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ABSTRACT 18 

Cryptic genetic variation (CGV), hidden under most conditions, is the repressed genetic 19 

potential that can facilitate adaptation and evolution. The conditional manifestation of CGV 20 

has been claimed to explain the background dependence of causal loci as well as missing 21 

heritability. However, despite being proposed over 60 years ago, the genetic architecture and 22 

regulation of CGV and its contribution towards regulation of complex traits remains unclear. 23 

Using linkage mapping of mean and variance effects, we have identified loci that regulate 24 

phenotypic manifestation of standing genetic variation in a previously published dataset of 25 

biparental Saccharomyces cerevisiae population grown in 34 diverse environments. Based on 26 

our results we propose the existence of a gradient of buffering states for a population 27 

determined by the environment. Most environments show a tight buffering with additive, 28 

independent causal loci with little epistasis. However, as this buffering is disrupted, the 29 

underlying highly interconnected environment-specific genetic interactome is revealed such 30 

that each causal locus is a part of this network. Interspersed within these networks are 31 

generalist capacitors that regulate CGV across multiple environments, with one allele 32 

behaving as a capacitor and the other as a potentiator. Our study demonstrates the connecting 33 

link between architecture of hidden and visible genetic variation and uncovers the genetic 34 

networks which potentially underlie all complex traits. Our study establishes CGV as a 35 

significant contributor to phenotypic variation, and provides evidence for a predictable 36 

pattern underlying gene-gene and gene-environment interactions that can explain background 37 

dependence and missing heritability in complex traits and diseases.  38 

 39 

SUMMARY 40 

The phenotypic effects of cryptic genetic variation (CGV) are mostly hidden and manifested 41 

only under certain rare conditions and have the potential to facilitate adaptation. However, 42 

little is understood about its genetic regulation. We performed variance QTL mapping to 43 

understand the regulation of phenotypic manifestation of standing genetic variation in a 44 

biparental yeast population. We propose a model describing the connecting link between 45 

visible variation and CGV. We identify generalist capacitors and environment-specific 46 

networks that potentially underlie all phenotypes. This fresh approach of mapping causal loci 47 

can solve the long-standing mystery of missing heritability in complex traits and diseases. 48 

49 
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INTRODUCTION 50 

Cryptic genetic variation (CGV) is a heritable variation that is phenotypically inactive or 51 

hidden under most conditions, but manifests phenotypically only under certain, often rare, 52 

genetic and environmental perturbations (Gibson and Dworkin 2004). In simpler terms, it is 53 

bottled up genetic potential (Gibson and Reed 2008). While described in some studies as a 54 

separate and an inexplicable class of genetic variation, it essentially refers to gene-55 

environment interactions, i.e., genetic variants show their phenotypic effects only in certain 56 

environments or conditional neutrality, and gene-gene interactions, i.e. variants show their 57 

effects in the certain genetic backgrounds or epistasis. While the idea of CGV was proposed 58 

almost 60 years ago (Waddington 1956), for decades, both population genetic studies as well 59 

as evolutionary hypotheses have focused on the additive effects of mutations. Low resolution 60 

of mapping techniques curtailed the identification of large-scale gene-environment and gene-61 

gene interactions. With recent advances in sequencing technologies and mapping resolution 62 

(Liti and Louis 2012; Siegal 2013), the prevalence of CGV in quantitative traits is being 63 

recognized. Environment specificity and epistasis identified in multiple studies to understand 64 

the architecture of complex traits in model systems, plant and animal breeding or to study 65 

environment and background dependence of human disease alleles, have established CGV as 66 

an extensive contributor to the genetic landscape of quantitative traits (Gibson 2009; Queitsch 67 

et al. 2012).  68 

Introgression lines in classical systems like Drosophila and plants show that an allele can 69 

show a range of effects depending on the genetic backgrounds an allele is functional in 70 

(Gibson et al. 1999). Comparative studies in genetically accessible yeast have shown that the 71 

majority of loci that affect growth, an important fitness phenotype, have environment or 72 

genetic background dependent effects (Cubillos et al. 2011; Matsui et al. 2015). The 73 

importance of CGV in human traits is exemplified by increasing prevalence of diseases like 74 

type 2 diabetes. A highly heritable disease, type 2 diabetes, shows both population specificity 75 

and lifestyle dependence. Its high heritability is due to exposure of CGV by the modern 76 

culture (Gibson and Reed 2008; Gibson 2009). 77 

While prevalence and impact of CGV is being demonstrated by increasing number of recent 78 

studies, its regulation is still unclear. Whether CGV is randomly distributed without any 79 

discernible patterns or is it controlled by specific genes or genetic networks is one of the key 80 

debates in the field, understanding of which will provide an ability to study the CGV 81 
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landscape and predict its effects on diverse phenotypes (Hermisson and Wagner 2004). To 82 

address this question, it is important to understand how does CGV accumulate. Multiple 83 

evolutionary hypotheses and molecular explanations have been provided to explain the 84 

existence of CGV. Kimura’s neutral theory of evolution states that most mutations that 85 

accumulate in a population are phenotypically neutral (Kimura 1977; Kitano 2004). 86 

Waddington (1956) proposed an explanation for this neutrality by stating that if the mutations 87 

are disadvantageous to the optimum phenotype their effects will be hidden or dampened 88 

resulting in an invariant population phenotype, a process known as canalization. These 89 

dampening mechanisms could be altered upon genetic or environmental perturbations, thus 90 

revealing heritable variation which could facilitate the process of adaptation (Le Rouzic and 91 

Carlborg 2008; McGuigan and Sgrò 2009). The process of canalization, proposed by 92 

Waddington, invoked two types of genetic buffering mechanisms (Hartman et al. 2001; 93 

Burga et al. 2012) that contain the effects of CGV in stabilized, well adapted populations – 94 

generic buffering systems called capacitors (Rutherford and Lindquist 1998) and specific 95 

buffering systems consisting of genetic networks (Carlson and Doyle 2002). Capacitors are 96 

the genes that have the ability to suppress and hence store large amount of genetic variation. 97 

Upon specific environmental cues or genetic perturbations, these capacitors would, therefore, 98 

yield high CGV, that would affect all fitness phenotypes. In an adapting population, the 99 

released CGV can either be advantageous or detrimental (Orr and Betancourt 2001). 100 

However, in an adapted population, release of CGV would be detrimental since the 101 

population already exists at its phenotypic optimum (Barton and Turelli 1989; Hoffmann and 102 

Merilä 1999). As a result, such capacitors are proposed to have pleiotropic effects. 103 

Theoretically, such evolutionary capacitors should demonstrate storage of CGV as well as 104 

promote an increased ability to accumulate mutations or mutational robustness (Draghi et al. 105 

2010; Fares 2015). The second type of genetic buffering could arise when stabilizing 106 

selection for a particular phenotype results in evolution of specific genetic networks, which 107 

buffer genetic variation in that particular phenotype (Masel and Siegal 2009; Paaby and 108 

Rockman 2014). These systems have different consequences on evolution as well as on 109 

molecular regulation of various traits. 110 

Various studies have provided both direct and indirect molecular evidence for both these 111 

buffering mechanisms. Waddington’s initial studies in Drosophila lead to detailed 112 

investigation in the same system, which resulted in identification of genes with the ability to 113 

store CGV – Ultrabithorax (Gibson et al. 1999), EGFR (Dworkin et al. 2003) and, the most 114 
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commonly studied gene, HSP90 (Rutherford and Lindquist 1998). These genes result in 115 

revelation of cryptic variants with diverse effects on the phenotype upon their perturbation. 116 

Studies of Hsp90, across species, have demonstrated its generalized effect in regulating CGV 117 

in diverse phenotypes in yeast, worms, flies, plants and fish (Jarosz et al. 2010). Other more 118 

recently identified examples include HZT1 (Richardson et al. 2013) and IRA2 (Taylor and 119 

Ehrenreich 2015) in yeast. Alternately, molecular compensation through duplicate genes, 120 

redundant pathways (Wu and Lai 2015) and high genetic crosstalk have been proposed as 121 

specialized networks that contain CGV. A study showed that secondary enhancers of 122 

Shavenbaby are required to regulate variation in trichome patterning upon extreme stress in 123 

Drosophila, thus demonstrating a phenotype specific network (Frankel et al. 2011). 124 

Indirectly, high-resolution mapping of the cellular interactome (Boone et al. 2007; Li et al. 125 

2010; Laufer et al. 2013) have revealed independent networks that are employed in specific 126 

traits and diseases, called modules (Vidal et al. 2011). This modularity may indicate 127 

phenotype specific genetic networks, which would have evolved in response to stabilizing 128 

selection to contain CGV in a specialized manner.  129 

While CGV has been proposed to accumulate in a stabilized population and revealed in an 130 

adapting population, the accumulation of CGV and genetic buffering are not necessarily 131 

synonymous processes (Gibson and Reed 2008; Paaby and Rockman 2014; Siegal and Leu 132 

2014). CGV can be a result of conditional effects of alleles that are maintained by mutation-133 

selection balance and genetic drift across populations. These variants may have conditional 134 

effects on specific biochemical pathways, which differ in different populations (Chandler et 135 

al. 2013; Chari and Dworkin 2013; Chandler et al. 2014). Thus a large amount of such CGV 136 

can hence exist with no perturbations in the underlying robustness of the system, as 137 

conditional epistasis (Gjuvsland et al. 2007). This idea is supported by a lack of association 138 

between ability to release CGV and accumulate mutations (mutational robustness). While 139 

Hsp90 has been shown to facilitate release of hidden genetic variants (Jarosz et al. 2010; 140 

Rohner et al. 2013) that may eventually aid in adaptation (Orr and Betancourt 2001), it has 141 

not been demonstrated to support accumulation of novel mutations. The only study that 142 

directly tested the two phenomena, release of CGV and mutation robustness, compared the 143 

abilities of Htz1, the gene encoding histone H2A.Z (Richardson et al. 2013). While Htz1 144 

showed high epistasis, CGV was released both in presence and absence of the gene, with no 145 

effect on accumulation of novel mutations. Additionally, even Hsp90 has been shown to act 146 

as both a capacitor (contain CGV) and as a potentiator (release CGV) (Cowen and Lindquist 147 
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2005). Genetic mapping both in functional and repressed Hsp90 states resulted in different, 148 

but equal number of genetic loci regulating yeast growth (Jarosz and Lindquist 2010). While 149 

such studies do not question the relevance of studying CGV to understand the genetic 150 

landscape of complex traits, they propose that loss of robustness is just one of the 151 

mechanisms that results in release of CGV (Gibson and Reed 2008; Paaby and Rockman 152 

2014; Siegal and Leu 2014). However, the extent of overlap between the two phenomena is 153 

not clear. Additionally, the co-existence of generalist capacitors and specialized networks is 154 

not well understood, owing to exclusivity of the studies investigating these two phenomena. 155 

Are capacitors a part of specialized networks? Or is their existence independent of the 156 

networks active in different phenotypes? Several network based studies further challenge the 157 

evolution of such generalized capacitors, with an incentive to maintain phenotypic 158 

robustness, by showing that biological networks have evolved to maintain robustness such 159 

that multiple genes can behave as capacitors (Bergman and Siegal 2003). High epistasis and 160 

environment dependence of this epistasis further backs the case for CGV being a part of all 161 

the biological processes (Hermisson and Wagner 2004).  162 

In this study, we have studied the phenotypic manifestation of standing genetic variation to 163 

address two key questions in the field. How common is regulation and release of CGV? Is 164 

CGV regulated by a few independent pleiotropic capacitors that function across environments 165 

or is it a property of certain environment-specific network modules? How do these 166 

generalized and specific forms of genetic buffering overlap? 167 

We have used linkage mapping to identify loci that regulate CGV in a biparental yeast 168 

population grown in diverse environments. These genetically diverse parental strains (BY and 169 

RM11) have accumulated large number of polymorphisms over the course of their 170 

evolutionary trajectories (Liti et al. 2009; Bloom et al. 2013). Linkage mapping in such 171 

populations allows comparison of the effect of the two divergent alleles of a locus on 172 

thousands of genetic variants. While conventional quantitative trait locus (QTL) mapping 173 

identifies genetic loci, alleles of which have different effects on the population mean, their 174 

effects on population variance are often ignored (Rönnegård and Valdar 2012). While 175 

differential mean of the two alleles would demonstrate the effect of the two alleles on the 176 

average phenotype, differential variance would convey that while the population is invariant 177 

or canalized in the presence of one allele, the other allele allows the phenotypic manifestation 178 

of diverse variants that results in a high variance. Therefore, differential variance represents 179 

differential ability to regulate CGV (Lempe et al. 2013). The term to describe these variance-180 
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regulating loci, variance QTL (vQTL) was first introduced by Rönnegård and Valdar (2011). 181 

While most of these loci tend to be small effect when compared with conventional QTL 182 

(Shen et al. 2012), some large effect vQTL such as MOT1 (Forsberg et al. 2015) and nFT 183 

(Lee et al. 2014) have been identified in plants. In addition, vQTL mapping has been 184 

proposed to be a predictor of prevalence of gene-gene interactions, further supporting 185 

differential regulation of CGV by these loci (Paré et al. 2010; Rönnegård and Valdar 2012).  186 

This differential variance between allelic effects is different from micro-canalization. Micro-187 

canalization is another form of robustness that refers to phenotypic variation within two 188 

genetically identical individuals, or clonal variation (Bergman and Siegal 2003; Levy and 189 

Siegal 2008). Here, we have specifically investigated loci, which regulate suppression and 190 

revelation of heritable genetic variation. 191 

We used variance QTL (vQTL) mapping to identify loci, which show the ability to regulate 192 

CGV across diverse environments. We further used covariance analysis to study the 193 

pleiotropy of their variance regulation and identified the revealed CGV through QTL-QTL 194 

and vQTL-vQTL interaction analyses. We identify a gradient of types of environments that 195 

determines the regulation of CGV within them. Most environments are tightly regulated such 196 

that the majority of the loci show additive effect without vQTL and epistasis interactions. 197 

Only in a few rare environments, this robust state is perturbed such that almost all loci 198 

regulate both mean and variance. Such environments reveal high number of epistatic 199 

interactions that regulate yeast colony size. It is in these environments, where we compared 200 

effect and abundance of generalist capacitors and specialized networks. We identify multiple 201 

capacitors that regulate CGV across multiple environments, one allele behaving as a 202 

capacitor and the other as a potentiator. These capacitors are separate from the core network, 203 

which is active independently in each of these extreme environments. We identified a single 204 

unique network for each environment. These networks maintain tight invariant phenotypes, 205 

which are perturbed only in certain allelic combinations, by using either of the following two 206 

approaches: maximalist phenotype or minimalist phenotype. These specialized networks 207 

probably employ these different capacitors to suppress CGV and as a result these capacitors 208 

release CGV, which either have positive effect or negative effect on the phenotype, 209 

depending on the kind of network. Our results argue that the regulation of CGV is a 210 

fundamental force in evolution of genetic networks underlying all complex traits.  211 

 212 
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RESULTS 213 

variance QTL mapping identified loci that regulate CGV 214 

QTL mapping allows comparison of effect of two alleles of a locus on a heterogeneous 215 

population. In an artificially generated biparental population, like the one used for this study, 216 

the majority of the alleles are present at an equal frequency. Therefore, while a difference in 217 

the mean of the two populations based on a marker demonstrates the effect of that allele 218 

independent of other loci, the difference in variance of the population carrying that allele is a 219 

representation of the effect of the allele on phenotypic manifestation of other polymorphisms, 220 

or CGV. 221 

Using a previously published dataset (Bloom et al. 2013) of a recombinant haploid 222 

population generated from a biparental cross between a lab strain BY and a vineyard isolate 223 

RM11, we carried out linkage mapping to identify genetic loci, which showed an allelic 224 

difference on the mean (QTL) and variance (vQTL) of colony size variation. This mapping 225 

was done independently in 34 diverse environments, ranging from different carbon sources to 226 

oxidative and DNA damaging stresses. QTL were estimated using F-statistic comparisons 227 

whereas vQTL were using Brown-Forsythe (BF) test (Figure 1A, see Methods).  228 

By comparing the mean and the variance affects of the identified causal variants, we aimed to 229 

address the following main questions in this study. Is CGV pervasive in a population such 230 

that most loci show a basal difference in variance? Or do specific hubs, i.e., capacitors exist 231 

that regulate the release of CGV across traits? And finally, what is the association between 232 

phenotypic robustness and CGV; if capacitors do exists, are they present in all environments 233 

such that their existence is decoupled from the state of phenotypic robustness of a trait. Or is 234 

the role of these capacitors revealed only in certain conditions in which robustness is 235 

perturbed? 236 

Previous studies have mapped vQTL in segregating populations but their effect sizes were 237 

found to be small. Additionally, genetic studies claimed that many loci were capable of 238 

regulating phenotypic variance. To estimate the number of loci capable of affecting variance 239 

and their effect sizes, the loci were shortlisted separately based on significance and LOD 240 

score cutoffs (see Table S1). Based on significance of effects (P < 0.005), 44% loci behaved 241 

as only QTL and 16% as only vQTL across all environments (Table 1). A large proportion, 242 

39%, of markers had a significant effect on both the mean and the variance. This indicated 243 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 3, 2016. ; https://doi.org/10.1101/033621doi: bioRxiv preprint 

https://doi.org/10.1101/033621
http://creativecommons.org/licenses/by-nd/4.0/


 9 

that more than half (55%) of the loci (including only vQTL and QTL+vQTL loci) affected 244 

variance. However, as previously observed, the differences in the population mean were more 245 

distinguishable than the differences in the population variance. Based on effect sizes (LOD 246 

score > 3, permutation P < 0.01), 70% of the loci behaved as only QTL, 6% as only vQTL 247 

and the remaining (24%) as both (Table 1). Thus while more than 50% of the loci had a 248 

significant effect on variance, the effect size was small in most cases. A high overlap was 249 

identified between loci regulating the mean and the variance, which indicated that release of 250 

CGV was associated with a shift in the population mean. Along with highlighting the ability 251 

of commonly studied QTL to regulate population means, this result emphasizes a specific 252 

directionality of release of CGV. 253 

If presence of capacitors and release of CGV is a common process, uncoupled from inherent 254 

robust or buffered state of the population in a given environment, then one would expect a 255 

uniform distribution of loci regulating variance across environments. Instead, we observed 256 

clustering among these loci regulating phenotypic variance along with mean (QTL+vQTL) in 257 

specific environments. A high negative correlation (r2 = -0.9) was observed between ratios of 258 

loci classified as QTL and as QTL+vQTL across environments (Figure 1B). The figure 259 

shows that while the majority of environments show exclusive QTL effects, the enrichment 260 

of QTL+vQTL loci in certain environments demonstrates that most loci in these 261 

environments result in difference in variance along with the mean.  262 

Environment determines the release of CGV 263 

A fundamental question associated with release of variance has been its effect on the average 264 

population phenotype, i.e., whether release of variance will generate low or high fitness 265 

phenotypes, or both (i.e., CGV will be released equally around the mean). A high number of 266 

QTL+vQTL and a few vQTL identified in our analysis established that the release of genetic 267 

variance by an allele was exclusively either advantageous or deleterious for the phenotype of 268 

the segregants (Figure 2A, see Table S1). While we cannot comment on the effect of colony 269 

size on fitness, we identified examples of loci that resulted in either only high or only low 270 

mean associated with release of variance indicating that loci were able to exhibit both 271 

capabilities (Figure 2A). In very few cases was the release of genetic variance by an allele 272 

spread equally around the phenotypic mean. One obvious question, from these observations, 273 

is which factors determine the direction of release of variance – does it depend on the locus 274 

or is it a property of the environment? Little association was observed between the mean and 275 
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the variance in different pleiotropic loci across environments. For example, a chrXV 276 

(140,012) marker that had a significant effect on the mean and the variance in various 277 

environments showed no association between the two (Figure 2B, see Table S2), while the 278 

BY allele has a higher mean in MgCl2 and LiCl, and RM allele has a better mean in MgSO4; 279 

the RM allele has a higher variance in all these 3 environments suggesting poor correlation 280 

(r2 = 0.3) between the mean and the variance for this particular locus (Figure 2B, see Table 281 

S2). However, a strong association between the mean and the variance of loci was observed 282 

within each environment (Figure 2B). In environment MgSO4, a strong positive correlation 283 

(r2 = 0.9) was observed such that an allele with a higher mean always had a higher variance 284 

independent of the mapped locus. Pair-wise correlation was calculated between the mean and 285 

the variance of all significant loci for each environment independently (see Methods). A poor 286 

correlation across the environments would have indicated that different loci resulted in 287 

random release of variance in both positive and negative directions within an environment. 288 

Interestingly, a significant correlation (P < 0.01) was observed in majority of the 289 

environments (26/33, Figure 2C). One half of the environments (13/26) showed a strong 290 

positive correlation (r2 > 0.5) indicating that release of variance was, on an average, 291 

advantageous for the phenotype. The other half environments showed a negative correlation 292 

(r2 < -0.5), i.e., release of variance resulted in reduced colony size (Figure 2C). This meant 293 

that independent of the molecular nature of the regulatory locus or the hidden genetic 294 

variation, effect of release of variability on the population mean was strongly dependent on 295 

the environment. 296 

This prepotency of the environment in determining direction of release of variance raised the 297 

possibility of environmental constraint on the nature of released CGV. Do same loci regulate 298 

the mean and the variance across different environmental categories (positively versus 299 

negatively correlated environments)? If yes, then do these alleles show similar or opposite 300 

effects on the regulation of variance between different categories? A comparison of 301 

QTL+vQTL effects of a locus across environments was limiting due to higher number of 302 

QTL effects than QTL+vQTL or vQTL effects (see Table 1 and Figure 2B). More 303 

importantly, alleles of a locus may show similar variance in an environment but behave 304 

differently across environments. Trait covariance measures how a population behaves across 305 

two environments (Haber and Dworkin 2015). A high covariance means similar phenotype, 306 

and similar identity of CGV released in this case, whereas a low covariance indicates 307 

differential phenotype of the segregants across the two environments. Therefore, while the 308 
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two alleles can have similar variance, they may show differential release of CGV, across two 309 

environments (Figure 3A). BY allele of the chrXV (160,440) marker showed similar variance 310 

in Lactate (σ 2 = 0.88 ) and Lactose (σ 2 = 0.69 ), much like BY allele of marker chrXIV 311 

(681,897) in trehalose (σ 2 = 0.77 ) and LiCl (σ 2 = 0.86 ). However, the latter allele showed a 312 

much lower covariance (Cov = 0.13) than the former (Cov = 0.84). This indicated that while 313 

the RM allele allowed similar phenotypic manifestation of genetic variants in the population 314 

in both Lactate and Lactose, BY allele showed differential regulation of these variants across 315 

Trehalose and LiCl. Mapping covariance of loci across pairs of environments therefore, will 316 

identify loci exhibiting differential CGV across environments, and hence uncover potential 317 

capacitors. In addition, covariance mapping will also determine whether allelic bias exists 318 

between the ability to release variance, i.e., does one allele always result in release of 319 

variance independent of the environment or this ability of an allele is determined by the 320 

environment in which the locus is present in. In other words, does an allele behave 321 

exclusively as a capacitor or as a potentiator, or can it behave like both depending on the 322 

environment? As an alternative to performing a genome-wide covariance analysis, we chose 323 

only those loci that had a significant effect (QTL, vQTL or QTL+vQTL) in more than one 324 

environment. Forty seven such loci were selected and their covariance was computed across 325 

these environmental pairs (see Methods, Table S3). Eighteen loci showed a significant 326 

difference in the covariance with 9 being significant across multiple (more than 15) 327 

environmental pairs (Figure 3B, Table S3). These 9 loci regulated covariance across multiple 328 

environments and therefore were identified as hubs of variance regulation, i.e., capacitors or 329 

covariance hubs. The same locus regulated covariance in environments from different 330 

categories where the mean and the variance were positively correlated and negatively 331 

correlated (Figures 2C, 3C, Table S3). Furthermore, within a locus, while either of the alleles 332 

had the ability to result in release of variance across environments, a significant allelic bias in 333 

this ability was observed. Among the 5 loci that regulated covariance in more than 15 334 

environmental pairs, 4 had a significant allelic bias (Fisher Exact test P < 0.05, Figure 3B). 335 

This meant that while both the alleles of these loci are capable of functioning as capacitors, 336 

one allele tends to contain variance and the other results in its release in majority of the 337 

environments. In Figure 3C, Paraquat shows a positive correlation between the mean and the 338 

variance whereas Cu shows a positive correlation. However, BY allele of the chrXIII 339 

(45,801) marker shows reduced variance in both environments whereas the RM allele shows 340 
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a higher variance. Hence alleles of a locus tend to behave exclusively either as capacitors or 341 

as potentiators, independent of the environment. 342 

CGV as a major contributor to gene-environment interactions, especially antagonistic 343 

pleiotropy 344 

Environmental influence on the direction of release of variance (a better or a poorer 345 

phenotype) and high consistency of the regulation of variance by covariance-regulating 346 

pleiotropic hubs have a pronounced ramification on the role of CGV in regulating gene-347 

environment interactions. While CGV explains the high conditional neutrality of genetic 348 

effects across environments, we demonstrate that the direction of release of CGV, as 349 

determined by the environment, has a strong effect on gene-environment interactions, 350 

especially antagonistic pleiotropy. Assume a following scenario where a locus regulates the 351 

mean and the variance across two different environments, i.e., there is opposite correlation 352 

between the mean and the variance. Since there is a high consistency in regulation of 353 

variance, one allele will always result in high variance, while the other allele will always 354 

result in lower variance, and hence the high variance allele of this marker will have opposite 355 

effects on the mean thus resulting in antagonistic pleiotropy. For example, the locus chrXV 356 

(140,012), in Figure 2B, resulted in differential variance and mean in environments MgCl2, 357 

LiCl and MgSO4. Because LiCl and MgSO4 have opposite correlations for the mean and the 358 

variance, the consistency of RM allele in showing higher variance results in a trade-off in the 359 

overall mean effects. This phenomenon is clearly demonstrated by the example in Figure 3C, 360 

where BY allele of chrXIII (45,801) marker had better mean in Cu and poorer mean in 361 

Paraquat than the RM allele and hence showed antagonistic effects. Therefore, in this 362 

example, this antagonism was a result of the consistency of the RM allele in reducing 363 

variance and the BY allele in releasing variance. Thus, opposite correlation between the mean 364 

and covariance in Paraquat and Cu resulted in antagonistic effect of this locus. Therefore, 365 

CGV and its regulation contribute to gene-environment interactions in multiple complex 366 

ways.  367 

Two-locus mapping identifies the hidden variants 368 

Identification of loci acting as hubs regulating covariance indicates their ability to function as 369 

capacitors. However, to conclusively determine their ability to regulate CGV, identification 370 

of the hidden variants is crucial. As previously stated, release of CGV is dependent on gene-371 

gene interactions or epistasis between the stimuli (capacitor or genetic background) and the 372 
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hidden genetic variants. The conventional use of QTL-QTL mapping is to identify epistatic 373 

interactions that contribute to variation in a population. We utilized QTL-QTL mapping to 374 

identify the genetic basis and patterns of regulation of released CGV. In addition, we adapted 375 

the QTL-QTL mapping technique to perform vQTL-vQTL mapping, which would allow us 376 

to identify the loci that show interactive effects of the allelic combinations on the variance of 377 

the population instead of the mean. We used QTL-QTL and vQTL-vQTL mapping to 378 

understand following points regarding the genetic basis and patterns of regulation of released 379 

CGV (see Table S4). Are most genetic interactions environment-specific, such that release of 380 

CGV is merely conditionally neutral and environment-specific epistasis? Or do discrete loci 381 

exist that behave as capacitors and release CGV across multiple environments? If the 382 

covariance hubs, identified previously, indeed function as capacitors, then they should show a 383 

high number of genetic interactions across environments. Are there genetic networks that 384 

maintain CGV in a population-specific and environment-specific manner? A perturbation of 385 

these networks, either due to a rare environment or genetic intermixing, would result in 386 

release of CGV. Such a scenario would highlight the role of such network(s) beyond 387 

regulation of CGV, in maintaining phenotypic robustness.  388 

QTL-QTL and vQTL-vQTL mapping was carried out in an environment dependent manner 389 

within all loci that were significant as QTL, vQTL or QTL+vQTL in those environments. 390 

Total of 73 significant interactions (P < 0.1) were identified of which 18 (24%) were QTL-391 

QTL, 33 (45%) were vQTL-vQTL and 22 (30%) were both QTL-QTL and vQTL-vQTL 392 

interactions (Table 2). This substantially high number of vQTL-vQTL interactions, in 393 

comparison to proportion of single vQTL (Table 1), indicated their role in contributing to 394 

population variation without demonstrating epistasis of the mean effects. Interestingly, 395 

amongst the loci showing QTL-QTL interactions, 10% had only QTL effects, whereas 80% 396 

were either vQTL or QTL+vQTL (Table 2). In addition, while there was a negative 397 

correlation between the total number of QTL in an environment and the number of QTL-QTL 398 

(r2 = -0.46) and vQTL-vQTL (r2 = -0.37) interactions, a strongly positive correlation was 399 

observed between number of QTL+vQTL and number of QTL-QTL (r2 = 0.64) and vQTL-400 

vQTL (r2 = 0.65) interactions, indicating that the release of variance was a result of revelation 401 

of epistatic effects. In other words, a high number of QTL+vQTL effects is a robust predictor 402 

of epistasis in the trait.  403 
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Identifying generalist capacitors and specialized genetic networks regulating CGV 404 

By comparing the results of QTL-QTL and vQTL-vQTL interactions across environments, 405 

we attempted to distinguish between the three scenarios: environment-specific epistasis, 406 

capacitors and networks maintaining robustness. The loci showing interactions, within and 407 

across environments, was compiled. A locus that had interactions in two or less than two 408 

environments and single interaction per environment was considered as an environment-409 

specific interactor; a locus with interactions in more than two environments was considered a 410 

capacitor; and a locus with more than two interactions within an environment was considered 411 

a part of a network active within that environment. A total of 73 interactions (QTL-QTL, 412 

vQTL-vQTL, QTL-QTL+vQTL-vQTL) were identified, which meant 146 interactors (see 413 

Table S5). Amongst these, 29 interactors were involved in environment-specific interactions, 414 

55 interactors which attributed to 9 loci showed interactions across diverse environments, i.e., 415 

behaved as capacitors. The remaining 62 showed multiple environment-specific interactions. 416 

Of the 55 markers that behave as capacitors, 62% marker showed interactions that had a 417 

difference in variance (vQTL-vQTL or vQTL-vQTL+QTL-QTL). Interestingly, of the 62 418 

markers, which showed environment-specific interaction networks, 85% showed a difference 419 

in variance, indicating that these capacitors and networks regulate CGV possibly through 420 

higher order interactions. Only 2 loci were involved in multiple interactions across 421 

environments (chrVIII and chrXIII). These results showed that environment-specific 422 

interactions were rare, and loci which form environment specific networks are different from 423 

the ones which behave as capacitors.  424 

Epistasis across traits follows a pattern where interaction hubs regulate CGV across multiple 425 

environments. Amongst the 9 interaction hubs identified, 7 also behave as covariance hubs 426 

indicating that loci that regulate variance across multiple environments do so by interacting 427 

with different loci in different environments (Figures 4A, 5A, Table S3). When combined 428 

with consistency in direction of covariance, these results demonstrate how CGV is released 429 

majorly in the presence of one allele of the capacitor and not the other (Figure 4A). Different 430 

genetic variants are released across different environments. The Figure 4A shows that BY 431 

allele of the chrXIV (368,185) marker has a higher variance in both 4-HBA and Galactose 432 

and the RM allele has a lower variance. In 4-HBA, the chrXIII locus shows a larger effect in 433 

the presence of the BY allele than the RM allele (Figure 4B). Similarly, in Galactose, chrXV 434 

locus shows a stronger effect on the phenotype in the presence of BY allele than the RM 435 
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allele (Figure 4C). These results demonstrate how the covariance hubs result in release of 436 

differential CGV across different environments. 437 

Sixty six markers showed environment-specific networks in 12 environments (see Table S5). 438 

Some of these networks were denser than others. These networks showed high 439 

interconnectivity and the loci in these networks showed QTL+vQTL effects. Additionally, 440 

the interactions showed both QTL-QTL and vQTL-vQTL effects, e.g. a network of 4 loci 441 

present in Indoleacetic acid (IAA) where all loci show significant interactions with each other 442 

(Figure 5B, C). As demonstrated by the dot plots, the allelic combinations differed in mean as 443 

well as variance (Figure 5B). As shown above, the differential variance between alleles of a 444 

locus is deterministic of allele-specific revelation of effects. This finding (derived from many 445 

such examples as one shown in Figure 5, also see Figure 6B) can be extrapolated to state that 446 

loci showing vQTL-vQTL interactions harbour higher degree interactions within them, which 447 

results in differential variance of the allelic combinations. Indeed, as shown in the Figure 5B, 448 

vQTL-vQTL interactions occured when 3 out of 4 biallelic combinations exhibited lower 449 

variance, higher mean phenotype, whereas one combination resulted in increase in the 450 

variance and reduction in the mean. Similar networks were present in other environments as 451 

well, with these environments demonstrating a range of connectivity patterns. While all 4 loci 452 

showed similar effects in IAA, networks in other environments have loci that act as hubs 453 

showing higher interactions than other members of the network (see Figure 6B). A consistent 454 

property of an environment containing such networks is that all loci showing an effect on the 455 

phenotype in these environments are a part of this network. They may be present as highly 456 

interacting hubs or as interactors of one of these hub loci (see Figure 6B). Additionally, most 457 

of the loci of these networks are exclusive to each environment (see Figure 6B). This 458 

indicates a revelation of underlying genetic networks in these environments, with rare 459 

additive effects of loci. A tempting possibility is that this dense genetic interactome underlies 460 

all traits, but is revealed under specific genetic and environmental perturbations. 461 

 462 

DISCUSSION 463 

The phenomenon of CGV was first proposed over 60 years ago (Waddington 1956). While its 464 

existence has been demonstrated in various systems across taxa, the architecture of cryptic 465 

genetic variation and its effect on the genetic regulation of complex traits are still unclear 466 

(Siegal and Leu 2014). Several questions surround the understanding of regulation of CGV. 467 
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How is it regulated – by generalist pleiotropic capacitors or by phenotype-specific networks? 468 

What effect does it has on the phenotype, in other words, what is the distribution of 469 

deleterious versus advantageous CGV? Can the effect of release of CGV on the phenotype be 470 

predicted? Is the architecture of the hidden genetic variants different from that of the additive 471 

loci (Gibson and Reed 2008)? Studies have demonstrated both detrimental and beneficial 472 

effects of CGV on various phenotypes (Jarosz et al. 2010). In addition, contribution of 473 

various phenomena viz. robustness, canalization, buffering and capacitance to CGV, further 474 

complicates its mechanistic understanding (Gibson and Dworkin 2004). We used an 475 

integrative approach of mapping loci regulating mean, variance and covariance and their 476 

epistatic regulation to understand the underlying genetic framework of CGV. Comparing 477 

genetic regulation of multiple environments allowed us to comprehensively study the 478 

regulation of CGV and the integrated co-existence of conventionally identified loci and CGV. 479 

We propose the following model based on our results (Figure 6A). 480 

A population can exist in different states based on its genetic diversity and the surrounding 481 

environment. While we do not understand the underlying mechanistic differences between 482 

these states, they appear to be a gradient of the internal buffering states or phenotypic 483 

robustness (of heritable variation) of the population. Towards the left end (gray) are states 484 

where genetic variation is majorly additive in nature, with a few epistatic interactions such 485 

that most loci have independent effects with difference in the population mean. Some loci do 486 

show pleiotropic effects in these states but only affect the mean in different environments. 487 

For the biparental population used in this study, majority (more than half) of the 488 

environments are confined to this side of the spectrum. This result is substantiated by 489 

mapping of loci with predominantly additive effects and limited identification of epistasis in 490 

different studies (Carlborg and Haley 2004; Bloom et al. 2015). Additionally, this explains 491 

the low effect of variance QTL identified in multiple studies. Moving towards the right side 492 

(blue)along this gradient, the population state gets altered such a way that the underlying 493 

genetic interconnectivity, and hence CGV, gets revealed (Carlborg and Haley 2004; Mackay 494 

2014; Siegal and Leu 2014; Fares 2015). This perturbation appears to happen in rare 495 

environments (Kitano 2004) and uncovers both kinds of genetic buffering mechanisms – 496 

capacitors, which regulate CGV across multiple environments and environment-specific 497 

genetic networks. Results from a recent study, which has identified capacitors and 498 

potentiators of bristle numbers in D. melanogaster, support our model, thus suggesting its 499 

universality (Takahashi 2015). Not just regulation of CGV, but these two mechanisms 500 
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together form the core genetic regulation in these environments (Félix and Barkoulas 2015). 501 

The unusualness of these environments provides support for the Highly Optimized Tolerance 502 

(HOT) hypothesis, which states that systems evolved to be robust against most common 503 

perturbations, show high vulnerability to rare conditions (Carlson and Doyle 2002).  504 

The capacitors identified by our study regulate the release of CGV across multiple 505 

environments, as demonstrated both by their ability to regulate covariance as well as by 506 

multiple epistatic interactions exhibited by them across environments. A few molecular 507 

examples of such capacitors have been identified including HSP90 (Rutherford and Lindquist 508 

1998), HZT1 (Richardson et al. 2013) and IRA2 (Taylor and Ehrenreich 2015). These genes 509 

have been shown to result in revelation of the hidden variants upon genetic or environmental 510 

perturbations. However, a discrepancy exists between the theoretical understanding of 511 

evolutionary capacitors and functions of these genes, HSP90 and HZT1, since CGV is 512 

released both in their presence and absence. While the released CGV depends on their 513 

functional state, thus demonstrating their ability to show high epistasis, this argues against 514 

their role in evolution towards maintenance of phenotypic robustness. Such disparity in their 515 

roles questions the overlap between robustness and CGV regulation. While the capacitors 516 

identified in our study show a similar behavior, i.e., both alleles have the capability to result 517 

in release of variance; they show a strong allelic bias. In majority of the cases one allele 518 

allowed the interacting locus to manifest phenotypically whereas the other allele suppressed 519 

its effect such that one allele behaved as a potentiator whereas the allele behaved as a 520 

capacitor. This along with the enrichment of such capacitors in only certain environments 521 

indicates a link between release of CGV and robustness of the phenotype.  522 

A classic argument against an association of such loci, which regulate epistasis in standing 523 

genetic variation, with phenotypic robustness and buffering has been a lack of demonstration 524 

of their ability to accumulate new mutations. These arguments propound that CGV is 525 

independent of the state of phenotypic robustness (Paaby and Rockman 2014). While we 526 

have focused only on standing genetic variation in this study and hence cannot comment on 527 

mutational robustness, we observed a strong bias in the ability of a few environments to 528 

activate these capacitors. These capacitors have pleiotropic effects across all the 529 

environments (Cassidy et al. 2016) but they regulate variance only in the few environments 530 

found on the right side of the gradient and act as conventional QTL for the environments 531 

towards the left (Figure 6A). While the effect of these capacitors on novel mutations, and 532 

hence mutational robustness, cannot be demonstrated, our results confidently show that the 533 
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ability of these loci to behave as capacitors is dependent on the environment and hence may 534 

be a representation of the buffered state of the environment (Fares 2015). Our results, 535 

therefore, argue in favor of evolution of these capacitors to maintain CGV (Elena and Lenski 536 

2001). 537 

In these specific environments, along with increased prevalence of capacitors, we identified 538 

highly interconnected networks (Figure 6B). These genetic networks were specific to each 539 

environment. The pleiotropic capacitors showed an effect in these environments but they 540 

were just one the interactors – either a part of the network or an interactor of the hub gene in 541 

the network, but never forming the core themselves (Figure 6A,B). An interesting property in 542 

these environments was the extensive cross talk that resulted in a single specific network in 543 

each environment, i.e., almost all loci active in a particular environment form a part of this 544 

single network. The high number of epistatic interactions in this extreme right of the 545 

spectrum, and increased differential regulation of population variance at both single locus and 546 

two-locus levels indicates prevalence of higher order epistasis (Figure 6A,B). While we do 547 

not have the power to confidently demonstrate such high order interactions, multiple epistasic 548 

interactions between a few loci and their vQTL-vQTL mapping plots suggest their presence 549 

(see Figure 5B,C). These results support the predictions of high prevalence of such higher 550 

order interactions (Carlborg et al. 2006; Taylor and Ehrenreich 2014). This high 551 

interconnectivity is the reason why we observe so few additive QTL in the left side of the 552 

gradient with the majority of loci behaving as QTL+vQTL.  553 

As described above, while the pleiotropic capacitors are also a part of these interactions, they 554 

do not form the core network. A reason for this exclusion can be that these networks could 555 

have evolved in response to specific selection pressures to reach phenotypic optimum for a 556 

particular phenotype, and the pleiotropic nature of the capacitors would implement a 557 

constraint on their ability to evolve or mold to a specific environment. These results indicate 558 

that a possible reason for the evolution of pleiotropic genes could have been the regulation of 559 

this CGV across environments. Furthermore, modularity of the interactome identified 560 

recently in disease networks (Vidal et al. 2011; Menche et al. 2015) to regulate specific 561 

diseases could be a result of evolution of these environment or phenotype specific hubs, 562 

which maintain robustness for specific phenotypes by genetic redundancy (Kafri et al. 2009). 563 

At a molecular level this indicates that these specific networks, which maintain robustness 564 

and contain CGV form the core regulation in each environment. A perturbation in them 565 

results in release of CGV, probably by impinging on these capacitors. Our results argue that 566 
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such an interconnected system probably underlies the regulation of all complex traits but 567 

unveils itself only upon certain environmental and genetic perturbation. Different 568 

environments or phenotypes have different core networks (Chari and Dworkin 2013), which 569 

impinge on these capacitors and regulate phenotypic variation and robustness (de Visser et al. 570 

2003; Chevin et al. 2010). 571 

Along with high epistasis or gene-gene interactions (Mackay 2014), a major consequence of 572 

CGV is high gene-environment interactions, since these hidden variants show their effects in 573 

certain environments and not in others. While this would explain the high conditional 574 

neutrality in genetic effects across environments identified in various gene-environment 575 

interaction studies, it does not justify the observed environmental constraint on the direction 576 

of release of variance (see Figure 2B). Our results show that CGV is released in only one 577 

direction in each environment and QTL-QTL and vQTL-vQTL mapping has shown that one 578 

single network is active in each environment. Therefore, one can surmise that the hidden 579 

variation is released in only one direction by a particular network. Based on our results, we 580 

propose that a particular network, evolved to maintain optimum phenotype, can curb 581 

expression of phenotypic variation in two ways – the maximalistic approach or the 582 

minimalistic approach. The maximalistic approach would be evolution of networks that 583 

maintain high flux through the pathway(s) contributing to the phenotype such that the default 584 

state is always on. In this scenario, any genetic variant that results in a reduced flux, and 585 

hence lower phenotype, will not have much effect since there will be an excess of 586 

transcriptional or biochemical signal. As a result, such variants will get accumulated due to 587 

lack of purifying selection on them, whereas a variant that increases the flux will get fixed 588 

and become a part of the network. Perturbation of this network will, therefore, only release 589 

variants with a poorer phenotype. The alternate minimalistic approach would describe a 590 

default state with the minimum possible flux, such that the network maintains the pathway(s) 591 

in a practically shutdown state. Since the upstream signal is off or minimal, the downstream 592 

genetic variants that increase the flux will not be able to show their effects and hence get 593 

fixed. Consequently, a breakdown of this network will reveal genetic variants that increase 594 

the phenotype. Our conjecture is that modules or specialized network may have evolved this 595 

way to contain CGV in the most optimal manner. While this regulation may happen at 596 

various levels (transcription, translation or for metabolites) and differ for different 597 

phenotypes and environments, it would follow either of the two above approaches. 598 
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Along with providing molecular insights into genetic regulation of various traits, this 599 

directionality of the networks has strong implications on gene-environment interactions, 600 

especially antagonistic pleiotropy. While the core network loci are environment-specific, the 601 

generalist capacitors are common across different environments. Our results show that the 602 

abundant antagonistic pleiotropy of the mean effects of these loci is not due to opposing 603 

molecular effect of the locus on the two environments but majorly due to the opposing 604 

constraints of the environment on direction of released CGV (see Figure 3). Depending on 605 

the kind of network that impinges on the capacitor, the released CGV will either increase or 606 

decrease the phenotype. Therefore, along with regulating condition specificity of the effects 607 

of loci, regulation of CGV can result in trade-offs in the effect of loci across different 608 

environments. In our previous paper, we reported high antagonistic pleiotropy of a locus on 609 

chrXV containing the gene, IRA2 (Yadav et al. 2015). IRA2 is an inhibitor of the highly 610 

conserved Ras/PKA pathway, which we demonstrated to show high diversity in natural 611 

populations of S. cerevisiae adapted to diverse ecological and geographical niches. 612 

Investigation of QTL and vQTL revealed that the loci containing IRA2 is a covariance hub 613 

and hence a capacitor (see Table S3). This is supported by a recent study, which 614 

demonstrated role of IRA2 in regulating cryptic variation in colony morphology trait by 615 

disruption of transcriptional silencing of one or more genes that affect the trait (Taylor and 616 

Ehrenreich 2015). Comparing the mean and the variance revealed that the antagonistic effect 617 

in different environments is a consequence of differential robustness of the two alleles of 618 

IRA2, which may be the primary reason underlying their role in adaptation. This has profound 619 

significance on the increasing identification of antagonistic effects in various diseases 620 

causing alleles (Carter and Nguyen 2011). Our study indicates that their opposing effects are 621 

potentially a result of their differential robustness in different populations and lifestyles. This 622 

inference will be crucial in understanding their pleiotropic effects as well as their molecular 623 

mechanisms. 624 

Our study provides a detailed understanding of the architecture of CGV affecting yeast 625 

growth across multiple environments. In doing so, we have uncovered patterns and governing 626 

principles which can be used to predict existence and behavior of CGV. This underlying 627 

architecture has the potential to elucidate certain fundamental, hitherto unclear, phenomena in 628 

quantitative biology – varying contribution of epistasis in different traits, pleiotropy, network 629 

modularity, environment and genetic background dependence of causal loci. Revisiting the 630 

already existence datasets of breeding traits and human diseases in the light of conclusions 631 
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from this study can provide better insights into their genetic regulation and has the potential 632 

to solve the mystery of missing heritability (Eichler et al. 2010; Nelson et al. 2013). 633 

Identification of regulation of CGV can provide better comprehension of the molecular 634 

functioning and evolution of the modules regulating various traits and disease.  635 

 636 

METHODS 637 

Dataset 638 

The raw growth data analysed in this study was derived from a study by Bloom et al. (2013), 639 

in which the experimental procedures are described in detail. The data we used was generated 640 

for 1,008 segregants derived from a cross between S. cerevisiae strains BY (a laboratory 641 

strain) and RM11-1a (a wine isolate, indicated as RM). These segregants were grown in 46 642 

different conditions and phenotyped for colony size of which 34 conditions were considered 643 

in this study (see Table S1, see Files S1 and S2 for more information). A total of 11,623 644 

markers were considered.  645 

QTL and vQTL mapping 646 

The single environment QTL mapping was carried out as described previously (Bhatia et al. 647 

2014). In brief, the R/qtl package (Broman et al. 2003; Broman and Sen 2009) was used to 648 

identify QTL separately for colony size in each environment. QTL were identified using the 649 

LOD score, which is the log10 of the ratio of the likelihood of the experimental hypothesis to 650 

the likelihood of the null hypothesis (Broman and Sen 2009). An interval mapping method 651 

(“scanone” function in R/qtl) was used to compute this LOD score using the Haley-Knott 652 

regression algorithm (Broman et al. 2003).  653 

The following formula was used to calculate the F-score, which was further used to derive the 654 

LOD score. At a particular marker, let segregant i’s phenotypic value be yij  where j  can 655 

take two values ( j = 1 : BY allele and j = 2 : RM allele).  656 

F =
nj yj − y( )2 k −1( )

j=1

k

∑

yij − yj( )2
i=1

nj

∑ n − k( )
j=1

k

∑
 657 
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Here, N  is the total number of segregants, n1  and n2  are the number of segregants having 658 

the BY and RM allele respectively ( k = 2 ) and yj  is the genotypic mean of allele j.  659 

Let df denote the degrees of freedom (df = 1 for a backcross and df = 2 for an intercross). The 660 

LOD score is accordingly derived as follows: 661 

LOD = n
2
log10 F df

n − df −1
⎛
⎝⎜

⎞
⎠⎟
+1

⎡

⎣
⎢

⎤

⎦
⎥  662 

Under the null hypothesis, there is no significant difference in the means at the marker under 663 

consideration while under the alternative hypothesis, there is a presence of a QTL. 664 

To estimate the difference in phenotypic variance between the two genotypic groups, i.e., to 665 

identify vQTL in each environment, the standard Brown-Forsythe (BF) statistic (Rönnegård 666 

and Valdar 2011; Lee et al. 2014) and the corresponding LOD score were calculated for each 667 

genetic marker in each environment (see Files S1 and S2). The BF test is equivalent to an F-668 

test performed on the deviations of the phenotypic values from their respective genotypic 669 

medians (or the means). Hence, under the alternative hypothesis, the phenotypes of the two 670 

alleles reveal a difference in the variance.  671 

At a particular marker, let zij  be the absolute deviation of segregant i’s phenotypic value yij  672 

from its genotypic mean  !yj where j  can take two values ( j = 1 : BY allele and j = 2 : RM 673 

allele). 674 

 
zij = yij − !yj  675 

Then BF statistic for that marker can be computed as follows: 676 

 

F = (N − p)
(p −1)

nj ( !z. j − !z.. )
2

j=1

p∑
(zij − !z. j )

2
i=1

nj∑j=1

p∑
 677 

Here, N  is the total number of segregants, n1  and n2  are the number of segregants having 678 

the BY and RM allele respectively ( p = 2 ). In order to estimate the effects of vQTL in the 679 

same order as in QTL, LOD scores were computed as described previously (Broman and Sen 680 

2009).  681 
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To establish the statistical significance of the putative QTL and vQTL, P values were 682 

computed using a genome-wide permutation test of 1,000 permutations, where the null 683 

distribution consisted of the highest genome-wide LOD score obtained from each 684 

permutation (Broman et al. 2003). A LOD score cut off of greater than 3.0 and a P value cut 685 

off of less than 0.01 was considered. 686 

Comparing QTL and vQTL  687 

To estimate pleiotropy, we divided the genome into 20kb non-overlapping bins (Table S3). 688 

The bins containing two or more QTL or vQTL significant (P < 0.01) in different 689 

environments were considered as pleiotropic bins. The first markers of each of these 690 

pleiotropic bins, used as representative of the bins, were collated to represent the set of 691 

pleiotropic markers (Table S3). 692 

Calculating correlation between mean and variance 693 

 To calculate environment-specific correlation (for Figure 2C), difference in the mean (mean 694 

BY – mean RM) and difference in the variance (var BY – var RM) was calculated for all 695 

significant loci within each environment. Pearson’s correlation between these two parameters 696 

was calculated for each environment.  697 

Covariance across environmental pairs 698 

To assess the differential covariance of a locus across multiple pairs of environments, we 699 

considered the collated set of pleiotropic markers for our study (Table S3). To quantify the 700 

differential covariance across a pair of environments, a Deming regression was calculated 701 

between the phenotype values of the chosen pair of environments for each allele, using R 702 

package ‘mcr’. Deming regression, which minimizes errors in multiple dimensions 703 

simultaneously, served as a suitable measurement error model for assessing buffering across 704 

two or more environments. Unlike simple least squares regression, Deming regression 705 

accounts for deviations in observations on both the x- and the y- axis. It seeks to find the line 706 

of best fit 707 

y* = β0 + β1x
*  708 

such that the below weighted sum of squared residuals is minimized, 709 
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1
σε
2 yi − β0 − β1xi

*( )2 +δ xi − xi
*( )2( )

i=1

n

∑   710 

where, the estimate of δ  is the ratio of the two variances. 711 

Since both the phenotypic values (x and y) are normally distributed across their respective 712 

axes, Deming regression, serves as a suitable measurement-error model for assessing 713 

buffering across two environments. Two Deming regression models were fitted for each 714 

environment pair corresponding to the two alleles. 715 

A Student’s t-test was performed between the deviations of the phenotypic values from the 716 

Deming fit of the BY and RM alleles (P < 0.05). This sign of the t-test value represented the 717 

allele that had higher mean of deviations, i.e., lower covariance. If t-test value was positive, 718 

then the mean deviation of BY allele was greater than that of the RM allele and vice versa. 719 

All the significant markers and their corresponding environmental pairs along with mean 720 

deviations of the alleles and independent mean and variance of both the alleles and both the 721 

environments are listed in Table S3. A locus with significantly different allelic covariance 722 

across more than 15 environmental pairs was considered pleiotropic. For each of these loci, 723 

total number of positive and negative t-test statistic were compiled. A Fisher’s Exact test of 724 

random distribution of positive and negative t-test statistic was done each locus, normalized 725 

for the number of environmental pairs. A P value cut-off less than 0.05 was considered 726 

significant. 727 

QTL-QTL and vQTL-vQTL mapping 728 

A QTL-QTL interaction occurs when an effect of a QTL at a single locus depends on another 729 

locus. We used a QTL-QTL mapping technique described previously (Bhatia et al. 2014). In 730 

brief, we used a custom Python script, from Bhatia et al. (2014) to compute LOD scores for 731 

pairwise comparisons among a set of selected markers. These markers were selected using a 732 

QTL P value cut-off of 0.01 in each environment. For the QTL-QTL mapping, P values were 733 

computed using a permutation test (10,000 permutations), where the null distribution 734 

consisted of the highest LOD score obtained among all pairwise comparison for each 735 

permutation of the phenotype. The following hypotheses were compared: 736 

 HI : yi = µ + β1g1i + β2g2i + γ g1ig2i + εi  737 

 HA : yi = µ + β1g1i + β2g2i + εi  738 
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Here, g1i  and g2i  are the binary variables that specify the genotype at the two loci, µ , β1 , 739 

β2  and γ  are inferred from the data using maximum likelihood. The parameters β1  and β2  740 

quantify the individual effect of each QTL, and γ  quantifies the effect of the QTL-QTL 741 

interaction. See Files S1 and S2 for details of calculation of the interaction LOD ( LODi ) 742 

score. 743 

Apart from the QTL-QTL mapping described previously (Bhatia et al. 2014), we mapped 744 

variance-controlling interactions by mapping vQTL-vQTL interactions, which occurs when 745 

the phenotypic variance at one locus depends on the genotype at another locus. The 746 

hypothesis testing for vQTL-vQTL interactions was done in the same way as QTL-QTL 747 

interactions except that instead of scaled values of colony size as the phenotypic values, 748 

deviations from the mean were used as the phenotype for each allelic combination (see 749 

method for vQTL mapping). 750 

To increase power to identify QTL-QTL and vQTL-vQTL interactions, for each 751 

environment, genetic loci significant in either QTL or vQTL or QTL+vQTL mappings were 752 

collated for each environment (Table S1). To compile QTL-QTL and vQTL-vQTL 753 

interaction results, loci within a 50kb linkage interval were considered the same. The P 754 

values were computed using a permutation test of 10,000 permutations with the phenotype 755 

data shuffled relative to the genotype data.  756 
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TABLES 768 

Table 1 – QTL, vQTL and QTL+vQTL  769 

Category No. of QTL No. of vQTL No. of QTL+vQTL 

Based on P < 0.005 39 (16.6%) 104 (44.3%) 92 (31.1%) 

Based on LOD > 3.0 19 (6.4%) 212 (71.6%) 65 (22.0%) 

 770 

 771 

Table 2 – Two-locus interaction mapping 772 

Interactions (P < 0.1) QTL-QTL vQTL-vQTL QTL-QTL+vQTL-vQTL 

 18 (24.7%) 33 (45.2%) 22 (30.1%) 

 773 

774 
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FIGURE LEGENDS 775 

Figure 1: QTL and vQTL mapping  776 

(A) Schematic showing three categories of QTL mapped. QTL has a significantly different 777 

allelic mean but a non-significant difference in allelic variance; vQTL has a non-significant 778 

mean difference but significantly different variance; QTL+vQTL has both significantly 779 

different allelic mean and variance. 780 

(B) Distribution of loci mapped in each environment as QTL (green) and QTL+vQTL (dark 781 

pink) in the segregating population. The y-axis is proportion of QTL or vQTL in each 782 

category. The x-axis is different environments arranged by decreasing proportion of QTL. 783 

Permutation value cut off < 0.01. See Table S1 for details. 784 

 785 

Figure 2: Environment and locus dependence of variance 786 

(A) Representative frequency distributions of three loci showing directionality of release of 787 

variance. Blue distribution is of segregants with BY allele and red is for segregants with RM 788 

allele. 4-NQO [chrXII (207,340)] marker shows release of variance of the BY allele in the 789 

negative direction (mean RM > mean BY); Lactose [chrXIV (376,315)] marker shows equal 790 

variance of the two alleles; MgSO4 [chrVII (187,538)] marker shows release of variance of 791 

BY allele in the positive direction (mean RM < mean BY). The QTL are indicated as 792 

chromosome number followed by marker position in bp within brackets. 793 

(B) Environment and locus dependence of the mean and the variance of loci. The horizontal 794 

arm of the L-shaped grid represents multiple loci L1-Ln significant in environment E1. The 795 

corresponding graph shows the mean and the variance of BY and RM alleles of all markers 796 

(x-axis) in MgSO4. The vertical grid represents pleiotropic effect of the locus L1 in multiple 797 

environments E1-En and corresponding graph shows mean and variance of the marker chrXV 798 

(140,012) in various environments (x-axis). 799 

(C) Correlation between the mean and the variance of all QTL in each environment. 800 

Correlations less than -0.5 (red, P < 0.05) represent environments that have a negative 801 

association between the mean and the variance. Correlations more than 0.5 (yellow, P < 0.05) 802 

represent environments that have a positive association between the mean and the variance. 803 

Environments with no directional release of variance (correlations between ±0.5) are 804 
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represented as blue. The y-axis is correlation between mean and variance; dashed lines mark 805 

±0.5 correlation value. 806 

 807 

Figure 3: Allelic bias in across environment covariance  808 

(A) Covariance of normalized growth phenotype of the BY (blue) allele of chrXV (160,440) 809 

marker in Lactose and Lactate. Covariance of normalized growth phenotype of the BY (blue) 810 

allele of chrXIV (481,897) marker in Trehalose and Lithium chloride (LiCl). The mean and 811 

the variance of each allele in each environment are indicated in the box. The QTL is indicated 812 

as a chromosome number followed by the marker position in bp within brackets. 813 

(B) Frequency distribution of number of positive and negative values of Deming regression t-814 

test (see Methods) across pleiotropic covariance loci (x-axis). The t-test value is positive 815 

where Cov(BY) > Cov(RM) and negative for Cov(BY) < Cov(RM). The y-axis indicates 816 

number of environmental pairs across which the locus showed a significant difference in 817 

covariance. A significant Fisher Exact test (P < 0.05) is indicated by a star. The QTL is 818 

indicated as a chromosome number followed by the marker position in bp within brackets. 819 

(C) Covariance of normalized growth phenotype of the BY (blue) and the RM (red) allele of 820 

chrXIII (45,801) marker in Paraquat and Cu (Copper). The mean and the variance of each 821 

allele in each environment are indicated in the box. Paraquat shows a positive correlation 822 

between the mean and the variance whereas Cu shows a negative correlation (Figure 2C). 823 

The QTL is indicated as a chromosome number followed by the marker position in bp within 824 

brackets. 825 

 826 

Figure 4: Release of CGV through QTL-QTL interactions 827 

(A) Covariance of normalized growth phenotype of the BY (blue) and the RM (red) 828 

segregants for chrXIV (368,185) marker in 4-HBA and Galactose. The mean and the variance 829 

of each allele in each environment is indicated in the box. The axes are normalized growth of 830 

segregants in the two environments indicated. 831 

(B) QTL-QTL interaction between chrXIV (368,185) - chrXIII (46,758) in 4-HBA.  832 

(C) QTL-QTL interaction between chrXIV (368,165) - chrXV (555,452) in Galactose.  833 
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The QTL is indicated as a chromosome number followed by the marker position in bp within 834 

brackets. For (B, C), the x-axis is normalized growth of segregants in the environment and 835 

the y-axis of number of segregants. Dash lines in segregant distributions (B, C) indicate the 836 

means of the distributions. The biallelic marker segregant distributions (in the QTL marker 837 

order written above the plots) are indicated as BB (light blue), BR (light brown), RB (dark 838 

green) and RR (purple). Inset plots show the average distributions of the first marker (BY 839 

(blue) and RM (red) alleles). See Table S4 for details. 840 

 841 

Figure 5: QTL-QTL interaction hubs and networks 842 

(A) QTL-QTL interactions between various markers shown as connected links. The chrII 843 

(245,879) marker (red) has multiple QTL-QTL interactions (deep red) for growth in same 844 

environment (Congo red). The chrXIV (466,590) marker (green) has 6 environment-specific 845 

QTL-QTL interactions (4-NQO = dark green, Formamide = deep purple, Indoleacetic acid 846 

(IAA) = light blue, Lithium chloride (LiCl) = deep orange, Trehalose = deep yellow, Xylose 847 

= orange). Other QTL-QTL interactions are indicated as light grey links. Genomic interaction 848 

maps made using Circos (Krzywinski et al. 2009). See Table S4 for data. 849 

(B) Scatter plots showing examples of QTL-QTL interactions of four markers [chrIII 850 

(191,928), chrIV (997,621), chrVIII (101,016), chrXIV (466,105)] in Indoleacetic acid 851 

(IAA). The biallelic marker segregant distributions (in the QTL marker order written above 852 

the plots) are indicated as BB (red), BR (yellow), RB (green) and RR (blue) on x-axis. The 853 

mean and the variance of each allelic pair is indicated in the box with allelic pair with most 854 

variance indicated in red. The y-axis is normalized growth phenotype. 855 

(C) Schematic representation of genetic network of four loci, indicated in (B) above, showing 856 

QTL-QTL interactions in Indoleacetic acid. 857 

 858 

Figure 6: Genetic architecture of CGV 859 

(A) A model showing gradient of phenotypic buffering from gray (left side) to blue (right 860 

side). Different environments fall in different positions along this gradient. The left side 861 

indicates robust buffering in the population such that most loci have additive independent 862 

effects with a few epistatic interactions. On the right side, are populations with revealed CGV 863 
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that exposes the underlying genetic networks present in different environments. Different 864 

environments are represented by different colors. The white nodes refer to independent 865 

additive loci, gray nodes refer to loci which are a part of different genetic networks. The gray 866 

nodes with thick borders denote capacitors. Most of the environments fall on the left side of 867 

the gradient such that the majority of the QTL identified in different studies are additive with 868 

a few epistatic interactions. As the underlying buffering state of the population gets 869 

perturbed, due to either genetic or environmental perturbations, it moves towards the right 870 

side of the gradient. This perturbation reveals the underlying genetic network, which 871 

regulates phenotypic variation such that all loci are part of this highly interconnected 872 

network. These networks are environment-specific interspersed with generalist capacitors 873 

which regulate buffering and epistasis across different environments.  874 

(B) Examples of specific genetic networks identified in different environments using QTL-875 

QTL and vQTL-vQTL interaction mapping. The potential capacitors identified through 876 

covariance mapping (see Figure 3B) are highlighted as nodes with black outlines. See Tables 877 

S4, S5 for details. 878 

879 
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SUPPORTING INFORMATION LEGEND 880 

File S1: Scripts and datasets for QTL, vQTL, Deming regression and QTL-QTL, vQTL-881 

vQTL interaction mapping. 882 

File S2: Supplementary methods. 883 

Table S1: QTL and vQTL mapping 884 

QTL test and vQTL test refers to the F-test and BF-test statistics respectively, and QTL P 885 

value and vQTL P value refers to the P values of the corresponding tests. Test cutoff of >3 886 

and P value cutoff of <0.005 was used to identify significant markers. 4-HBA refers to 4-887 

Hydroxybenzaldehyde; 4-NQO is 4-Nitroquinoline; 5-FC is 5-Fluorocytosine; 5-FU is 5 888 

Fluorouracil; 6-AU is 6-Azauracil. 889 

Table S2: Mean and variance of significant QTL and QTL+vQTL 890 

Table S3: t-test of Deming regression to compare trait covariance 891 

t-test refers to t-test statistic of Student’s t-test performed on Deming regression values of the 892 

two alleles of a maker across environment 1 and 2. meanRM and meanBY refers to mean of 893 

the regression values of RM and BY alleles, respectively, across environment 1 and 2. 894 

meanRM_env1 and varRM_env1refers to mean and variance of the RM allele in environment 895 

1. Same nomenclature applies to other alleles and environments.  896 

Table S4: QTL-QTL and vQTL-vQTL mapping 897 

Permutation P value cutoff of < 0.1 was considered. Sheet 1 contains results of QTL-QTL 898 

mapping and Sheet 2 contains results of vQTL-vQTL mapping. Sheet 3 shows the overlap of 899 

the Sheet 1 and Sheet 2. In Sheet 3, markers with a 50kb interval were considered the same to 900 

estimate the overlap between the two kinds of mapping. A significant QTL-QTL or a vQTL-901 

vQTL interaction is indicated by 1.  902 

Table S5: Classifying interacting loci in specific gene-gene interactions, capacitors and 903 

environment-specific genetic networks. 904 

905 
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BB : x = 0.15, 2 = 0.59
BR : x = 0.57, 2 = 2.05
RB : x = 0.30, 2 = 0.37
RR : x = 0.09, 2 = 0.62

chrIII (191,928)-chrIV (997,621)
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RR : x = 0.32, 2 = 0.34
RB : x = 0.08, 2 = 0.62
BR : x = 0.30, 2 = 0.33
BB : x = 0.74, 2 = 2.07

chrIII (191,928)-chrVIII (101,016)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●
●

●●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

BB BR RB RR

BB : x = 0.68, 2 = 1.80
BR : x = 0.21, 2 = 0.77
RB : x = 0.06, 2 = 0.55
RR : x = 0.34, 2 = 0.41

chrIII (191,928)-chrXIV (466,105)
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BB BR RB RR
3RR : x = 0.29, 2 = 0.31

RB : x = 0.78, 2 = 2.03
BR : x = 0.34, 2 = 0.38
BB : x = 0.13, 2 = 0.54

chrIV (997,621)-chrVIII (101,016)
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BB BR RB RR

BB : x = 0.05, 2 = 0.54
BR : x = 0.42, 2 = 0.40
RB : x = 0.60, 2 = 1.75
RR : x = 0.13, 2 = 0.74

chrIV (997,621)-chrXIV (466,105)
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