approximation for how 17 

neocortex is wired, do not generally conform to these, though certain implementations 18 

can approximate them. We show that feedforward networks, by virtue of their one-to-19 

one mapping between network activity and time, are better suited. Our study provides 20 

general prescriptions for pattern generator networks that implement flexible motor 21 

timing, an important aspect of many motor skills, including birdsong and human speech.   22 
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Introduction 23 

The brain’s ability to generate spatiotemporally precise motor patterns underlies much 24 

of what we do, from the expert performances of athletes and musicians to the daily acts 25 

of speaking or walking. Despite the ubiquity and importance of stereotyped motor 26 

sequences, our understanding of how the brain controls and modifies their timing 27 

remains poor1,2.  28 

 Many different neural network architectures can generate temporally 29 

reproducible dynamics, a minimum requirement for producing precisely timed motor 30 

output3–9. Randomly connected recurrent neural networks (RNN), a common 31 

approximation for how neocortex is wired10, can be trained to generate prescribed 32 

temporal patterns7,9,11. Feedforward networks, such as synfire chains3,4,  naturally map 33 

network activity to elapsed time, and hence are also suited for generating timing signals 34 

underlying stereotyped motor sequences1. 35 

 However, the demands on pattern generator networks often go beyond simply 36 

producing the same dynamics every time an action is executed. A characteristic of 37 

skilled performance is the flexibility with which established motor patterns can be 38 

modified, including changes to their timing12–14. Modifying the overall tempo of a 39 

continuous action sequence is an obvious and often discussed example15,16 (Figure 1A). 40 

However, careful analysis of stereotyped action sequences suggests that the nervous 41 

system may be capable of altering their timing in far more specific and flexible ways 42 

(Figure 1A). In speech production or typing, for example, the duration of discrete 43 

segments (e.g. phonemes or elements of key strokes) can change independently of 44 
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other parts of a continuous action sequence14,17. Such flexibility in motor timing can be 45 

essential for improving motor skills and adapting them to new contingencies or task 46 

demands. Increasing the power of your tennis serve, for example, may require 47 

selectively speeding up the power-generating stroke, while leaving the timing of the rest 48 

of the serve unchanged. Learning the speech patterns of a new language can similarly 49 

benefit from the ability to alter the duration of distinct phonemes and syllables in 50 

context-specific and flexible ways18. 51 

 To better characterize the flexibility with which the brain can modify the timing 52 

of stereotyped motor sequences, we took advantage of an experimental paradigm that 53 

allows adaptive changes to the temporal structure of zebra finch song to be induced19. 54 

The complex learned vocalizations of adult songbirds are in many ways similar to human 55 

speech20,21, being temporally precise and under certain experimental conditions also 56 

quite malleable19,22,23. Moreover, the temporal precision and reproducibility of birdsong 57 

are of ethological importance24 as is the capacity to change the song’s temporal 58 

structure12. These attributes make the adult zebra finch a good model for interrogating 59 

the flexibility with which the timing of complex and reproducible motor sequences can 60 

be modified.   61 

 Here we show that changes to the duration of specific song segments do not 62 

interfere with the temporal structure of other segments, and that two segments in the 63 

same song can be modified simultaneously and independently. Such flexibility in motor 64 

timing constrains the functional architecture of the underlying pattern generator 65 

circuits. We derive formal prescriptions for how such specific and adaptive changes to 66 
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motor timing can be implemented in neural circuits. We show that for the duration of 67 

two intervals in a motor sequence to change independently, their respective ‘gradient’ 68 

vectors in synaptic weight space must be orthogonal to each other (a gradient vector’s 69 

direction is the direction of maximal duration increase while its magnitude represents 70 

how fast the duration increases in that direction). We probe the extent to which neural 71 

networks capable of generating precise temporal patterns conform to this prescription. 72 

While RNNs, in general, do not fulfill the strict conditions of orthogonality, certain 73 

implementations can achieve reasonable approximations. However, we find that 74 

feedforward networks, which unambiguously map network activity to time, are better 75 

suited to implement flexible motor timing.    76 

Consistent with our theoretical analysis, simulations of temporal learning using 77 

biologically plausible plasticity rules in a synfire chain network reproduced the 78 

phenomenology observed in songbirds, while similar simulations in RNNs failed to attain 79 

the required degree of temporal flexibility. The different network simulations also 80 

generated predictions for how variability in the duration of a song segment should 81 

change with modifications to its mean duration. Here too, our experimental data 82 

conformed to the predictions of the synfire chain model, but not those of the RNNs. 83 

These results constrain the topology and dynamics of neural networks underlying 84 

flexible motor timing, and suggest that the synfire chain architecture may be ideally 85 

suited for its implementation. Even though the experimental data come from songbirds, 86 

we note that the theoretical constraints on temporally flexible pattern generator circuits 87 

we derive are very general and apply also to other systems.  88 
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 89 

Results 90 

 91 

Flexible modifications to the temporal structure of birdsong  92 

Flexibility in motor timing can be characterized in terms of specificity and independence. 93 

Specificity means that changes to the duration of one part of a sequence leaves the 94 

temporal structure of other parts unaffected (Figure 1A). Independence means that 95 

timing in different parts of a sequence can be modified simultaneously without any 96 

effect on learning rates. We studied both aspects of timing flexibility in perhaps the best 97 

understood example of how the brain acquires and executes complex learned motor 98 

sequences: the courtship song of the zebra finch25,26. 99 

To characterize the flexibility with which the pattern generator circuit underlying 100 

stereotyped adult song can modify motor timing (Figure 1A), we challenged adult birds 101 

to produce changes to the duration of specific song segments (Figure 1B), using 102 

Conditional Auditory Feedback (CAF), a reinforcement learning-based paradigm19,27 103 

(Methods). By playing loud (~80−90 dB) aversive sound bursts contingent on the 104 

duration of a targeted song segment, significant changes to the song’s temporal 105 

structure can be induced in a matter of hours19 (Figure 1C). To explore the specificity of 106 

these modifications, we compared changes in the duration of targeted segments to 107 

changes in other parts of the song.   108 

 Across the population of birds (n = 18 birds), targeted segments changed by, on 109 

average, 2.9 ± 1.7 ms (mean ± SD, n = 18 targets) per day relative to baseline drift 110 
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(Figure 1D, Methods). In contrast, we saw no significant changes in non-targeted 111 

segments (n = 120) regardless of their position relative to the targeted segment (Figure 112 

1D). Previous analyses have shown correlations among song segment durations during 113 

baseline undirected singing28,29 . However, more detailed analysis found that specificity 114 

in the CAF-induced timing changes was not related to baseline timing correlations 115 

(Supplementary Figure 1). This demonstrates that the timing of stereotyped learned 116 

motor patterns can change in temporally very specific ways.  117 

 We next tested whether learning-induced changes to the duration of one song 118 

segment interferes with adaptive modifications to other parts of the song by targeting 119 

two segments (>100 ms apart) for CAF simultaneously (Figure 1E, Methods). 120 

Interestingly, we found no difference in learning rates whether a segment was targeted 121 

for modification alone (2.8 ± 2.4 ms per day) or in conjunction with another segment 122 

(3.0 ± 2.4 ms per day, n = 12 segments in 6 birds, Figures 1F, G), suggesting that 123 

individual segments of song are, in terms of changes to their durations, independent. 124 

 125 

Constraints imposed on flexible time-keeper circuits  126 

While many different neural network architectures have been proposed to generate 127 

reproducible temporal patterns1,7,9, the extent to which they support flexibility in motor 128 

timing has not been considered.  129 

Here we use theoretical and computational approaches to examine how 130 

specificity and independence in motor timing constrain the topology and dynamics of 131 

the underlying pattern generator networks. We assume that network output is modified 132 
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by changing connection strengths between its neurons, and seek to understand the 133 

network properties that enable flexible motor timing.  134 

To modify the duration of a discrete segment in a longer action sequence with 135 

independence and specificity (Figure 1A), there must exist a path in synaptic weight 136 

space along which only the duration of that segment (i.e. its interval) changes 137 

(specificity). Moreover, changes along such a path should not affect the network’s 138 

capacity to change along paths associated with other intervals (independence). The 139 

analytical discussion that this condition can be satisfied in a generic pattern generator 140 

network is presented in Supplementary Note I.  141 

However, the existence of specific and independent paths in synaptic weight 142 

space is, on its own, not sufficient to ensure flexible motor timing. Such paths must be 143 

found and followed by biologically plausible learning algorithms. For real-world pattern 144 

generators, exemplified by the vocal control pathway of the zebra finch, modifications 145 

to motor timing often happens through trial-and-error learning, i.e. variations in 146 

temporal structure are generated and certain variants reinforced19. Our experiments 147 

with zebra finches showed that reinforcement targeted to specific song segments 148 

produce specific and independent changes to the song’s temporal structure (Figure 1).  149 

Synaptic learning rules that implement reinforcement learning typically find the 150 

reward gradient vector, i.e. the vector in synaptic weight space that points along the 151 

direction that maximizes reward increase (or punishment decrease), and updates 152 

synaptic weights along that direction28–31. To implement such trial-and-error learning, 153 
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network dynamics must vary from rendition-to-rendition, with dynamics resulting in 154 

higher rewards being reinforced by changing synaptic weights appropriately.  155 

Important to note is that such learning rules will only find the exact reward 156 

gradient after averaging synaptic weight updates over many trials, a luxury not afforded 157 

a learning animal. In reality, the synaptic updates are noisy approximations of the true 158 

gradient. In the next sections, we will explicitly simulate trial-and-error learning and 159 

study its effects on temporal modifications. Here, we focus on the gradient directions 160 

themselves, assuming that they can be found, and probe if their geometries allow for 161 

flexible time keeping. This allows us to separate two factors that influence and 162 

determine timing flexibility: 1) the geometry of gradient vectors, purely a property of 163 

the network, and 2) the constraints of working with noisy approximations of the 164 

gradient, which arises due to trial-and-error learning.  165 

 Let ܴ(ఈ)൫ܫ(ఈ)൯ denote a scalar reward signal associated with the duration of an 166 

interval ߙ, which we denote by ܫ(ఈ). To state the condition for specificity in a pattern 167 

generator network, we make use of two facts. First, the reward gradient is parallel to 168 

the interval duration gradient (a fact that follows from the chain rule of calculus). 169 

Second, while the gradient points along the direction of maximal increase in interval 170 

duration, directions perpendicular to it are directions along which the duration of the 171 

interval does not change. Then, specificity requires an interval gradient to be orthogonal 172 

to all other interval gradients. Formally: 173 

෍߲ܫ(ఈ)߲ ௜ܹ௝ ߲(ఉ)ܫ߲ ௜ܹ௝{௜௝} = 0,          if α≠β,                                              (1)  
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where ௜ܹ௝  is the strength of the connection from neuron j to neuron i, and the 174 

summation being over all synapses (see also Supplementary Note I). Importantly, the 175 

orthogonality constraint must hold throughout learning. Otherwise, a network that 176 

initially exhibits specificity could lose that property as the target segment (and the 177 

gradient vector associated with it) changes. See Methods and Supplementary Note I for 178 

a comprehensive discussion of these points. Importantly, Eq. (1) also ensures 179 

independent learning, assuming that the effects of separately delivered reinforcers sum 180 

linearly (see Supplementary Note I). 181 

 182 

Quantifying timing flexibility  183 

We next asked whether neural network architectures proposed to underlie the 184 

temporal patterning of action sequences conform to the prescriptions we derived. We 185 

consider two broad classes of networks: RNNs 7,9,10 and feedforward networks 3,4,32,33, 186 

and investigate the condition under which instantiations of these networks satisfy or 187 

approximate the orthogonality condition in Eq. (1). To quantify the extent to which a 188 

network deviates from the specificity and independence criterion (eq. 1), we 189 

numerically calculate the gradient vector associated with each interval and then 190 

compute the “interference matrix”. This is a symmetric matrix whose elements are 191 

given by the inner products of the gradients associated with pairs of targeted segments: 192 

ఈఉܯ =෍߲ܫ(ఈ)߲ ௜ܹ௝ ߲(ఉ)ܫ߲ ௜ܹ௝{௜௝} .                                                       (2)  

This matrix has non-zero off-diagonal elements when gradients are non-orthogonal. 193 
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 The interference matrix of a pattern generator network quantifies the degree to 194 

which the network is flexible. For example, consider an ‘experiment’ akin to the one we 195 

performed in songbirds (Figure 1), where the duration of a segment ߙ (i.e. its ‘interval’) 196 

is targeted for modification. For small changes in synaptic weights, the expected change 197 

to the duration of another segment ߚ, normalized by the change in the target interval 198 ,ߙ 

is given by:  199 δܫ(ఉ)δܫ(ఈ) = ఈఈܯఉఈܯ ,																																																															(3)	 
Eq. (3) shows how the interference matrix relates to specificity. If the gradients with 200 

respect to intervals	ߙ	and 	ߚ are non-orthogonal, then ܯఉఈ is non-zero and there is a 201 

change in interval ߚ, even though the reward was targeted at ߙ. In these cases timing 202 

modifications will not be specific to the targeted interval. In an ‘experiment’ where two 203 

intervals (ߙ  and ߚ ) are targeted for modification simultaneously with separately 204 

delivered reinforcers, the expected change in interval ߙ, normalized to the expected 205 

change in an ‘experiment’ where only interval ߙ is targeted, is given by:  206 

δܫ௧௪௢ି௧௔௥.(ఈ)δܫ௦௜௡௚௟௘ି௧௔௥.(ఈ) = 1 + ఈఈܯఉఈܯ
ܴ݀ఉ݀ܫఉܴ݀ఈ݀ܫఈ ,																																																									(4)	 

Eq. (4) shows how the interference matrix relates to independence. If the gradients with 207 

respect to intervals	ߙ	and 	ߚ are non-orthogonal, then ܯఉఈ is non-zero, meaning that 208 

learning directed at interval ߚ will affect the learning rate of interval ߙ. In these 209 

instances, the temporal modifications to different segments will not be independent. 210 

We note that the ratio ܯఉఈ/ܯఈఈ appears in both Eqs. (3) and (4) and quantifies the 211 
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deviation from specificity and independence. Below, we use it, or rather its absolute 212 

value, as a measure of interference (or non-flexibility) between intervals ߙ and 213 .ߚ 

Therefore, with the knowledge of the interference matrix, we can quantify the degree to 214 

which a time-keeper network allows for flexible motor timing.  215 

 216 

 217 
Probing random recurrent networks as flexible time-keepers    218 

RNNs in their chaotic regime10 produce spatiotemporal patterns suitable for generating 219 

complex motor output. However, chaotic network dynamics cannot produce the same 220 

dynamics repeatedly and reliably because even small perturbations to the network can 221 

cause large changes in its dynamics. Recently, algorithms that suppress chaos in RNNs 7,9 222 

have demonstrated the capacity of such networks to learn and reliably produce complex 223 

stereotyped output, making them suitable as pattern generators. Next, we examine the 224 

extent to which such networks, specifically the feedback-stabilized RNNs of Sussillo and 225 

Abbott (2009) and the dynamic attractor networks of Laje and Bounomano (2013), 226 

support flexibility in motor timing. 227 

 228 

Robustness-flexibility trade-off in feedback-stabilized RNNs 229 

Using the FORCE algorithm9, we trained the read-out units of an RNN with 500 ‘rate’ 230 

neurons to produce an output pattern with readily identifiable ‘intervals’ (Figure 2A). In 231 

this network, chaos is suppressed by having the linear read-out neuron feed back to 232 

neurons in the RNN9,34, and hence we refer to it as “feedback-stabilized RNN” or fsRNN. 233 

For simplicity, we trained the network to produce a waveform with 10 equally spaced 234 
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peaks, 50ms apart (Figure 2A, Supplementary Figure 2A, Methods). This allowed us to 235 

define the start and end of specific ‘intervals’ as the times the output crossed a preset 236 

threshold.  237 

 In fsRNNs, feedback from the read-out unit to the neurons in the RNN should be 238 

comparable in strength to the recurrent inputs to those neurons in order to suppress 239 

chaos and allow for successful training9. In our implementation, the strength of the 240 

feedback is governed by the parameter  ݃ி஻ , which is typically set to be around 1 in 241 

applications of FORCE training RNNs9,35–37. We varied this number from 0 to 5 and 242 

trained 20 networks for each value. We found that increased feedback improves 243 

training success as reflected by a decrease in the ‘test’ error, i.e. the normalized error 244 

between network output and desired output (Figure 2B, Methods). To assess whether 245 

such networks can produce precise timing signals, we quantified the fraction of 246 

simulations (out of 400) in which the network failed to produce all 10 intervals within 3 247 

ms (i.e. 6%) of the target duration (the ‘timing failure rate’, Figure 2B). This metric was 248 

close to zero even when the strength of the feedback was low, meaning that even 249 

networks with outputs further from the specified target can produce activity 250 

modulations useful for marking the starts and ends of intervals.  251 

Looking at the networks more closely, we found that changes in feedback 252 

strength led to qualitatively different solutions (Figure 2A). When feedback was strong, 253 

it dominated the recurrent input to the pattern generator network close to interval 254 

boundaries. Because the feedback input was periodic, the network state, defined by the 255 

vector of all instantaneous unit activities, was reset to the same state at interval 256 
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boundaries (Figure 2C), leading to periodic activity in the pattern generator network 257 

(see example unit dynamics in a network with ݃ி஻ = 2, Figure 2A). When feedback 258 

strength was low, the recurrent input dominated, causing non-periodic network activity 259 

(see example unit dynamics in a network with ݃ி஻ = 1, Figure 2A). Given these 260 

qualitatively different dynamic regimes, we probed RNNs with varying degrees of 261 

feedback in terms of their capacity for robust and flexible time-keeping. 262 

  We first quantified the robustness of the network as a function of feedback by 263 

injecting 10ms perturbation pulses of different magnitudes into all units of the network 264 

similar to Laje and Buonomano7 (Figure 2D, Supplementary Figure 2B). We applied this 265 

perturbation during the second interval and found that the timing failure rate decreased 266 

with increased feedback, though not much beyond ݃ி஻ = 1. This implies that networks 267 

become more robust as the strength of feedback is increased. 268 

 We next examined how these networks cope with demands for timing flexibility 269 

by calculating their interference matrices (Figure 2E). We found that interference 270 

matrices are sensitive to the strength of the feedback, ݃ி஻: at low feedback, off-271 

diagonal elements are small, implying relatively low interference between intervals and 272 

high specificity. At high feedback, off-diagonal elements are almost as large as diagonal 273 

elements, implying high interference and low specificity. This is because the dynamics of 274 

the network as well as the consequences of the synaptic changes are similar for each 275 

interval. Interestingly, at high feedback, the first interval behaves differently than the 276 

others, and interferes much less. This is because the network state at the beginning of 277 

the first interval, set by an external start signal, is different than the network states at 278 
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the beginning of other intervals (Figure 2C), which are determined largely by the 279 

feedback signal.   280 

 We quantified timing flexibility by calculating the normalized interference matrix 281 

elements,ቚெഁഀெഀഀቚ × 100%, which reflect interference for all pairs of intervals as discussed 282 

above. On average, interference went from ~20% to almost 100% as feedback increased 283 

(Figure 2F). Taken together, our results (Figures 2C−F) show that feedback leads to a 284 

trade-off between robustness and timing flexibility, with strong feedback making the 285 

network more robust to perturbations, but less flexible in the time domain. 286 

 Thus far, we have inferred flexibility from gradient vectors in synaptic weight 287 

space and metrics derived from those. Biological implementations of reinforcement 288 

learning, however, must find those gradients. To understand how this affects timing 289 

flexibility, we simulated the process of reinforcement learning by implementing a 290 

biologically plausible rule that updates synaptic weights to maximize reward on 291 

average29,30 (Methods). Noise added to the network units, both during training and 292 

later, ensured trial-by-trial variability in interval durations to the level observed in 293 

songbirds38(Methods). Reinforcement was provided to the network in a manner 294 

analogous to our CAF experiments: if the target interval differed from the running 295 

average in the desired direction (Methods), reinforcement was delivered at the end of 296 

the interval (Methods). This learning rule successfully modified the duration of targeted 297 

intervals, with learning rates comparable to those seen during CAF (Figures 2G, H). 298 

When averaged across multiple runs of the simulated learning ‘experiments’, the 299 

interference patterns were largely predicted by and consistent with the interference 300 
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matrix calculations (Figures 2I, J). However, interference in single ‘experiments’ 301 

exceeded the predictions from gradient descent, i.e. the interference matrix, by a 302 

significant amount (Figure 2K), suggesting that experiment-to-experiment variability in 303 

the modification of non-target intervals is large. The single experiment interference 304 

decreased with decreasing feedback and leveled around 35% (averaged across intervals, 305 

networks and simulations, Figure 2K, Methods).  306 

 To assess independence in the temporal domain, we targeted two intervals for 307 

modification as we had done experimentally in songbirds (Figure 1E−G), with separate 308 

reinforcements given contingent on the duration of both intervals (Methods). As 309 

expected from the interference matrices, this resulted in destructive interference, 310 

meaning that learning rates for individual intervals decreased when they were modified 311 

in conjunction with another (Supplementary Figures 2C−E). This interference increased 312 

with feedback, leading to almost no learning for ݃ி஻ > 2 (Supplementary Figures 2C−E). 313 

 We next asked whether interference can be prevented by an internally 314 

generated “template” reinforcer, which clamps non-target interval durations to their 315 

baseline value? Such reinforcer is hinted at by the experiments of Ali et. al. (2013), 316 

where interval durations modified by the CAF procedure returned to baseline values 317 

after CAF was turned off. To test this hypothesis, we introduced a separate reinforcer 318 

for each interval, which rewarded interval duration changes towards the interval’s 319 

baseline value. Such reinforcer successfully restored the target interval’s baseline 320 

duration after the CAF-like process implemented in our simulations was turned off, with 321 

the rate of change comparable to what is seen in songbirds19 (Supplementary Figure 2F). 322 
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However, the overall level of interference did not systematically decrease with the 323 

inclusion of template reinforcers (Supplementary Figure 2G), because they themselves 324 

interfered with each other and the CAF process. 325 

 326 

Time-keeping with dynamic attractor networks  327 

Recently, Laje and Buonomano (2013) proposed a new dynamic regime for RNNs, the 328 

dynamic attractor, which they showed can function as a “population clock” suitable for 329 

generating temporally precise output due to its robustness to perturbations. However, 330 

the extent to which the dynamic attractor allows flexible motor timing has not been 331 

considered.  332 

The dynamic attractor has a similar architecture to the fsRNN, but differs in that 333 

it has no feedback from the read-out neuron (Figure 3A). To ensure robustness, the RNN 334 

is instead trained using an “innate training” procedure7, which applies the FORCE 335 

algorithm to neurons in the pattern generator network in order to stabilize a chaotic 336 

trajectory already produced by the network. This effectively turns the trajectory into an 337 

attractor such that even if the network is perturbed, it returns to the original trajectory, 338 

yielding a reliable and precise output pattern.  339 

We trained instantiations of these dynamic attractor networks, matched in size 340 

and other parameters to those of the fsRNNs (Methods), to produce output patterns 341 

from which interval durations could readily be extracted (Figure 3A, Methods). We 342 

found that a large fraction of the trained networks successfully produced all 10 intervals 343 

within 3 ms of their target duration (Figure 3B). In our analysis, we only considered 344 
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networks that were successful >99% of the time (out of 400 simulations, 14 out of 20 345 

trained networks). The robustness of these networks to perturbations was comparable 346 

to fsRNNs with low feedback (݃ி஻ ≈ 1), i.e. similar perturbation magnitudes led to 347 

similar failure rates (Figure 3C). These results ensured that our dynamic attractor 348 

networks were comparable to fsRNNs in reliability and robustness, allowing us to 349 

compare them in terms of their capacity to support flexible motor timing. 350 

Interference matrices revealed less interference across intervals (~12%) than the 351 

low feedback RNNs (~23%) (Figures 3D,E). In contrast to the fsRNNs trained by the 352 

FORCE learning algorithm, the interference between adjacent intervals was, on average, 353 

much larger (~35%) than the average interference (Figure 3E). This is consistent with the 354 

dynamic attractor trying to ‘return’ to its original pattern, compensating for a 355 

decrease/increase in the duration of an interval by increasing/decreasing the duration 356 

of adjacent intervals. In line with this, the interference matrix elements corresponding 357 

to neighboring intervals consistently had negative values (Figure 3D). 358 

 When we modified the duration of targeted intervals with the same 359 

reinforcement learning algorithm that we used for the fsRNNs (Methods), learning rates 360 

were similar to the simulated experiments in fsRNNs and comparable to what we 361 

observed in songbirds (Figures 3F, G). Changes in the duration of target and non-target 362 

intervals were, over all, well predicted by the interference matrices (Figure 3H), though 363 

as with the fsRNNs, interference on average (~20%) exceeded what was expected by 364 

gradient descent (~12%) (Figure 3I).  365 
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To assess independence, we again targeted two non-adjacent intervals for 366 

simultaneous modification. We found that the learning changed as predicted by the 367 

associated interference matrices (Supplementary Figure 3A-C). Absolute changes in 368 

learning rates were less (~15%) than for low feedback fsRNNs (~30% for ݃ி஻ = 1), 369 

consistent with dynamic attractors exhibiting less interference on average. Including 370 

template reinforcers (Supplementary Figure 3D,E) did not lead to a systematic reduction 371 

in interference. 372 

These results suggest that dynamic attractor networks, as in Laje and 373 

Buonomano (2013), allow for more flexible adjustments to motor timing than fsRNNs. In 374 

contrast to the fsRNNs, interference was largely concentrated on nearest neighbor 375 

intervals with changes to non-targeted intervals being opposite in sign to the target. We 376 

note that is inconsistent with our birdsong data (Figure 1D).  377 

 378 

Flexible time-keeping in feedforward networks requires unique mapping between 379 

synapses and intervals 380 

Feedforward networks have been proposed as alternatives to RNNs for generating 381 

temporal patterns1,32,33,39 (Figure 5A). By organizing neurons into layers connected in a 382 

feedforward manner, these networks naturally map layer-specific neural activity to 383 

elapsed time1. In this section, we focus on feedforward networks with a single neuron 384 

per layer (Figure 4A). This simplification allows us to study the constraints that flexible 385 

time keeping imposes on feedforward network dynamics analytically. Using insights 386 
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gained from this treatment, we then discuss more realistic feedforward networks in the 387 

next section. 388 

 Applying the orthogonality constraint (eq. 1) to feedforward networks revealed 389 

that flexible time-keeping requires that synaptic weights be mapped to interval 390 

durations in a unique one-to-one manner (Methods and Supplementary Note II). 391 

Consider an interval ܫ(ఈ), the duration of which depends on activity in layers ߙ − 1 and 392 ߙ. In Methods and Supplementary Note II we prove that flexible time-keeping requires 393 

changes to the synaptic weight between layers ߙ − 1 and ߙ, denoted here by ఈܹ,  to 394 

affect only the duration of ܫఈ: 395 ߲ܫ(ఈ)߲ ఉܹ = 0,							if α≠β.                                                     (5)	
      396 

As we show in Methods and Supplementary Note II, the one-to-one mapping constraint 397 

(Eq. 5) is satisfied if synaptic weight changes that alter the timing of the post-synaptic 398 

neuron’s activity leave its shape and magnitude unaffected. This ensures that 399 

downstream neurons encoding non-target intervals shift their activity in time by the 400 

same amount, keeping non-target interval durations unchanged, thus satisfying Eq. (5). 401 

Note that Eq.5 is naturally satisfied by synaptic connections between downstream 402 

layers, as these cannot affect activity in upstream layers. 403 

 To further illustrate the constraints that Eq. (5) imposes on dynamics, we use a 404 

simple and analytically tractable example of a feedforward network, a chain of 405 

integrate-and-fire neurons (Figure 4B), showing how it fails or succeeds in flexible time-406 
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keeping. In this example, initial synaptic weights are chosen such that when the first 407 

neuron in the chain produces a single spike, downstream neurons in the chain 408 

propagate activity by producing a single spike each. This network satisfies the one-to-409 

one mapping constraint (Eq. 5) (Methods, Eq. 11). If ఈܹ is increased, the synaptic weight 410 

matrix changes along the gradient (Methods, Eq. 11), advancing the firing of the 411 ߙ௧௛	neuron since it reaches spiking threshold sooner. However, as long as the neuron 412 

produces only one spike, the time it takes for the next neuron to spike will not change, 413 

keeping all subsequent intervals unchanged. Similarly, decreasing ఈܹ  causes the 414 

duration of interval ܫఈ to increase, without affecting the others.  Note that this is exactly 415 

the mechanism described in the previous paragraph: synaptic weight changes affect 416 

only the timing of the post-synaptic response, not its magnitude or shape. Therefore, 417 

constraint (Eq. 5) is satisfied and the interference matrix is diagonal.  418 

 However, there are limits to the timing flexibility exhibited by a chain of 419 

integrate-and-fire neurons. If synaptic weights decrease below a point where the 420 

excitation in the post-synaptic neuron no longer drives it above spiking threshold, chain 421 

propagation stops (Figure 4B). On the other end, if synaptic weights increase to a point 422 

where the post-synaptic neuron produces multiple spikes, then the downstream 423 

intervals may get shorter as the boost in excitation from the extra spike(s) will cause the 424 

downstream neurons in the chain to reach threshold sooner (Figure 4B). In other words, 425 

if synaptic weight changes, beyond shifting the postsynaptic response in time, also alter 426 

its magnitude, this may interfere with downstream intervals. Therefore, timing flexibility 427 

holds only for a finite range of synaptic weights (see Supplementary Note III for the 428 
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exact expressions). Importantly, this range can be increased by other mechanisms, such 429 

as refractoriness, that make the shape of the post-synaptic response, number of spikes 430 

in our case, less sensitive to changes in input (Figure 4C).  431 

In realistic feedforward networks with multiple spiking neurons per layer, layer-432 

to-layer propagation of excitation can occur in asynchronous40,41 or synchronous 433 

modes3,4. It has been argued that the synchronous mode4, is superior to the 434 

asynchronous mode40 in terms of propagating activity across many layers, making it a 435 

viable solution for temporal pattern generation. Moreover, the synchronous mode, as 436 

we show next, can be made to conform to the constraints on flexible time-keeper 437 

networks.  438 

 439 

Synfire chains as flexible time-keepers  440 

We simulated a chain of integrate-and-burst spiking neurons, modeled on the putative 441 

time-keeper circuit of the songbird (HVC)42–45. The network had 90 layers with 15 442 

neurons per layer, for a total of 1350 neurons (Figure 5A, Methods), with the 443 

connectivity between layers being all-to-all. The network was configured to propagate 444 

activity in a synchronous mode, hence a ‘synfire chain’ (Figure 5B). Output neurons 445 

received input from all neurons in every 9th layer. The first spike of each output neuron 446 

marked the time of an interval boundary (Figures 5A,B), yielding 10 intervals of roughly 447 

50 ms average duration. As expected from the analogy with the single-spike neuron 448 

chain, the interference matrix for the synfire chain was diagonal at this baseline 449 

configuration, i.e. non-diagonal elements were 0 (see Methods, Figure 5C). 450 
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 Modifying the duration of specific intervals using the same reinforcement 451 

learning algorithm as for the recurrent networks (Methods) resulted in learning rates 452 

comparable to what is seen in songbirds (Figure 5D). During these simulations, synaptic 453 

weights were bounded from above and below to ensure stable propagation through the 454 

chain. If synapses become too strong, neurons can produce more than single bursts 455 

leading to overexcitation, while if synapses become too weak activity can die out 456 

(Methods). Furthermore, such bounds prevent possible interference effects discussed 457 

above for the single neuron chain (Figure 4B and C). Changes in the duration of targeted 458 

and non-targeted intervals were, on average, well predicted by the interference 459 

matrices (Figure 5E). Importantly, the interference was an order of magnitude smaller 460 

than in the random recurrent networks, although not zero (~1%, Figure 5F), and 461 

consistent with what we observed in songbirds (~0.7% when normalized to non-target 462 

segment duration in baseline). We verified that these results are robust to varying the 463 

the synfire chain model in at least two ways: 1) layer-to-layer connectivity was changed 464 

to all-to-all with weights being randomly chosen (Supplementary Figure 4A and B), and 465 

2) neurons made synapses to next layer neurons with some probability (Supplementary 466 

Figure 4C and D). 467 

 To assess independence, we again targeted two non-adjacent intervals for 468 

simultaneous modification. The average reduction in learning rates was small (~3−5%) 469 

(Supplementary Figure 4G and H), consistent with our observations in songbirds (Figure 470 

1G). These results suggest that synfire chains allow for flexible adjustments to motor 471 

timing.  472 
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 473 

Variability in temporal structure 474 

To further delineate the network that implements song timing in zebra finches42,46, we 475 

analyzed temporal variability of song segments targeted in our CAF paradigm. We found 476 

that when their intervals were shortened, variability in their durations decreased, 477 

whereas when segments were lengthened their variability increased (Figure 6A). This 478 

monotonic relationship held across multiple days of learning for the same target (Figure 479 

6B) and across our population of birds (Figure 6C). 480 

We analyzed the extent to which the network models we have considered 481 

recapitulate the monotonic relationship between changes in the mean duration and the 482 

variability of targeted segments. Neither of the recurrent pattern generator networks 483 

showed a consistent relationship between target interval duration and variability. 484 

Depending on initial network configuration, variability could increase, decrease or have 485 

no correlation with changes in interval duration. It could even have a convex shape 486 

(Figures 6D−E). In contrast, synfire chain networks showed an increase in variability as a 487 

function of changes in target interval duration (Figure 6F and Supplementary Figure 4C 488 

and F), conforming to the experimental observations in songbirds. 489 

 490 

Discussion 491 

Modifying the temporal structure of stereotyped motor sequences is an important 492 

means of adapting motor output to new task demands12–14,19. Here we combined 493 

behavioral experiments in songbirds with theory and network simulations to explore the 494 
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flexibility with which pattern generator circuits, real and simulated, can modify the 495 

temporal structure of their output. We found that the timing of zebra finch song can be 496 

altered with very high degree of specificity (Figure 1), and derived formal prescriptions 497 

for neural networks implementing such flexible motor timing. 498 

 We show that gradient vectors in synaptic weight space associated with different 499 

intervals in a sequence must be orthogonal for the intervals to be independently 500 

modifiable. Certain feedforward networks generally satisfy this criterion making them 501 

ideally suited as flexible time-keepers. The general topology of RNNs, however, does not 502 

guarantee such flexibility. Whereas synapses in feedforward networks naturally map 503 

onto specific time points in a sequence, synapses in RNNs that contribute to changing 504 

one interval are often not unique from those that drive changes in other intervals, 505 

leading to interference in the time domain.   506 

 We found that the degree of timing flexibility further depends on the specifics of 507 

the networks and the properties of its neurons. In RNNs, strong feedback from output 508 

neurons to the RNN, which can increase the network’s robustness to perturbations 509 

(Figure 2D), makes the network less flexible in the temporal domain (Figure 2F). The 510 

dynamic attractor network of Laje and Buonomano7, which does not require any 511 

feedback, shows overall less interference (Figure 3). While feedforward networks are 512 

structurally better suited, we found that flexible time-keeping is compromised in these 513 

networks if the synaptic changes between neurons alter post-synaptic spiking responses 514 

beyond just shifting them in time. In this regime, modifying the strength of a synapse 515 

will not only affect the interval associated with that synapse, but the effect will 516 
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propagate to downstream neurons causing changes also to subsequent intervals 517 

(Supplementary Notes II and III).  518 

The range over which feedforward networks operate as flexible time-keepers 519 

can be extended by making its neurons’ spiking responses less sensitive to the 520 

magnitude of presynaptic input. Interestingly, projection neurons in HVC, the putative 521 

time-keeper circuit in songbirds16,42,47, generate calcium bursts that accomplish just that. 522 

Modeling a synfire chain network with integrate-and-burst neurons, akin to those 523 

described in HVC 42, recapitulated the flexible timing observed in songbirds (Figure 5).  524 

Additional support for the idea that song-timing is governed by a synfire chain-525 

like network comes from the relationship between variability in interval duration and 526 

changes to its mean (Figures 6A−C). Whereas RNNs show no consistent relationship 527 

(Figures 6D,E), feedforward networks predict the monotonically increasing relationship 528 

between variability and mean duration we observe (Figure 6F). This relationship is a 529 

consequence of how interval durations are altered in feedforward networks: synaptic 530 

strengthening between neurons in subsequent layers makes the signal propagate faster, 531 

shortening the associated interval. But synaptic strengthening also makes the synapse 532 

less prone to noise and hence less variable48, while weakening the synapse has the 533 

opposite effects. Whether this characteristic monotonic relationship between interval 534 

duration and variability, suggestive of an underlying feedforward network architecture, 535 

is seen also in other flexible behaviors, such as speech, remains to be investigated22.  536 

While both random recurrent and feedforward neural networks have been 537 

proposed to underlie the temporal structure of birdsong46,47, our findings together with 538 
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other recent experimental results16,42, suggest that the network that controls song 539 

timing functions as a synfire chain. The extent to which the synfire chain-like network is 540 

implemented locally in HVC or in a more distributed network49, remains to be further 541 

explored. Importantly, our results add intuition as to why a synfire chain-like network 542 

architecture is the preferred solution: it allows very specific changes to the song’s 543 

temporal structure. 544 

We also found that modifications to interval durations in RNN networks result in 545 

more temporal interference than predicted by gradient descent (Figures 2K and 3I). This 546 

is because individual learning experiments do not find the optimal synaptic updates, i.e. 547 

those that align with the gradient vector for the targeted interval. This solution only 548 

emerges when averaging across many experiments. For an intuition as to why trial-and-549 

error learning leads to more interference we can consider two intervals whose gradients 550 

are orthogonal, one of which is targeted for modification. Because the synaptic updates 551 

at the end of an experiment will not exactly point along the target interval gradient, the 552 

updates will not be orthogonal to the gradient of the non-targeted interval and will 553 

hence cause a change in its duration too, i.e. interference. 554 

While we have limited our study to structurally feedforward networks, our 555 

results generalize also to functionally feedforward networks32. In these networks, 556 

specific modes of network activity (Schur modes), rather than individual neurons, are 557 

organized into layers and the connectivity matrix is feedforward in the basis of these 558 

modes. Our results suggest that timing flexibility in such networks would be 559 

compromised if synaptic changes alter the Schur modes beyond just shifting them in 560 
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time. What is needed for flexible time-keeping is a ‘generalization’ of the synfire chain 561 

to a functionally feedforward architecture, although how such generalizations can be 562 

made is not clear. Asymmetric Hopfield networks6,8 might provide insight into how to 563 

construct such networks. Even though these networks are built with binary neurons, 564 

they describe dynamics that evolve from one attractor to another and their connectivity 565 

has a feedforward structure in the basis of these attractors. We speculate that the 566 

attractor states of the asymmetric Hopfield networks might be analogous to 567 

synchronous spiking of neurons in a synfire chain. 568 

One could also consider hybrid architectures, where separate RNNs encode the 569 

individual segments of a longer sequence (e.g. song) and are then coupled in a 570 

feedforward manner. If learning-induced modifications to the feedforward connections 571 

only shift the time at which the next recurrent network starts its activity, this 572 

architecture would also function as a temporally flexible pattern generator.   573 

Modifications to timing could also be induced by changing the spatiotemporal 574 

profile of the inputs to a pattern generator circuit, as opposed to synaptic plasticity 575 

within the pattern generator as considered here. This amounts to pushing the problem 576 

we have discussed upstream of the pattern generator, since it is the network providing 577 

the input that must now ensure that timing is modified flexibly. Interestingly, synfire 578 

chains provide a simple way for upstream networks to control timing in a flexible 579 

manner. Suppose all neurons in a layer get a common tonic input from an upstream 580 

area, and these inputs are independent from layer to layer. By increasing or decreasing 581 

the tonic input a layer gets, without changing its temporal profile, the upstream area 582 
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can make the neurons in the layer fire earlier, without interfering with other interval 583 

durations. Controlling timing by means of changing the spatial, but not temporal, 584 

profiles of inputs is made possible by the one-to-one mapping of time to space inherent 585 

to synfire chains. 586 

In this study, we only discussed flexibility in motor timing. However, depending 587 

on the structure of the network controlling the behavior, temporal changes could also 588 

interfere with spatial aspects of motor output1. In the songbird system, for example, the 589 

output neurons of the time-keeper network, HVC, synapse onto motor cortex analogue 590 

neurons that, indirectly, drive the vocal muscles25. If modifications to the song’s 591 

temporal structure change the magnitude of the spiking response in the output 592 

neurons, this could change not only the timing of muscle activations but also their 593 

magnitude. Thus separating temporal and spatial aspects of movements19,23, requires 594 

separating the timing of an output neuron’s firing from its magnitude. In general, 595 

neither RNNs or feedforward networks ensure such a separation. However, synfire 596 

chains do, suggesting another reason why they might have the ideal topology and 597 

dynamics for implementing the timing of flexible behaviors.  598 

 Maximal flexibility in modifying motor skills would analogously require the 599 

capacity to change specific movement features without interfering with others. The 600 

same requirements for flexibility in motor timing, i.e. independence and flexibility, also 601 

apply to spatial aspects of movements.  For example, in a reinforcement learning model 602 

of a reaching task50, interference between different movements were likely51, 603 

significantly slowing down the learning process. The methods and formalisms we 604 
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present for understanding the network constrains associated with flexible motor timing 605 

can be extended to study networks underlying flexibility in the spatial domain. 606 

 Beyond informing the neural circuits underlying flexible time keeping, our study 607 

is also an example of how behavioral experiments in combination with network 608 

modeling and theory can inform the structure and dynamics of neural circuits 609 

underlying complex behaviors.   610 
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Acknowledgments 612 

 We thank Raoul Memmesheimer, Ben Dongsung Huh and Brian DePasquale for 613 

discussions. 614 

 615 

Methods 616 

Birdsong Experiments 617 

Animals  618 

The care and experimental manipulation of all animals were reviewed and approved by 619 

the Harvard Institutional Animal Care and Use Committee. Experimental subjects were 620 

adult male zebra finches (> 90 days post-hatch, n = 24).  621 

 622 

Behavioral Experiments 623 

Adaptive changes to the duration of targeted song segments were induced as previously 624 

described19. Briefly, we computed the duration of target segments in real-time using a 625 

static threshold crossing of the smoothed amplitude envelope (5 ms boxcar filter with 1 626 
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ms advancement). If the duration did not meet the threshold, a burst of white noise 627 

(80−90dB) was played through a loudspeaker for 50−100 ms with short latency (~1−3 628 

ms). Syllable onsets are associated with rapid increases in sound amplitude, which 629 

makes the estimates of their timing more robust to noise. Thus, we mostly targeted 630 

‘syllable + gap’ segments and estimated the target segments from the onset of the 631 

target syllable to the onset of the following syllable. In a typical single-target 632 

experiment, birds underwent 3−5 days of CAF to lengthen the target followed by 3−5 633 

days of CAF to shorten the target (for a total of 6−10 days for each experimental block) 634 

and no CAF for at least 4 days before subsequent experiments.  635 

When comparing learning rates across experiments in which one (“alone”, Figure 636 

1F-G) versus two targets (“with other”) were targeted for modification, we chose targets 637 

that were separated by at least 100 ms. We first ran the CAF protocol (n = 3 birds) for 638 

target 1, then for target 2, before targeting both intervals in the same experiment. In 639 

another group of birds (n = 3), we counterbalanced the order, running the two-target 640 

experiments first, followed by single target experiments. The two targets in the same 641 

song were modified in opposite directions.  642 

 643 

Birdsong analysis  644 

All analyses of learning rates and variability of segment durations were done offline on 645 

"catch trials" during which the white noise feedback was turned off for up to 100 song 646 

renditions in the morning (AM) and again approximately 8 hours later in the evening 647 

(PM). The method for obtaining estimates of song segment durations has previously 648 
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been described19. To calculate learning rates, we computed the change in the target 649 

duration from the start to the end of a CAF run (up or down) and divided it by the 650 

number of intervening days. We compared both morning and evening catch trials, 651 

averaging across them to obtain a more robust estimate of learning rate. We compared 652 

variability in interval duration for the same time-period in the day in order to rule out 653 

potential circadian effects.  654 

To compare changes in segment durations during CAF to normal baseline drift, 655 

we used the same number of days of baseline (before CAF was started) as the number 656 

of days of CAF, which for each bird varied between 6-10 days. Note that for all changes 657 

in duration (CAF or baseline), they are divided by number of days (ms/day) and not 658 

absolute total change. We subtracted the absolute value of this baseline drift from the 659 

CAF-induced changes to obtain a better estimate of learning. We did the same for non-660 

target intervals, discarding the signs for each non-target interval change when averaging 661 

within a bird to rule out that different signs negated each other, thus masking any 662 

potential non-target effects. 663 

 664 

Statistical analysis 665 

No explicit power analysis was conducted to predetermine sample sizes. However, our 666 

sample sizes were generally similar to those used in previous birdsong studies. We used 667 

statistical tests as noted in Figures. All statistics presented in the main text refer to 668 

mean ± SD, while error bars in the figures all represent SEM.  669 

 670 
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Theoretical and Computational Methods 671 

Flexibility of pattern generator circuits  672 

A detailed account of the constraints imposed on pattern generator circuits for flexible 673 

time-keeping is given in Supplementary Note I. Here, we present simple derivations of 674 

Eqs. (1−4). 675 

Gradient ascent on reward, which we assume to be contingent on the duration 676 

of interval ߙ, requires changes in the synaptic weights along the reward gradient, which 677 

is related to the interval duration gradient by the chain rule: 678 ݀ ௜ܹ௝ఈ݈݀ = ߟ ߲ܴఈ߲ ௜ܹ௝ = ߟ ܴ݀ఈ݀ܫఈ ఈ߲ܫ߲ ௜ܹ௝ ,																																																									(6) 
where ߟ is a learning rate parameter, ܅ఈ(݈) is the trajectory in synaptic weight space 679 

traced during gradient ascent, and ݈  parametrizes the trajectory. Changes in the 680 

duration of an interval along the curve  ܅ఈ(݈) is given by: 681 ݀ܫఉ݈݀ =෍ ఉ߲ܫ߲ ௜ܹ௝ ݀ ௜ܹ௝ఈ݈݀{௜௝} ,																																																																						(7) 
where the summation is over non-zero synaptic weights. Eq. (6) can be used to 682 

substitute the last term in Eq. (7) to give: 683 ݀ܫఉ݈݀ = ߟ ܴ݀ఈ݀ܫఈ ෍ ఈ߲ܫ߲ ௜ܹ௝ ఉ߲ܫ߲ ௜ܹ௝{௜௝} ,																																																														(9) 
Eq. (9) shows that unless Eq. (1) is satisfied, non-targeted intervals change while 684 

gradient-ascent is performed. 685 
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For small changes in synaptic weights, one can approximate the changes in 686 

intervals using a linear approximation:	ܫߜఉ ≈ ௗூഁௗ௟ ݈ = ߟ ௗோഀௗூഀ ∑ డூഀడௐ೔ೕ డூഁడௐ೔ೕ{௜௝} ݈ = ߟ ௗோഀௗூഀ  ఈఉ݈. 687ܯ

Eq. (3) directly follows from Eq. (9) by substitution.  688 

A more general scenario is when there are multiple reinforcers acting on 689 

multiple intervals simultaneously. Total reinforcement is now given by ܴ = 	∑ ܴఈఈ . In 690 

this case, the interference patterns can be more elaborate, however is still governed by 691 

the interference matrix:  692 

ఉܫߜ	 ≈ ఈܫ෍ܴ݀ఈ݀ߟ ఈఉఈܯ ݈,																																																									(10) 
For example, Eq. (4) can be derived using  similar arguments to derivation of Eq. (3), 693 

except now the reinforcement is ܴఈ + ܴఉ.  694 

 695 

Feedback-stabilized RNNs 696 

Network setup and training: We simulated recurrent neural networks with ܰ = 500 697 

neurons. The neural dynamics was described by, 698 

 699 

߬௥ ݐ௜݀ݔ݀ = ௜ݔ− +෍ ௜ܹ௝ே
௝ୀଵ (ݐ)௝ݎ +෍ ௜ܹ௝Inݕ௝(ݐ)ଶ

௝ୀଵ + ݃ி஻ ௜ܹFB(ݐ)ݖ + ඥ߬ఎߟߪ௜(ݐ), 
(ݐ)௜ݎ = tanh൫ݔ௜(ݐ)൯, 
(ݐ)ݖ =෍ ௜ܹ௝Outݎ௝(ݐ),ே

௝ୀଵ  
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where ݅ = 1,…  is the output. The parameters of the network followed 9, with the neural time 701 (ݐ)ݖ are the inputs and 700 (ݐ)௝ݕ ,are the firing rates of the neurons (ݐ)௜ݎ ,ܰ,

constant being ߬௥ = 10	ms. The recurrent synaptic connectivity matrix, ࢃ, was sparse: 702 

௜ܹ௝ was 0 with probability 1 − ݌ with ,݌ = 0.1. Non-zero elements of ࢃ were drawn 703 

independently from a Gaussian distribution with 0 mean and a variance of 1.5/(ܰ݌), 704 

ensuring that the network is in the chaotic regime without the feedback from the 705 

output 10. Elements of ࢃIn  and ࢃFB  were independently drawn from a uniform 706 

distribution between -1 and 1. The strength of feedback ݃ி஻ was varied, as discussed in 707 

the main text. Unless stated otherwise, the networks were simulated with 708 

independently injected noise to neurons, including during training: ߟ௜(ݐ) is a zero-mean 709 

Gaussian white noise with covariance < (′ݐ)௜ߟ(ݐ)௜ߟ >= ݐ)ߜ − (′ݐ , ߬ఎ = 10 ms  and 710 ߪ = 0.01 . The noise magnitude was chosen to ensure that after training, the 711 

coefficients of variation of temporal variability in the interval durations were about 1%, 712 

consistent with the ‘independent variability’ observed in zebra finch song38. 713 

There were two types of inputs: 1) ݕଵ(ݐ) was a unit pulse of duration 50 ms and 714 

amplitude 5 (A.U). This input was present for all simulations. The end of the pulse 715 

marked the beginning of the first interval.  2) ݕଶ(ݐ) was a unit pulse of duration 10 ms 716 

and amplitude ܲ that was varied. It arrived 120 ms after the start of the first interval. 717 

This input was used only when assessing the robustness of the network to perturbations 718 

(Figure 2D). 719 

The desired output was a 530 ms waveform (Supplementary Figure 1A) constructed 720 

by:  721 
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(1) summing 10 Gaussian waveforms centered 50 ms apart with widths (standard 722 

deviation) of 10 ms.  723 

(2) normalizing the waveform such that its maximum is 1 and minimum 0.1, and  724 

(3) shifting it in time such that the first threshold-crossing (which is chosen to be 725 

0.68) occurs 50 ms after the first interval.  726 

Hence, the desired output marked 10 equally spaced 50 ms intervals.  ࢃIn was trained 727 

using the FORCE algorithm 9 for 30 training trials. After training, 10 test runs were 728 

performed and the error between the network output and the desired output (‘test 729 

error’) calculated for each test run. The test error was defined by 
ට׬ ൫௭೏೐ೞ(௧)ି௭(௧)൯మௗ௧ఱయబ	msబට׬ ௭೏೐ೞ(௧)మௗ௧ఱయబ	msబ , 730 

where ݖௗ௘௦(ݐ) was the desired output. 731 

The equations governing network dynamics were integrated with a first-order 732 

Euler method. The integration step size was ݀ݐ = 0.1 ms, unless otherwise stated. 733 

 For Figure 2C, the initial state distance between two intervals was calculated by 734 

first making two N=500 dimensional vectors of the instantaneous firing rates of the 735 

network neurons at the beginning of the two intervals and then calculating the L2-norm 736 

difference of these vectors. 737 

 738 

Interference matrix: To calculate the interference matrices of trained fsRNNs, we 739 

calculated the gradients of interval durations numerically: one-by-one, each non-zero 740 

synaptic weight was increased by ܹ݀ = 0.05 and the change in interval durations 741 

measured. In these simulations, ߪ = 0 and ݀ݐ = 0.01	ms. To check the accuracy of our 742 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2017. ; https://doi.org/10.1101/033472doi: bioRxiv preprint 

https://doi.org/10.1101/033472


36 of 60 

results, we ran the same calculation with ݀ݐ = 0.1 ms and observed that changes in our 743 

reported values were small, e.g. less than 1% in Figure 2F. 744 

 745 

Reinforcement learning: We implemented a modified version of the synaptic plasticity 746 

rule of Fiete and Seung29 to adaptively change the non-zero elements of ࢃ. Specifically, 747 

changes to synaptic weight ௜ܹ௝ were given by 748 

∆ ௜ܹ௝ = නߛ (಼)௧(ݐ)௜௝݁(ݐ)ܴ
଴ 	,ݐ݀

where ݐ(௄) denotes the end of the last interval, ߛ = 0.004, ݁௜௝(ݐ) the eligibility trace 749 

and ܴ(ݐ) the reward. 	ߛ was chosen to match learning rates observed in experiments 750 

with songbirds. The eligibility trace is:  751 

݁௜௝(ݐ) = න ௘௧߬′ݐ݀
଴ 	݁ି(௧ି௧ ′)/ఛ೐ߟ௜(ݐ′)ݎ௝(ݐ′), 

where ߬௘ = 35 ms 19. The reward signal is given by ܴ(ݐ) = ܴ(௧௔௥భ)	ߜ൫ݐ −  ൯ in a 752(௧௔௥భ)ݐ

single-target interval ‘experiment’ and by ܴ(ݐ) = ܴ(௧௔௥భ)	ߜ൫ݐ − ൯(௧௔௥భ)ݐ + ܴ(௧௔௥మ)ߜ൫ݐ  denote the times 754	(௧௔௥మ)ݐ and (௧௔௥భ)ݐ in a two-target intervals ‘experiment’, where	൯(௧௔௥మ)ݐ 753−

at which the 1st and 2nd target intervals end, and ܴ(௧௔௥భ) and ܴ(௧௔௥మ) are 0-1 rewards 755 

contingent on 1st and 2nd target intervals respectively. If the interval is not targeted, the 756 

reward is always 0. If the interval is targeted for modification, the rewards are 757 

calculated by comparing the interval duration in the current trial, ܫ(௧௔௥), to the running 758 

average of the target interval duration, ܫ(̅௧௔௥), which is updated in each trial as follows: 759 ܫ(̅௧௔௥) ← (௧௔௥̅)ܫ	0.995 + (௧௔௥)ܫ0.005 . If the interval is targeted for lengthening, the 760 
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reward is 1 if ܫ(௧௔௥) >  and 0 otherwise. If the interval is targeted for shortening, 761 ,	(௧௔௥̅)ܫ

the reward is 1 if ܫ(௧௔௥) <  and 0 otherwise. 762 ,(௧௔௥̅)ܫ

 In Supplementary Figure 2F-G, we simulated a single-interval experiment with 763 

an internally generated reinforcer, which preserves the baseline (or template) values of 764 

interval timings, ܫ௧̅௘௠௣(௜) , which is calculated by averaging of 400 trials without 765 

reinforcement. The total reward is given by ܴ(ݐ) = ܴ(௧௔௥భ)	ߜ൫ݐ − ൯(௧௔௥భ)ݐ +766 ∑ ܴ௧௘௠௣(௜) ݐ൫ߜ	 − ൯ଵ଴௜ୀଵ(௜)ݐ  . Here ܴ௧௘௠௣(௜)  is the template reinforcement signal. ܴ௧௘௠௣(௜) = 0.2 if 767 

ቚܫ(̅௜) − ௧̅௘௠௣(௜)ܫ ቚ > ௧̅௘௠௣(௜)ܫand  ቀ ݏ0.1݉ − (௜)ܫቁ൫(௜̅)ܫ − ൯(௜̅)ܫ > 0, ܴ௧௘௠௣(௜) = 0  otherwise. 768 

Interval duration changes during a reinforcement learning experiment are 769 

calculated by a running (200 point window) across trials and subtracting from them their 770 

baseline values. The baseline values are averages of the interval durations across 400 771 

trials where no reinforcement was delivered. 772 

 773 

Dynamic Attractor 774 

Network setup and training: The architecture of this network, the dynamics of its 775 

neurons and the numerical integration of the dynamical equations, its connectivity and 776 

noise parameters, as well as its input and output waveforms, are the same as the 777 

fsRNNs, except the feedback from the output was set to zero, i.e. ݃ி஻ = 0.  778 

The networks are trained using the ‘innate training’ procedure of 7, which 779 

consisted of two stages:  780 
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(1) 70% of non-zero elements of ࢃ are trained using the FORCE algorithm (30 781 

training trials) to stabilize an innately produced trajectory of duration 530 ms. 782 

See 7 for details.  783 

Inࢃ (2)  is trained using the FORCE algorithm to produce the desired output 784 

waveform, exactly as in fsRNNs. 785 

 786 

Interference matrix: The procedures for calculating the interference matrices are the 787 

same as for the fsRNNs. 788 

 789 

Reinforcement learning: The procedures for reinforcement learning are the same as the 790 

fsRNNs, except that ߛ = 0.004/3. 791 

 792 
Chains of single neurons 793 

One-to-one mapping of synaptic weights to intervals:  In Supplementary Note II, we 794 

prove that in a feedforward network with a single neuron per layer flexible time-keeping 795 

requires that the ߙ௧௛ interval depend only on the synaptic weight between layers ߙ − 1 796 

and ߙ, ఈܹ. To prove this result, we make the following general assumptions: Activity in 797 

each layer codes for the start of an interval and end of the previous one. The network 798 

dynamics and the time read-out for each layer is such that: ݐ(ఈ) > ߙ  when (ఉ)ݐ >  799 ,ߚ

where ݐ(ఈ) is the time read-out from ߙ௧௛ layer. Finally, only the initial layer receives 800 

external input. 801 

 802 
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Chain of single integrate-and-fire neurons: We consider a chain of leaky integrate-and-803 

fire neurons, which integrate their synaptic input currents with a leak time constant of 804 ߬ூி. We assume that there is a non-zero volume of synaptic weight space in which the 805 

activity propagates in the chain with each neuron producing a single spike and the 806 

synaptic weights of the network configured to be in that volume (and not at the 807 

boundary of the volume where an infinitesimal change in synaptic weights may lead to 808 

multiple spikes per neuron or no spikes at all). The spike time of the neuron in the  ߙ௧௛ 809 

layer is denoted by ݐ(ఈ) . The subthreshold dynamics of the neuron’s membrane 810 

potential is given by: 811 

߬ூி ݀ ఈܸ݀ݐ = −( ఈܸ − ௥ܸ௘௦௧) + ఈܹܧ൫ݐ −  ,൯(ఈିଵ)ݐ
where ߬ூி is the leak time constant, ఈܹ is the synaptic weight between layers ߙ − 1 and 812 ߙ, and (ݐ)ܧ is the causal post-synaptic potential that follows a pre-synaptic spike. When 813 

the membrane potential reaches a threshold, ௧ܸ௛, the neuron produces a spike and the 814 

membrane potential is reset to ோܸ. We assume that the neuron is at rest potential,  815 

௥ܸ௘௦௧,	when the presynaptic spike arrives. The ߙ௧௛ neuron spikes when its membrane 816 

potential reaches the threshold: 817 

௧ܸ௛ = ௥ܸ௘௦௧ + ఈܹ න (ഀ)ூி௧߬ݐ݀
௧(ഀషభ) ݁ି௧(ഀ)ି௧ఛ಺ಷ ݐ൫ܧ −  ,൯(ఈିଵ)ݐ

Taking the derivative of this equation with respect to synaptic weights and noting that 818 ܫ(ఈ) = (ఈ)ݐ −  we get: 819 ,(ఈିଵ)ݐ

߲(ఈ)ܫ߲ ఉܹ = ൞− ߬ூி
ఈܹ ൬ ఈܹܧ(ܫ(ఈ))௧ܸ௛ − ௥ܸ௘௦௧ − 1൰ ߙ = ߚ

0 ߙ ≠  (11)																																									.ߚ
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In scenarios where some neurons spike more than once, this result still holds for 820 

intervals, ܫ(ఈ), for which the (ߙ − 1)௧௛ neuron spikes only once.  821 

 In simulations shown in Figure 4, the following parameters were used: 822 ߬ூி = 10 ms , 	 ௧ܸ௛ = −50 mV , ௥ܸ௘௦௧ = ோܸ = −60 mV , ఈܹ = 43 mV (ݐ)ܧ . = Θ(ݐ)݁ି௧/ఛೞ 823 

with Θ(ݐ) being the step function and ߬௦ = 5ms. For Figure 4C, a 1 ms refractory period 824 

followed a spike during which the membrane potential was set to ோܸ. The dynamical 825 

equations governing the network dynamics were integrated with a first-order Euler 826 

method, with an integration step size of ݀ݐ = 0.01 ms 827 

 828 

Synfire Chain  829 

Network setup and training:  Our synfire chain model consisted of 1,350 integrate-and-830 

burst neurons organized into 90 layers, with 15 neurons in each layer (Figure 4A). 831 

Neurons in a layer projected to all neurons in the next layer, forming a chain topology. 832 

The subthreshold membrane potential of the  neuron, , obeyed: 833 

߬ூி ݀ ௜ܸ݀ݐ = −( ௜ܸ − ௥ܸ௘௦௧) + (ݐ)௦௬௡,௜ܫ + (ݐ)௘௫௧,௜ܫ + ඥ߬ఎߟߪ௜(ݐ),	
 834 

where ߬ூி = 10 ms, ௥ܸ௘௦௧ = −60 mV, ߟ௜(ݐ) is a zero-mean Gaussian white noise with 835 

covariance < (′ݐ)௜ߟ(ݐ)௜ߟ >= ݐ)ߜ − ఎ߬ ,(′ݐ = 10	ms and ߪ = 2	mV. The synaptic inputs 836 

are given by ܫ௦௬௡,௜(ݐ) = ∑ ௜ܹ௝௝ ∑ ݐ൫ܧ − ௝௞൯௞ݐ , where denotes the  spike of 837 

neuron, (ݐ)ܧ = Θ(ݐ)݁ି௧/ఛೞ with Θ(ݐ) being the step function and ߬௦ = 5	ms, and ௜ܹ௝ is 838 1.13	mV for synapses from a neuron to the neurons in the next layer and 0 otherwise. 839 

thi iV
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When the membrane potential of the integrate-and-burst neuron reaches threshold, 840 

௧ܸ௛ = −50 mV, the neuron emits 4 spikes with 2 ms between spikes and the membrane 841 

potential resets to ோܸ = −55 mV after a refractory period of 4 ms. Chain propagation 842 

starts by ܫ௘௫௧,௜(ݐ), a 5 ms pulse input with magnitude 30	mV applied only to neurons in 843 

the first node.  844 

 In Supplementary Figure 4A and B, ௜ܹ௝ were chosen uniformly in the range 1	mV 845 

to 1.27	mV. In Supplementary Figure 4C and D, ௜ܹ௝ was 1.1425	mV with probability 0.8  846 

for synapses from a neuron to the neurons in the next layer and 0 otherwise. 847 

 To map network dynamics to timing, an integrate-and-fire readout neuron is 848 

connected to all the neurons in every 9th layer, making a total of 10 readout neurons. 849 

Their dynamics are governed by the same equations as the chain neurons, except they 850 

do not receive any external input or noise. Synaptic weights between neurons in the 851 

chain were set to 1.13	mV. The first spikes of the output neurons mark interval 852 

boundaries. The first interval commences with the start of the external pulse. 853 

The equations governing the network dynamics were integrated with a first-854 

order Euler method, with an integration step size of ݀ݐ = 0.1 ms, unless stated 855 

otherwise. 856 

 857 

Interference matrix: To calculate the interference matrices of the synfire chain, we 858 

calculated the gradients of the interval durations numerically: one-by-one, each non-859 

zero synaptic weight was increased by ܹ݀ = 0.113	V and the change in interval 860 

durations measured. In these simulations, ߪ = 0 and ݀ݐ = 0.5	μs. We observed that 861 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2017. ; https://doi.org/10.1101/033472doi: bioRxiv preprint 

https://doi.org/10.1101/033472


42 of 60 

when a synaptic weight is increased by ܹ݀, durations of the interval associated with the 862 

perturbed synapse, decreased by 0.2645 ms, giving a gradient of 2.3407 ms/V. Changes 863 

in other intervals were numerically 0. A zero gradient is also expected from theory. Since 864 

our model synfire chain has all-to-all connectivity between layers and, at setup, all 865 

synaptic weights are the same, in the absence of noise, neurons that live in the same 866 

layer receive exactly the same input. A small increase in a synaptic weight leads to a 867 

larger synaptic input to all postsynaptic layer neurons, and causes them to shift their 868 

bursting to an earlier time by an equal duration, without changing the shape of the 869 

burst. Subsequently, downstream layers of the chain only shift their activity in time by 870 

equal durations, leading to no change in interval durations. 871 

 872 

Reinforcement learning: The procedures for reinforcement learning were kept the same 873 

as for the fsRNNs, except that ߛ = 1	μV with the eligibility trace now taking the form: 874 

݁௜௝(ݐ) = න ௘௧߬′ݐ݀
଴ 	݁ି(௧ି௧ ′)/ఛ೐ߟ௜(ݐ′)ݏ௜௝(ݐ′), 

where ߬௘ = 35 ms , and ݏ௜௝(ݐ) = ∑ ݐ൫ܧ − ௝௞൯௞ݐ . The synaptic weights were not allowed 875 

to increase above 1.6	mV nor fall below	0.92	mV for stability of chain propagation: 876 

weights above the upper bound led to explosion, and weights below the lower bound 877 

led to activity propagation terminating before reaching the end of the chain. 878 

 879 
Statistics  880 

In figures, all reported error bars are standard deviations over different trained 881 

networks unless stated otherwise. In Figures 2K, 3I and 5F, interference per interval, for 882 
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a given network and a given reinforcement learning simulation of 1100 trials, was 883 

calculated as follows: 1) Intervals whose mean duration had changed were identified. 884 

For this purpose, for each interval, we performed a t-test (significance value 5%) to test 885 

whether the interval’s durations between trials 900 and 1100 was coming from a 886 

distribution whose mean is the interval’s mean baseline duration. 2) When the null-887 

hypothesis was rejected (mean duration changed) for an interval, the mean duration at 888 

1000th trial was estimated by averaging over the interval durations between trials 900 889 

and 1100, and the change in mean duration was calculated by subtracting the baseline 890 

mean. When the null-hypothesis was borne out, the change in mean duration was zero. 891 

3) The absolute change in non-target interval durations were normalized by the change 892 

in target duration and averaged over non-target intervals.  893 

 894 
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 1036 

 1037 

 1038 

 1039 

 1040 

Figure Legends 1041 

 1042 

Figure 1: Flexible modification of motor timing in songbirds  1043 

(A) Schematic showing different ways in which the temporal structure of a motor 1044 

sequence (encompassing motor segments m1-m6) can change. (Left) Global change – 1045 

duration of all segments change together. (Middle) Interference – Modifications to the 1046 

duration of one segment (m3, red box) interferes with (i.e. changes) the duration of 1047 

other segments. (Right) Specificity – each segment can change independently of others. 1048 

(B) (Top) Spectrogram of a zebra finch song, divided into four segments. One of these 1049 

(‘target’) was marked for lengthening/shortening by delivering aversive noise bursts 1050 

after the end of the target segment when its duration was below/above a threshold 1051 

(Bottom, see Methods). (C) Duration distributions for the segments in (B) when the 1052 

target segment was lengthened by our CAF paradigm. (D) Summary statistics (mean ± 1053 

SEM) of the daily changes to the duration of target and non-target segments (N=18 1054 

targeted segments and n=120 non-targeted segments in 18 birds). Changes in target 1055 

intervals differed significantly from zero (p = 1.6 x 10-6, one-sample t-test), whereas non-1056 
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targets did not (0.24 ≤ p ≤ 0.98, one-sample t-test). We used the same number of days 1057 

of baseline (before CAF was started) as the number of days of CAF, which for each bird 1058 

varied between 6-10 days. (E) Spectrogram of a song for which two segments were 1059 

targeted for modification, either alone or in conjunction with each other. (F) Learning 1060 

trajectories (mean ± SEM) during CAF experiments designed to change the duration of 1061 

the targets in (E) either alone or together. Arrows denote the direction in which the 1062 

duration of the targets were induced to change by the CAF paradigm. (G) Summary 1063 

statistics (mean ± SEM) of the daily changes to the duration of targeted segments, as a 1064 

function of whether they were targeted alone or together with another segment (n=12 1065 

segments in 6 birds, p = 0.54, paired-samples t-test).  1066 

 1067 

Figure 2: Feedback-stabilized RNNs exhibit a robustness-flexibility trade-off 1068 

(A) (Left) Schematic showing the network architecture. Trained connections are marked 1069 

in red. (Middle, right) Firing rates of example neurons in pattern generator networks 1070 

with different feedback strengths, and the output of those networks. (B) Training 1071 

performance (test error, Methods) and timing failure rate, i.e. the frequency with which 1072 

the network fails to produce all 10 intervals within 6% of their target durations 1073 

(calculated for 400 trials), shown as a function of feedback strength. (C) The distance 1074 

between two firing rate vectors, each constructed from the instantaneous firing rates of 1075 

all neurons in the network at the beginning of an interval (Methods), averaged over all 1076 

interval pairs for intervals 3 to 10, 20 trained fsRNNs and 100 runs over each fsRNN. A 1077 

small distance means that the firing rate vectors are more similar to each other at the 1078 
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beginning of intervals, signaling periodic activity. (D) Timing failure rate in response to a 1079 

perturbation pulse (P) of varying magnitudes delivered to the network, plotted as a 1080 

function of feedback strength. Error bars show standard error across 20 trained fsRNNs. 1081 

(E) Example interference matrices for fsRNNS with two different feedback strengths, 1082 

one for a value where the network activity is periodic (gFB=2) and one for which it is not 1083 

(gFB= 1). (F) Relative change in the duration of non-targeted intervals as a function of the 1084 

change in targeted intervals (‘Average Interference’), calculated from the off-diagonal 1085 

elements of the interference matrix. The plot shows averages over all pairings of 1086 

intervals 2 to 10 for 20 trained fsRNNs at each feedback strength. (G) Examples of a 1087 

reinforcement learning ‘experiment’ that targeted interval 3 for lengthening.  Shown is 1088 

the effect on all intervals after for 3000 trials for fsRNN with different feedback 1089 

strengths (Methods). (H) Learning rate, defined as the absolute value of the change in 1090 

the target interval duration after 1000 trials, averaged over 20 learning ‘experiments’ in 1091 

20 trained networks.  (I) Interval duration changes (Methods) after 1000 trials for the 1092 

‘experiments’ in G, averaged across 20 different simulations, regressed to the elements 1093 

of the 3rd row (i.e. those associated with the target interval) of the networks’ 1094 

interference matrices. Error bars show standard error across 20 simulations. (J) The 1095 

analysis of I applied to 100 trained fsRNNs (20 ‘experiments’ for each of 1096 

gFB=0.5,1,1.5,2,3), 2 times each, one for stretching the 3rd interval and one for shrinking 1097 

the 3rd interval. Plotted is the median correlation coefficients over the 200 regressions 1098 

performed. Error bars denote 25th and 75th percentiles respectively. (K)  Change in non-1099 

targeted intervals in the first 1000 trials of reinforcement learning simulations, relative 1100 
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to the change in the target interval (interference). Average over all non-target intervals 1101 

and 20 simulations across 20 trained fsRNNs as a function of feedback strength. The 1102 

blue portion of the bars show the average interference calculated from the interference 1103 

matrix (as in F).  1104 

 1105 

Figure 3: Flexible timing with dynamic attractor networks  1106 

(A) Schematic showing the network architecture. Recurrent connections as well as the 1107 

connections to the output neuron are trained. On the right are the activities of example 1108 

neurons from the pattern generator network and the output neuron. (B) Box plots of 1109 

training (test error, Methods) and timing (timing failure rate out of 400 trials) 1110 

performances of 20 trained networks. Whiskers show maxima and minima. 14 out of 20 1111 

networks were successfully trained and used for the subsequent analysis in this figure. 1112 

(C) Timing failure rates (out of 400 trials) for the network when perturbed by a pulse 1113 

input of varying magnitude. (D) Example interference matrix. (E) Relative change in the 1114 

duration of non-targeted intervals as a function of the change in targeted intervals 1115 

(‘Average Interference’), calculated from the off-diagonal elements of the interference 1116 

matrix, as in Figure 2F except that the 1st interval is also taken into account. The average 1117 

interference is compared to the interference in intervals adjacent to the target, and for 1118 

fsRNNs with gFB=1. (F) Example of a reinforcement learning ‘experiment’ that targeted 1119 

interval 3 for lengthening.  Shown is the effect on all intervals after for 3000 trials. (G) 1120 

Learning rate averaged across networks as in Figure 2I.  (H) Median correlation 1121 

coefficient between the interval changes calculated from the interference matrix and 1122 
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from the reinforcement learning simulations (as in Figure 2I). Error bars denote 25th and 1123 

75th percentiles respectively. (I) Average interference in reinforcement learning 1124 

simulations as in Figure 2K. The blue portion of the bars show the average interference 1125 

calculated from the interference matrix  1126 

 1127 

Figure 4: Flexible timing with chains of single neurons 1128 

(A) Schematic showing the network architecture. (B)  A chain of 11 integrate and fire 1129 

neurons was simulated with the first spike time of each neuron marking an interval 1130 

boundary. ହܹ  (the weight between node 4 and 5) was varied, which corresponds to 1131 

changes to the gradient vector for the fifth interval (Methods). Changes with respect to 1132 

baseline interval durations, which were 4.6ms, are shown. Black denotes chain 1133 

propagation breakdown. Vertical arrow shows the baseline network configuration with 1134 

each neuron spiking once. (C)  Example runs of a chain of integrate and fire neurons. 1135 

Only one neuron per layer is shown. (D) Same as (B) except neurons have a 1ms 1136 

refractory period.  1137 

 1138 

Figure 5: Flexible timing with biologically plausible synfire chains 1139 

(A) Schematic showing the network architecture and interval (Int.) time readout. (B) 1140 

Example run of the synfire chain. Only one neuron per layer is shown. On the bottom is 1141 

the activity of the read-out neurons that define the interval boundaries. (C) The 1142 

interference matrix of the synfire chain. (D) Examples of a reinforcement learning 1143 

‘experiment’ that targeted interval 3 for lengthening.  Shown is the effect on all intervals 1144 
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after for 3000 trials. (E) Correlation coefficient between the interval changes calculated 1145 

from the interference matrix and from the reinforcement learning simulations (as in 1146 

Figure 2I). (F) Average interference per interval in reinforcement learning simulations, 1147 

averaged across 20 learning simulations. Error bar shows standard deviation across 1148 

simulations. 1149 

 1150 

Figure 6: Changes in temporal variability with learning 1151 

(A) (Top) Spectrogram of a zebra finch song showing the target segment. (Bottom) 1152 

Histograms of mean durations of a target segment after it had been shortened and 1153 

lengthened using our CAF paradigm. Mean at baseline denoted by dotted line. (B) 1154 

Scatterplot of variability (standard deviation) as a function of mean segment duration 1155 

for the same example as in (A) across 9 days of CAF (Kendall’s tau = 0.83, p = 8.5 x 10-4, n 1156 

= 9 days). (C) Scatterplot of change in variability (standard deviation) as a function of 1157 

change in mean segment duration (both relative to baseline before CAF). (D) Standard 1158 

deviation of target duration as a function of the target’s mean duration for fsRNNs with 1159 

gFB=1. For this value of feedback coefficient of variation of temporal variability is about 1160 

1%, consistent with the ‘independent variability’ observed in zebra finch song (data not 1161 

show, see also Methods). Target intervals were lengthened and shortened from baseline 1162 

for 3000 trials each. Data from 200 ‘catch’ (i.e. non-reinforced) trials interspersed 1163 

between every 1000 trials, averaged across 20 simulations. Example from four fsRNNs 1164 

are shown. Error bars are standard deviations across simulations. (Bottom) Box plot of 1165 

all Kendall’s tau coefficients between interval variability and interval duration, across 20 1166 
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networks, 2 target intervals each (3rd and 8th). (E) Same as D for dynamic attractor 1167 

networks. Box plot of all Kendall’s tau coefficients across 14 networks, 1 target interval 1168 

each (3rd). (F)  Same as D, but for synfire chains. Data from 200 ‘catch’ trials interspersed 1169 

between every 1000 trials, averaged across 20 simulations. Target interval was the 3rd.  1170 

 1171 

 1172 

 1173 

 1174 

 1175 

 1176 

 1177 

 1178 

 1179 

 1180 

 1181 

 1182 
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 1183 

 1184 

 1185 

 1186 

Supplementary Figure Legends 1187 

Supplementary Figure 1: Specificity is not related to baseline timing correlations 1188 

We analyzed in greater detail how non-target changes (interference) depended on 1) 1189 

the baseline timing correlation between target and non-target or 2) the extent of target 1190 

changes or 3) both. In all cases, there was no dependence. (A) Non-target changes 1191 

during CAF did not tend to be larger when the pre-CAF baseline timing correlation 1192 

between target and non-target interval durations was higher (r = -0.008, p = 0.93). (B) 1193 

Non-target changes during CAF were also not larger when the targets were modified to 1194 

a greater extent (r = -0.14, p = 0.11). To test whether both the baseline timing 1195 

correlations and target changes jointly contribute to non-target changes (i.e., non-1196 

targets that have the highest correlation with the target when the target was modified 1197 

the most might exhibit most interference), we used multiple regression. We found no 1198 

correlation of either factor with non-target duration changes (R2 = 0.02, p = 0.28). 1199 

Overall, detailed analysis strongly suggests specificity in birdsong timing, i.e., 1200 

modifications to one part of a sequence leaves the temporal structure of other parts 1201 

unaffected regardless of any baseline timing correlations.  1202 
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 1203 

Supplementary Figure 2: Flexibility and robustness of fsRNNs 1204 

(A) The signal that the fsRNN and the dynamic attractor networks were trained to 1205 

reproduce. Interval boundaries (vertical red dotted lines) defined by the signal crossing 1206 

a threshold (horizontal red dotted line). (B) An example of what happens when the 1207 

network is perturbed, and fails to produce the right timing interval. The black line shows 1208 

a successful output when no perturbation is delivered. Dashed blue line shows the 1209 

output when perturbation was delivered to the network during the time denoted by the 1210 

brown bar. Even though the output crossed the threshold sufficiently many times, the 1211 

interval durations were not within the desired 6% of their targets. (C) Example 1212 

reinforcement learning simulations for a two-target ‘experiment’ run for 3000 trials in a 1213 

fsRNN, where the 3rd and 8th interval was targeted for lengthening and shortening 1214 

respectively. Shown for different feedback strengths. (D) Decrease in average learning 1215 

rates of the 3rd and 8th intervals (across 20 simulations) when they were targeted 1216 

together relative to when they were targeted alone. For each network, average learning 1217 

rates (across 20 simulations) were calculated (as for Figure 2J) for both intervals in 1218 

single-target and two-target ‘experiments’. Error bars are standard deviations across 20 1219 

networks. (E) Reduction in learning rate is well predicted by the interference matrices. 1220 

Each dot represents a network, pooled over 100 trained fsRNNs (20 for each of 1221 

gFB=0.5,1,1.5,2,3), 2 intervals each (3rd and 8th). Reduction in average learning rate 1222 

(across 20 simulations) plotted against 
ெഁഀெഀഀ × 100%	(see Eq. 4 of main text) for that 1223 

network. (F) Example reinforcement learning simulations for a single-target (3rd interval) 1224 
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‘experiment’ with template reinforcers for all intervals. After 3000 trials CAF was turned 1225 

off and the template reward restored the baseline interval. (G) Scatter plots of 1226 

interference per interval with and without the template reinforcers, plotted for separate 1227 

feedback strengths. Each data point represents a trained network. 1228 

 1229 

Supplementary Figure 3: Various reinforcement learning simulations in a dynamic 1230 

attractor 1231 

(A) Example reinforcement learning simulation for a two-target ‘experiments’ run for 1232 

3000 trials in a dynamic attractor network, where the 3rd and 8th interval was targeted 1233 

for lengthening and shortening respectively. (B) Change in absolute average learning 1234 

rates of the 3rd and 8th intervals (across 20 simulations) when they were targeted 1235 

together relative to when they were targeted alone. Error bars are standard deviations 1236 

across 14 networks. (C) Reduction in learning rate is well predicted by the interference 1237 

matrices. Each dot represents a network, pooled over 100 trained networks, 2 intervals 1238 

each (3rd and 8th). Reduction in average learning rate (across 20 simulations) plotted 1239 

against 
ெഁഀெഀഀ × 100%	  (see Eq. 4 of main text) for that network. (D) Example 1240 

reinforcement learning simulations for a single-target (3rd interval) ‘experiment’ with 1241 

template reinforcers for all intervals. After 3000 trials CAF was turned off and the 1242 

template reinforcement restored the baseline interval. (E) Scatter plot of interference 1243 

per interval with and without the template reinforcers. Each data point represents a 1244 

trained network. 1245 

 1246 
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 1247 

Supplementary Figure 4: Variations of synfire chain architecture and two-target 1248 

reinforcement learning 1249 

(A) Interference matrix for a synfire chain with all-to-all layer-to-layer connectivity and 1250 

randomly chosen weights. (B) Average interference per interval in reinforcement 1251 

learning simulations, averaged across 20 learning simulations, for the network in (A). 1252 

Error bar shows standard deviation across simulations. (C)  Standard deviation of target 1253 

duration as a function of the target’s mean duration, for the network in (A). Data from 1254 

200 ‘catch’ trials interspersed between every 1000 trials, averaged across 20 1255 

simulations. Target interval was the 3rd.  (D), (E) and (F), same as (A), (B) and (C) for a 1256 

synfire chain where neurons make synapses to next layer neurons with probability 0.8. 1257 

(G) Example reinforcement learning ‘experiment’ for two-target ‘experiments’ run for 1258 

5000 trials in a synfire chain. 3th interval is lengthened and the 8th interval is shortened. 1259 

(H) Absolute change in average learning rates of the 3th and 8th intervals (across 30 1260 

simulations) when they are targeted together relative to when they are targeted alone. 1261 

Error bars are standard deviations across 30 simulations. For comparison, learning rate 1262 

changes for the fsRNNs and the dynamic attractor are also provided. 1263 

 1264 
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