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Abstract 15 

Head and neck squamous cell carcinoma (HNSCC) are a heterogeneous group of cancers 16 

affecting multiple subsites, including oral cavity. Oral or anterior tongue tumors (OTSCC) are an 17 

aggressive group of squamous cell carcinomas, characterized by their early spread to lymph nodes 18 

and higher rate of regional failure compared to other oral cavity cancers. There is a rise in the 19 

incidence of oral tongue cancer among younger population (<50yrs); many of who lack the typical 20 

associated risk factors of alcohol and/or tobacco exposure. In order to carry out an ensemble 21 

learning and prediction method with multiple parameters classifying survival, we generated data, on 22 

somatic mutations in genes from exome sequencing, immediate upstream and downstream flanking 23 

nucleotides of the somatic mutations, DNA methylation, loss of heterozygosity (LOH), copy 24 

number variations (CNV), gene expression, significant pathways altered and Human Papilloma 25 

Virus (HPV) infection, from 50 OTSCC patients. Results of our analysis identified somatic 26 

mutations in NOTCH2 and/or TP53, and/or LOH in 11p to associate with better disease free 27 

survival in HPV positive patients (P = 0.0254) and not in HPV negative patients (P = 0.414). We 28 

validated the latter in patients without HPV infection from TCGA cohort (P = 0.369, N = 17 for 29 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 7, 2015. ; https://doi.org/10.1101/033829doi: bioRxiv preprint 

https://doi.org/10.1101/033829
http://creativecommons.org/licenses/by-nc/4.0/


 2 

TCGA_ OralTongue; P = 0.472, N = 67 for all TCGA_HNSCC patients). Integrated analysis, 30 

including pathways, linked survival with apoptosis and aberrant methylation in SLC38A8 (P = 31 

0.0129).  32 

 33 

Author Summary 34 

Oral tongue squamous cell carcinomas (OTSCC) are a homogenous group of head and neck 35 

tumors characterized with aggressive behavior among younger patients. In this report, we have 36 

analysed genetic variants, expression and DNA methylation changes across 50 oral tongue primary 37 

tumors along with the Human Papilloma Virus (HPV) infection status in those tumors to identify 38 

factors associated with disease free survival. Our data identified somatic mutations in the genes 39 

NOTCH2, TP53 and LOH in 11p, to be significantly associated with better disease free survival in 40 

HPV positive patients (P = 0.0254), but not in HPV negative patients (P = 0.414). We validated the 41 

latter using patients without HPV infection from TCGA (P = 0.369, N = 17 for 42 

TCGA_OralTongue; P = 0.472, N = 67 for all TCGA_HNSCC patients). Integrated analysis linked 43 

survival with apoptosis and aberrant methylation in SLC38A8 (P = 0.0129).  44 

 45 

Introduction 46 

Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of malignancies 47 

with different incidences, mortalities and prognosis for different subsites and are the sixth leading 48 

cause of cancer worldwide [1]. In India, they account for almost 30% of all cancer cases [2]. Studies 49 

on molecular biology of HNSCC in the past 5yrs have largely been concentrated on cataloging 50 

various genetic changes in many cancer types using high-throughput sequencing assays and 51 

computational methods [3-7]. Unlike other oral cavity subsites, squamous cell carcinomas of 52 

oral/anterior tongue tend to be associated more with younger patients [8, 9], early spread to lymph 53 

nodes [8] and a higher regional failure compared to gingivo-buccal cases [10]. 54 

 55 
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Cancer progression and survival are traditionally linked to epidemiological factors, 56 

mutations and expression changes in genes,  selected primarily on a frequency-based approach that 57 

often misses out genuine but low frequency occurrences. Methods based on machine learning have 58 

been employed in the past to study effects of genetic variations in diseases [11]. These methods 59 

have advantages over parametric methods like logistic regression, which depend on strict and 60 

multiple assumptions about the functional form of the model and the effects being modeled, and 61 

have limitations in detecting non-linear patterns of interaction [11, 12]. Random forests (RF) by 62 

Leo Breiman [13] is a popular machine learning tool for predictive analyses using non-parametric 63 

observations, especially when the number of features exceed the number of samples [14]. It has a 64 

wide variety of applications in genetic studies [15-17]. However, it is important to estimate errors in 65 

such tests, and several methods have been described for estimating errors involving non-parametric 66 

observations. The popular ones are leave-one-out cross-validation and bootstrapping methods. 67 

Bootstrapping methods are generally used to reduce the variability in non-parametric estimators and 68 

estimate error rates. The leave-one-out cross-validation method has a high variance and estimates 69 

errors with an upward bias [18-20]. One of the popular bootstrapping methods, called the .632 70 

method [18], results in a downward bias [19, 20]. This method and other alternatives, thereof, are 71 

especially useful for unknown sample sizes and distributions, and are reported to perform better 72 

than cross-validation [19-21]. Variable importance is further estimated by permuting values for 73 

each feature and computing the average difference in out-of-bag (OOB) error rate before and after 74 

the permutation over all trees, normalized by the standard deviation of these differences. Features 75 

with larger values for this importance score are ranked as more important than others. The RF 76 

algorithm copes well even with highly correlated features and other complex interaction structures, 77 

and is able to capture non-linear association patterns between predictors and response [13]. 78 

 79 

Neighboring nucleotide biases have been reported in previous studies influencing a wide 80 

variety of effects including, mutations in mice and human [22], rates and patterns of spontaneous 81 
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mutations in primates [23], substitutions in human genes [24], and MNU-induced mutations in rice 82 

[25]. Neighborhood properties of mutations are also linked to a wide range of biological properties 83 

namely, temperature-sensitive mutations [26], regulation of gene expression in human and other 84 

primates [27, 28], DNA repair and DNA flanking the region of triplet expansion [29].  85 

Neighborhood properties of mutations was proved to be one of the triggering mechanisms in several 86 

human diseases (myotronic distrophy, Huntington's disease, Kennedy's disease and fragile X 87 

syndrome [29], and cancer [30]). Hotspots of mutations along with changes in methylation, LOH, 88 

CNV and gene expression, present across the genome were discovered in different subsites of head 89 

and neck cancer [3-7]. Previous studies link sequence context, such as guanine holes, to pathogenic 90 

germline mutations as well as  cancer-specific somatic mutations [30]. In fact, specific mutation 91 

signatures with the context of certain flanking residues have been identified for some cancers [31, 92 

32]. In the study described here, we used in house generated data (OTSCC_MIECL [33] and 93 

OTSCC_Methylation (NM Krishnan et al. 2015b (unpublished)), on somatic mutations and indels 94 

from exome sequencing (N = 50) along with data on both 5’ and 3’ flanking nucleotides of the 95 

somatic mutations, DNA hypo- and hyper-methylations, LOH, cancer-related pathways specifically 96 

altered in tumors along with the data on Human Papilloma Virus (HPV) infection to perform RF 97 

individually or in combinations to identify a minimal signature of survival. We used a modified 98 

version of .632 bootstrapping method, called .632+ method that corrects the upward bias in the 99 

leave-one-out and the downward bias in the original .632 bootstrap method [18]. The method used 100 

here, the tree learning algorithm, repeatedly bootstraps random subsets of features and samples, and 101 

fits a random forest of trees to these, while estimating the average OOB error over the forest. We 102 

performed Kaplan-Meier survival probability analyses using predictive parameters from the random 103 

forest analyses, and found a combination of molecular markers that are associated with Disease-104 

Free Survival (DFS) among the HPV positive patients, but not in others. We validated these 105 

findings using data from The Cancer Genome Atlas (TCGA) project (N = 90, oral tongue only, 106 

Dataset: TCGA_OralTongue; and N = 380 tumors from all subsites of head and neck, Dataset: 107 
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TCGA_HNSCC).  108 

 109 

Results 110 

We collected tumor and blood/adjacent normal samples from 50 patients diagnosed with 111 

OTSCC with informed consent as described previously [33]. In our study, 68% of the patients were 112 

alive at the time of analysis and recurrence at primary site was observed in 16% of the patients. 113 

Data on survival and recurrence were collected by patient follow up from the date of surgery up to 114 

91 months (the longest duration of survival). In the study group, the median disease-free survival 115 

(DFS) was 15 months. HPV subtypes, 16 and 18, infections were detected in 23 out of 50 patients. 116 

We divided all the patients into three groups based on the duration of their DFS, group one with 117 

DFS less than a year (low, in 38% of patients), group two with DFS between 1-2yrs (med, in 32% 118 

of patients) and group three with DFS of >2yrs (high, in 30% of patients). Patients (N = 2) were 119 

excluded that did not satisfy the study inclusion criteria. Details on the patients with DFS in 120 

months, DFS categories, clinical and treatment details and HPV infection, are provided in 121 

Supplementary Table 1. We tested the efficiency of predicting survival in the oral tongue squamous 122 

cell carcinoma (OTSCC) patients using variable elimination with RF approach, with either one of 123 

the following parameters: somatic mutation frequencies within six categories, one and three 124 

immediate 5’ and/or 3’ flanking nucleotides of the somatic mutations, somatic mutations in gene 125 

bodies, genes affected by somatic mutations, DNA hypo- and hyper-methylations, chromosome 126 

arm-level LOH, pathways modified and HPV infection, or in combination (all). For all iterations of 127 

all RF analyses, we confirmed that the rankings of variable importances remained highly correlated 128 

before and after correcting for multiple hypotheses comparisons using pre- and post- Benjamin-129 

Hochberg false discovery rate (FDR)-corrected P values (Supplementary Table 2). 130 

 131 

The survival prediction score in our analyses is composed of four components: repC – 132 

number of repeatability (confidence) classes, repE – confidence scores of predictors, Sen – 133 
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sensitivity (number of accurate predictions) and Spec – specificity (classes of accurate predictors). 134 

We penalized the score based on repC, and reward for the latter three components. 135 

 136 

We found patient-specific survival signatures for various predictor categories 137 

(Supplementary Table 3), which included candidate markers known to be associated with survival, 138 

like TP53 and NOTCH2 genes, and LOH in 11p [34-36]. We conducted a number of single-139 

parameter analyses and a combined-parameter one, which included the top scoring predictors from 140 

all the single-parameter analyses.  141 

 142 

Non-parametric tests predicted the overall prediction score to be highest for the somatic 143 

mutation predictor for all DFS categories (Fig. 1A). In the low DFS category, the 3’ nucleotide 144 

flanks ranked second in predicting poor survival with a high score. Overall survival prediction score 145 

was also highest with the mutation category predictor for low and high DFS categories, except for 146 

the med category, where the somatic mutations ranked first (Supplementary Fig. 1). Following 147 

overall analysis, we compared the individual components of the prediction score, and found repE to 148 

contribute largely to the overall score for somatic mutation category frequencies (Fig. 1B).  149 

 150 

Sensitivity was highest for combined, methylation and pathways, while the former two also 151 

had the largest specificity. A similar trend was observed with overall survival as well 152 

(Supplementary Fig. 1). We estimated the error in survival prediction using the 0.632+ 153 

bootstrapping method [18]. The errors varied across the low, med and high categories of disease-154 

free survival (Supplementary Fig. 2A). The median error was low (<0.3) for the low category for all 155 

single-parameter analyses, but was relatively higher (~0.75) for the combined-parameter analyses. 156 

The med and high categories had the least median errors (~0.25) for the combined-parameter 157 

analyses.  158 

 159 
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In order to test the specificity of the survival predictors in the OTSCC study, we performed 160 

cross-validation using somatic mutation data from three different cancer types (TCGA), either 161 

individually or combined. These cancer types were selected based on certain inclusion criteria (see 162 

Methods). We found that the survival predictors identified were specific to OTSCC cancer type, 163 

against any of the three cancer types, tested individually or pooled (Supplementary Fig. 2B). 164 

 165 

For Kaplan-Meier cumulative survival probability analyses on combinations of parameters, 166 

we picked TP53 and NOTCH2, and 11p, from gene- and LOH-based single-parameter analysis, 167 

respectively. We then assessed survival probability in HPV-background, both in OTSCC and 168 

TCGA_HNSCC datasets. However, due to the lack of sufficient number of HPV-positive samples 169 

in any of the TCGA_HNSCC subsites, we could only perform survival probability analyses using 170 

the OTSCC dataset. The number of samples used for survival probability analyses for various 171 

datasets and the exact locations of TP53 and NOTCH2 mutations in the internal OTSCC dataset are 172 

provided in Supplementary Table 4. 173 

 174 

We observed that HPV-positive OTSCC patients, who harbor at least one somatic mutation 175 

either in TP53 or NOTCH2, or LOH in 11p, have better disease-free survival (P =  0.0254; Fig. 2A). 176 

The same is not observed, however, for HPV-negative OTSCC patients (P = 0.414; Fig. 2B). We 177 

also found that presence of HPV DNA in tumors or somatic mutations/changes in these genes alone 178 

does not distinguish disease-free survival (P = 0.302; Fig. 2C & P = 0.117; Fig. 2D) in OTSCC. 179 

 180 

The TCGA_OralTongue dataset had only one HPV-positive sample (out of 90, where DFS 181 

data are available), which harbored a TP53 mutation but was wild type for NOTCH2 and 11p, and 182 

among all other TCGA_HNSCC HPV-positive samples (N = 37), 13 patient tumors harbor 183 

mutations in TP53 and/or NOTCH2 and/or LOH in 11p. However, since these samples were 184 

sparsely distributed across multiple sub-sites with different biology and HPV infection rates known 185 
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to affect survival to varying degrees (for example, a clear link between HPV and survival in 186 

oropharyngeal tumors verses no clear data on oral cavity tumors), we did not pool all the HPV-187 

positive patients from the TCGA cohort for analyses. We, however, validated our findings in 188 

patients without HPV infection using three other sets of samples from TCGA (P = 0.369, 0.723 and 189 

0.472; Fig. 3A-C) with different background of somatic mutations in TP53 and/or NOTCH2 and/or 190 

LOH in 11p. The first one where we used TCGA samples was the data from the oral tongue subsites 191 

only (TCGA_OralTongue, N = 17), the second from all head and neck subsites other than in oral 192 

tongue (TCGA_HNSCC without OralTongue, N = 50) and the third dataset had all subsites of head 193 

and neck (TCGA_HNSCC, N = 67), where all sample sets were HPV negative. The same 194 

combinations of markers were therefore, not significant survival predictors in patients that were 195 

HPV negative in all different patient sets. It must be noted that we pooled samples across subsites 196 

(TCGA_HNSCC without OralTongue and TCGA_HNSCC), since there was no HPV infection in 197 

these cases. 198 

  199 

In order to determine a minimal predictor set for survival in OTSCC patients, we performed 200 

integrated analysis with all predictors in OTSCC patients. We included 120 genes bearing somatic 201 

mutations and indels, apoptosis pathway, four methylation probes from whole-genome 450K array 202 

(Datasets: OTSCC_MIECL & OTSCC_Methylation), two flanking nucleotides categories, C(T-203 

>C)G and T(T->C)G, as top predictors for survival analysis obtained from individual parameter 204 

analysis (Supplementary Table 3). For further detailed Kaplan-Meier cumulative survival 205 

probability analyses on combinations of parameters, in addition to methylation in SLC38A8 and 206 

nucleotide flanks, we picked TP53 and NOTCH2 from the gene-based survival prediction analyses, 207 

the former also affecting the apoptosis pathway, along with LOH in the 11p arm, the highest repE-208 

scoring single-parameter analyses and also a known correlate of survival. As shown in Fig. 4, 209 

apoptosis pathway, CpG island methylation of the SLC38A8, somatic mutations in TP53, NOTCH2 210 

and/or LOH in 11p, forms a minimal predictor for survival in HPV infected OTSCC patients (P = 211 
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0.0129; Fig. 4A), but not in patients not infected with HPV (P = 0.772; Fig. 4B). We could not 212 

validate the results from the combined parameter analyses with the TCGA data, as we did not have 213 

both the whole-genome 450K DNA methylation data and raw sequence files to extract the flanking 214 

nucleotide information for the same tumors. 215 

 216 

 Out of the genes and LOH picked from our single parameter RF analysis, we found TP53, 217 

NOTCH2, and LOH in 11p, along with apoptosis and methylation in SLC38A8, as a significant 218 

minimal signature of survival in OTSCC patients, where NOTCH2 mutations were mutually 219 

exclusive with TP53 mutations and/or LOH in 11p.  220 

 221 

Discussion 222 

 Earlier survival studies in HNSCC have linked mutations in TP53 to loss in 3p in HPV 223 

negative tumors [37] and identified the role played by mutations in the arachidonic acid metabolism 224 

pathway [38]. Currently, the role of genetic and epigenetic changes in the background of HPV 225 

infection and their role in survival in HNSCC are lacking. In HNSCC tumors, it has been indicated 226 

that HPV plays a limited role outside the oropharynx. In the current study, we investigated the 227 

contribution of multiple parameters from genome-wide studies, somatic mutations, indels, 228 

immediate flanking nucleotides of somatic mutations, genes and pathways affected by somatic 229 

mutations and indels, DNA methylation, LOH, and HPV on disease free survival in patients with 230 

oral tongue tumors using a statistical machine learning approach. Synonymous mutations have 231 

often, with some evidence, been thought to exert an effect on the function of the gene [39]. For 232 

example, a recent report reveals the possibility that many of the synonymous mutations can act as 233 

driver mutations in some cancers [40]. We therefore, included them in our analyses.  234 

 235 

Neighboring nucleotide biases have been reported in various studies previously [22-25] and 236 

were linked to a wide range of properties [26-29]. Sequence context plays an important role in 237 
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cancer [29-32]. For example, guanine holes are linked to pathogenic cancer-specific mutations [41]. 238 

In fact, cancer-type specific mutation signatures with the context of flanking residues have been 239 

identified in many cancers [42]. Therefore, we wanted to study the effect of neighboring nucleotides 240 

of somatic mutations on survival as an independent predictor, and in combinations with other 241 

parameters. In our study, the overlap between annotations from genomic locations of somatic 242 

mutations, and the genes and pathways that harbor them provides independent functional validation 243 

of the predicted locations and their neighborhood. The contribution of different parameters in three 244 

groups of patients was different. In patients with median DFS of <1yr, the contribution of somatic 245 

mutations alone was highest but in patients with median DFS >2yrs, it was both the somatic 246 

mutations and LOH that contributed near equally (Fig. 1). The overall best prediction of survival 247 

suggests that both somatic mutations and LOH are the best predictors (Fig. 2). We found that the 248 

flanking nucleotides was a contributing factor and it is possible that the effect of positional context 249 

outweighs that of functional context, looking at the lower prediction scores of gene and pathway-250 

based models in comparison to all genomic locations of somatic mutations (133 for genes, 18 for 251 

pathways and 3400 for somatic mutations; Supplementary Table 3). The relatively low error for the 252 

'low' survival category for all single-parameter analyses, and for the 'med' and high' categories for 253 

all combined-parameter analyses highlights the predictive scope of the two kinds of analyses 254 

(Supplementary Figure 2A). 255 

 256 

HPV acts through its oncoproteins E6 and E7 that bind and inactivate the cellular tumor 257 

suppressor p53 and the retinoblastoma gene product pRb respectively. The degradation of p53 is 258 

mediated through ubiquitin pathway. Although HPV has been shown as a good prognostic marker 259 

in oropharyngeal cancer, its role in oral cavity tumors is unclear. Past studies have attributed HPV 260 

status with therapeutic response and survival in oropharynx tumors [43-45]. Recently, Fakhry et al. 261 

(2014) showed that patients with oropharyngeal cancer who are p16-positive have significantly 262 

improved survival rates when compared with the patients who are p16-negative [46]. Unlike 263 
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oropharynx, data on the role of HPV in oral cavity carcinomas, including oral tongue, is less 264 

conclusive. Previous data showed that the number of patients infected with HPV is much higher in 265 

the case of oropharyngeal cancers than those with oral cavity cancers in the United States [47]. 266 

HPV prevalence in oral cavity tumors in the United States was shown to be very low (1.5%) [48] to 267 

moderate (12.5%) [46]. A recent study in Europe showed 26% of HPV prevalence in oral tongue 268 

tumors [45, 46]. Contrary to the data from the United States [48, 49] and closer to the HPV data 269 

from Europe [50], studies from India previously reported a high prevalence of HPV in oral cavity 270 

tumors, including in oral tongue (anywhere between 18-51% depending on the HPV detection assay 271 

used) [51, 52]. Although the reason(s) and importance for such a high prevalence of HPV in our 272 

geography is currently not known, the association of HPV with well-differentiated squamous cell 273 

carcinoma of oral cavity has been reported in the past [51] in contrast to the oropharyngeal tumors. 274 

In a sample size of 50, we found that 38% of the patients were p16 positive and 46% of patients 275 

were HPV positive, which is closer to the HPV data obtained earlier in Indian cohorts [51, 52]. A 276 

larger sample size and HPV assays with higher sensitivity and specificity in the future will shed 277 

more light on the prevalence of HPV in oral cavity tumors. Our results on LOH in 11p and its 278 

relationship with survival might link HPV infection in some samples as deletion of 11p was 279 

previously shown to enhance viral E6/E7 transcription and virus-mediated cellular transformation in 280 

fibroblasts [53]. In our data, we did not find any significant relationship between survival and LOH 281 

in 11p when the patients are not stratified based on HPV. It is also known that 11p harbors many 282 

putative tumor suppressor genes like CDKN1C, NUP98, SLC22A18, and WT1 [54-58]. Overall, the 283 

prognostic markers of survival in OTSCC discovered in our data (in HPV positive and negative 284 

background) and validated with the TCGA data (HPV negative background) presents a step forward 285 

in understanding the role of HPV in survival of patients with OTSCC.  286 

 287 

In our study, we found 19% of the patients that harbor somatic mutations in TP53 are HPV 288 

positive. Even if this was surprising owing to the fact that E6 blocks the function of p53 previous 289 
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HNSCC studies reported varying numbers of somatic TP53 mutations in HPV positive background 290 

(16% ICGC India [6] and 6.1% TCGA [7]). The reason behind why certain HPV +ve tumors bear 291 

mutations in TP53 is currently unknown. One possibility is that HPV-positive TP53 mutant tumors 292 

may represent a separate group of recurrent/metastatic tumors.  293 

 294 

 Given the absence of any large study involving patients with oral tongue tumors and the lack 295 

of sensitivity of current assays employed to detect HPV, we believe that our data stands unique. As 296 

studies involving large number of HPV infected patients in oral tongue are currently missing, we 297 

could not validate our findings with a large number of patients. Since we used only patients with 298 

confirmed HPV status in all tests involving HPV as a parameter, the effective number of patients 299 

was low in all combinations that harbored somatic mutations in TP53, and/or, in NOTCH2 and/or, 300 

LOH in 11p. This is one of the drawbacks of our current study. It is interesting to note that presence 301 

or absence of HPV infection alone does not associate with better disease free survival (Fig. 2). In 302 

the larger cohort of HNSCC patients without HPV infection, TP53, NOTCH2 and 11p do not play a 303 

role in impacting survival in head and neck tumors. These genes link with other important genes 304 

and pathways shown to be important in HNSCC and their survival (Supplementary Fig. 3). Our 305 

study does not establish the mechanistic insights on why patients with tumors, that are positive in 306 

HPV DNA and bear mutations in TP53 and/or NOTCH2, survive longer. This is especially so as it 307 

is counter-intuitive to what is known about TP53 mutations and survival. However, a detailed study 308 

on the relationship between mutations in TP53, NOTCH2 and HPV infection in HNSCC is currently 309 

lacking, as there are not many tumors described in the literature that bear mutations in TP53 and/or 310 

NOTCH2 and are positive for HPV DNA. Future studies will shed light on this. Kaplan-Meier 311 

analyses using mutation data from other NOTCH receptors (NOTCH1, NOTCH2NL and NOTCH3) 312 

did not result in a significant survival signature (Supplementary Table 1), emphasizing the 313 

importance of NOTCH2. In fact, NOTCH2 has been shown to act as a driver in HNSCC, previously 314 

(Pickering et al. 2014). Like our study, the other sequencing studies also have shown presence of 315 
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somatic mutations in NOTCH1 and NOTCH2 somatic mutations in oral cavity tumors to vary (13% 316 

and 5% in [4]; (13% and none in [5]; 16% and none in [3]; 18% and 6% in [6] and 3% and 1% in 317 

the oral tongue subsites from a larger TCGA cohort [7]. The frequency of NOTCH1 and NOTCH2 318 

non-synonymous mutations in our study is (4% each) is very similar to the oral cavity tumors in 319 

some of the above studies. In our study, we used both synonymous and non-synonymous somatic 320 

mutations for NOTCH1 and NOTCH2. When we did similar analyses with other NOTCH receptors 321 

using TCGA data, the role of NOTCH2 becomes even clear for this cohort (Supplementary Table 322 

1). 323 

 324 

Methods 325 

Informed consent and Ethics approval 326 

Informed consent was obtained voluntarily from each patient enrolled in the study and ethics 327 

approval was obtained from the Institutional Ethics Committees of the Mazumdar Shaw Medical 328 

Centre (IRB:NHH/MEC-CL/2014/197) as described elsewhere [33]. 329 

 330 

Patient samples used in the study 331 

Details of the blood, matched normal and tumor specimens collected and used in the study are 332 

described elsewhere[33]. Only those patients with histologically confirmed squamous cell 333 

carcinoma that had at least 70% tumor cells in the specimen were recruited for the study. Fifty 334 

treatment-naïve patients who underwent staging according to AJCC criteria, curative intent 335 

treatment as per NCCN guidelines involving surgery with or without post-operative adjuvant 336 

radiation or chemo-radiation at the Mazumdar Shaw Cancer Centre were accrued for the study. 337 

Post-treatment surveillance was carried out by clinical and radiographic examinations as per the 338 

NCCN guidelines. DFS was estimated as the maximum follow-up period during which a patient 339 

remained free of the disease after treatment.  340 

 341 
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Exome sequencing, whole-genome SNP microarray and methylation array 342 

We generated data on somatic mutations and flanking nucleotides from exome sequencing, 343 

DNA methylation using Illumina 450K microarrays, LOH and copy number variations using 344 

Illumina Omni whole-genome 2.5million SNP microarrays from patients (N = 50) with OTSCC to 345 

discover signature of survival. Details on cataloguing these variants and the computational pipeline 346 

used for discovery of variants are described elsewhere [33]. Somatic variants were narrowed down 347 

further to contain only those, which have no read coverage in the matched normal. These somatic 348 

variants contained synonymous and non-synonymous mutations, frame-shifted and in frame 349 

insertions and deletions. The pre-processed somatic variants for various cancer projects along with 350 

the survival information for each patient were used for building models for survival prediction using 351 

varSelRF, an R Bioconductor package encoding variable selection from random forests. Two out of 352 

fifty patients were not included in further analyses, as they did not pass the study inclusion criteria. 353 

 354 

Feature selection with flanking nucleotides around somatic mutations  355 

We calculated somatic mutation frequencies after classifying them into six mutation categories, 356 

and their +/-1 and +/-3 nucleotide flanking sequence neighborhood (Supplementary Table 3). For 357 

our study, we have used both the immediate single neighboring nucleotide (+/-1) and three 358 

neighboring nucleotides (+/-3) of the somatic mutations. The input dataset for the flank analyses is 359 

a set of well-annotated and filtered somatic mutations for OTSCC. We classified mutations into six 360 

categories, namely, C->A, C->T, C->G, T->A, T->C and T->G, which would also respectively, 361 

encompass the corresponding mutations on the complementary strand, namely, G->T, G->A, G->C, 362 

A->T, A->G and A->C. There are 16 possibilities of 1 nucleotide flanking either sides of a somatic 363 

mutation, for a given mutation category. For e.g., A.(C->A).A, A.(C->A).C,...,T.(C->A).T. In this 364 

manner, we extracted neighboring flanking nucleotide information for the entire OTSCC mutation 365 

data and developed models for survival prediction containing 6 categories, and 96 and 24,576 flanks 366 

(both at +/-1 and +/-3 flanking nucleotides of the somatic mutations) that define immediate 367 
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neighborhood of the somatic mutations, on the basis of number of mutations falling within one of 368 

the 6 mutation categories, flanked by one and three nucleotides, respectively, on either end. Somatic 369 

indels were not included in the flank analyses, due to the variable nature of these events posing a 370 

difficulty in determining a contextual neighborhood. 371 

 372 

Other random forest models for feature selection 373 

In addition, we validated the results by building random forest models based on the actual 374 

mutations including their genomic location information, their gene and pathway annotations, arm-375 

level LOHs and probe-wise methylation differences. In all thus, we had eight random forest models 376 

for variable selection. In the somatic mutations, genes and pathways models, we restricted the 377 

somatic mutations to only those that have gene and pathway annotations and performed a set of 378 

analyses where we did not restrict it to the gene and pathway information, for comparison. For 379 

annotation, mutations were mapped using BEDTools version 2.16 on the ENSEMBL 75 database, 380 

for genes, followed by pathway mapping using GraphiteWeb.  381 

 382 

Variable selection  383 

The algorithm performs both backward elimination of variables and selection based on the 384 

importance spectrum. About 20% of the least important variables are eliminated iteratively until the 385 

current OOB error rate becomes larger than the initial OOB error rate or the OOB error rate in the 386 

previous iteration. We performed the above step with 500 iterations, each time with a different seed, 387 

and recorded for each, the accuracy of survival prediction with the minimal set of parameters, along 388 

with the set size, the actual identity of parameters. We further assessed the number of times a 389 

minimal set was repeated over the 500 repetitions. We computed a metric by multiplying the 390 

prediction accuracy (sensitivity and specificity) and repeatability, and dividing the product by the 391 

number of parameters contained within the predicted set, and reported the set with the highest value 392 

for this metric. The Bioconductor package VarSelRF was used for implementation of the variable 393 
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selection algorithm. The R commands used in our method are provided below. 394 

 library(randomForest) 395 

library(varSelRF) 396 

DS=read.table("/home/neeraja/RF/OSCC/TminN.NoFlanks.forRF",header=TRUE,na.string397 

s="NA") 398 

DS<-na.omit(DS) 399 

for (i in 1:500) { 400 

 set.seed(i) 401 

 DS.rf.vsf=varSelRF(DS[,-402 

1],DS[,1],ntree=3000,ntreeIterat=2000,vars.drop.frac=0.2,whole.range = 403 

FALSE,keep.forest = TRUE) 404 

 print(DS.rf.vsf$selected.vars) 405 

 print(predict(DS.rf.vsf$rf.model,subset(DS[,-1],select=DS.rf.vsf$selected.vars))) 406 

 } 407 

For all iterations of all random forest analyses, all the variable importance were re-computed 408 

after correction for multiple comparisons testing using Benjamin-Hochberg test, and it was 409 

confirmed that the rankings of variable importance remained highly correlated pre- and post-FDR 410 

correction of importance values. The R commands used to re-compute importance values after 411 

multiple comparisons testing for the six somatic mutation category RF analyses are provided below. 412 

 413 

# Selected variables from varSelRF analyses 414 

DS.rf.vsf$selected.vars  415 

ds.rf <- randomForest(DS[,1] ~ ., DS, ntree = 3000, norm.votes = FALSE, importance = 416 

TRUE)  417 

#Importance values before FDR correction 418 

ds.rf$importance[-1,3]  419 
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#Importance values after FDR correction 420 

p.adjust(ds.rf$importance[-1,3], method = "BH", n = 6)  421 

 422 

.632+ bootstrapping 423 

In order to understand the specificity of the best minimalistic predictors of survival, we 424 

estimated the .632+ error rate [18] over 50 bootstrap replicates, for each of our analysis. We used 425 

the varSelRFBoot function from the varSelRF Bioconductor package to perform bootstrapping. The 426 

.632+ method is described by the following formula: 427 

!"" .!"#! = !!""(.!"#) + (!"" ! − !"")
.!"#! . .!"#! . !!

!!!.!"#!!  428 

 429 

where Err(.632+), Err(.632), Err(1) and err are errors estimated by the .632+ method, the original .632 430 

method, leave-one-out bootstrap method and err represents the error. R represents a value between 431 

0 and 1. Another popular error correction method used is leave-one-out bootstrap method [21]. The 432 

.632+ method was designed to correct the upward bias in the leave-one-out and the downward bias 433 

in the original .632 bootstrap methods  434 

 435 

This method is more accurate compared to the cross validation and the original .632 436 

bootstrapping approaches [18]. It estimates how well the model performs on a subset of the original 437 

training set. The .632+ method is an improvement over the original .632 method, where roughly a 438 

random sampling of 2/3rds of the data is used as the training set and the rest as the prediction set for 439 

each bootstrap replicate, and has a relatively lower upward bias. 440 

 441 

Cross-validation using TCGA data 442 

In order to infer the specificity of survival predictors for the OTSCC study, we performed 443 

cross-validation, in addition to the .632+ bootstrapping approach using three different datasets from 444 
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TCGA (LUSC, GBM and SKCM). The cross-validation was performed while using the three 445 

datasets either individually or after combining them. These three cancer types were chosen based on 446 

the availability of DFS information, presence of approximately equal number of patients across low 447 

(<=12 mo), med (12-24 mo) and high (>=24 mo) DFS categories, and presence of a total of at least 448 

30 patient samples with whole exome sequencing data. We calculated the survival prediction score 449 

based on four components: repC – number of repeatability (confidence) classes, repE – confidence 450 

scores of predictors, Sen – sensitivity (number of accurate predictions) and Spec – specificity 451 

(classes of accurate predictors). In order to penalize against too many predictors, we arrived at the 452 

following equation: 453 

Score = Spec X Sen X repE 454 
                              repC 455 
 456 

We performed cross-validation for the random forest analyses using six mutation categories and 457 

immediate 5' and 3' single nucleotide flanks. For these categories, TCGA data possessed the exact 458 

same information as the OTSCC data. 459 

Pathway analysis 460 

Genes, post-annotation of somatic variants, were included to identify signaling pathways and 461 

cellular processes through Graphite Web (http://graphiteweb.bio.unipd.it/browse.html) using both 462 

KEGG and Reactome databases. 463 

 464 

HPV infection status 465 

We detect HPV positivity using quantitative and droplet digital PCR (ddPCR) assays as 466 

described previously[33]. All the samples were processed in triplicates. Genomic DNA from a 467 

HPV16 positive (UPCI:SCC-47) and a HPV18 positive (Hep-2) cell line were used as positive and 468 

negative controls respectively in these reactions.  469 

 470 
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Survival analysis 471 

Survival analysis was carried out using the log-rank test for patients where DFS information 472 

was available, and the survival probability distributions for both the groups were estimated using 473 

the Kaplan–Meier method and significance assessed using the log-rank test. Significance was 474 

always calculated as two-tailed P values, on association with DFS of somatic mutations in TP53 475 

and NOTCH2, LOH in 11p, mutations in apoptosis pathway, CpG island methylation of SLC38A8 476 

gene, and HPV in patients as covariates. Observations that pass 95% level of significance are 477 

reported. Performing power calculations were not feasible for any of the cohorts, and any efforts to 478 

do so resulted in a low power (1-b, where b is the probability of failing to reject the null hypothesis, 479 

given the alternative hypothesis is true). 480 

 481 

Validation with TCGA data 482 

Data with somatic mutations in TP53, NOTCH2, LOH in 11p, along with the HPV-infection 483 

status and recurrence-free survival were downloaded from the TCGA data portal and the UCSC 484 

CancerBrowser (https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/#) for OTSCC (N = 90) and 485 

for all other subsites of HNSCC (N = 290). Using the GISTIC2 threshholded estimates, single-copy 486 

deletions in all the 11p associated genes constituted an 11p LOH event. Survival analysis was 487 

carried out in various backgrounds, in the presence or absence of mutations (synonymous and non-488 

synonymous) in TP53 and/or NOTCH2, and/or LOH in 11p on both OTSCC and TCGA-_HNSCC 489 

data using cumulative probability Kaplan-Meier curves, where censoring of data was performed 490 

according to overall survival status, and significance of difference in association determined 491 

according to log-rank tests. 492 

 493 

Scripts 494 

All scripts used to deriving data and infer conclusions are provided in Supplementary Scripts. 495 

 496 
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FIGURE LEGENDS 497 

Fig. 1. Relative overall and component-wise disease-free survival prediction score plot for single- 498 

and combined-parameter analyses. 499 

A. Disease-free survival prediction scores are plotted for the all, high (>24 months), med 500 

(12-24 months) and low (< 12 months) survival categories as a stacked (%) net chart. The 501 

colors represent the single-and combined-parameter from the RF analyses: mutation 502 

categories – frequencies of filtered somatic mutations categorized into C->A, C->T, C->G, 503 

T->C, T->G & T->A, 1 flank – presence of mutations with a certain 5' and 3' flank 504 

combination, 3 flank – presence of mutations with a certain 5' and 3' tri-nucleotide flank 505 

combination, somatic mutations – presence of mutations at certain locations coding for 506 

genes, genes – genes with mutations, pathways – pathways affected by mutations, loh – 507 

chromosomal arms affected by LOH, meth – probes within dmrs, combined - combination 508 

of parameters chosen as best predictors in the single-parameter analyses. 509 

 510 

B. Individual components of disease-free survival prediction scores are plotted for all, high, 511 

med and low categories as stacked (%) net chart, for all the single- and combined-parameter 512 

analyses. The components are: repC – number of repeatability (confidence) classes, repE – 513 

confidence scores of predictors, sen – sensitivity (number of accurate predictions) and spec 514 

– specificity (classes of accurate predictors) 515 

 516 

Fig. 2. Kaplan-Meier cumulative survival probability curve of combined-parameter analyses.  517 

TP53 and NOTCH2 variants and 11p LOH combinations against the wild type/non-variant 518 

background in patient samples A. with and B. without HPV infection, C. with or without 519 

HPV infection, D. TP53 and NOTCH2 variants and 11p LOH combination against the wild 520 

type/non-variant background. TP53.NOTCH2.11p (WT): a combined wild-type background 521 
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for TP53, NOTCH2 and 11p; TP53(M).NOTCH2 (M).11p(L): either with TP53 or NOTCH2 522 

mutation or mutations in both genes, or 11p LOH or in the presence of all three variants. 523 

Significance was assessed using log-rank test.  524 

 525 

Fig. 3. Kaplan-Meier cumulative survival probability curve of combined-parameter analyses 526 

predictors 527 

TP53 and NOTCH2 variants and 11p LOH combinations against an all three wild type 528 

background in patient samples without any HPV infection, in the A. TCGA_OralTongue, B. 529 

TCGA_HNSCC without OralTongue and C. TCGA_HNSCC datasets. 530 

 531 

Fig. 4. Kaplan-Meier cumulative survival probability curves of individual- and combined-parameter 532 

analyses predictors. Significance was assessed using log-rank test. 533 

TP53 and NOTCH2 variants, 11p LOH, SLC38A8 methylation and apoptosis pathway 534 

variant combinations against an all three wild type control, in OTSCC patients A. with and 535 

B. without HPV infection. (SLC38A8.Apoptosis.TP53.NOTCH2.11p)WT: a combined wild-536 

type background for SLC38A8, Apoptosis pathway, TP53, NOTCH2 and 11p; 537 

(SLC38A8)Me Apoptosis(M) (TP53)M (NOTCH2)M (11p)L: either one or more of them 538 

are perturbed. 539 

SUPPLEMENTARY FILE LEGENDS 540 

The supplementary figures and tables can be downloaded from figshare 541 

(http://figshare.com/articles/Survival_Additional_files/1619750). 542 

Supplementary Table 1: Calculated P values of different combinations of parameters used in 543 

Kaplan-Meier analysis and patient details used in the current study. N1 and N2 indicate the 544 

sample sizes for the two test conditions being compared with respect to differences in 545 
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association with disease-free survival and P (P-value) indicates signficance as assessed by a 546 

two-tailed log-rank test. Observations with N1 <= 5 and/or N2 <= 5 are excluded from 547 

significance assessment. Test conditions with P <= 0.05 are indicated in bold. Figure numbers 548 

are indicated for the observations used for plotting. Tab 1 contains OTSCC data. Tab 2 contains 549 

all TCGA HNSC data. Tab 3 contains patient details used in the OTSCC study. 550 

Supplementary Table 2: Correlation between rankings of pre- and post-FDR corrected variable 551 

importances 552 

Variable importances were ranked before and after FDR correction using Benjamin-Hochberg test 553 

for multiple hypotheses testing. This was done for all random forest iterations yielding the best 554 

survival prediction scores.  555 

Supplementary Table 3: Patient-wise best scoring predictors of disease-free survival from single- 556 

and combined-parameter RF analyses 557 

Supplementary Table 4: Details of the various cohorts used in Kaplan-Meier survival probability 558 

analyses and the locations and amino acids changes in p53 and Notch2 in OTSCC cohort used 559 

in the analyses. 560 

Supplementary Fig. 1: Relative A. all and B. component-wise overall survival prediction score plot 561 

for single- and combined-parameter analyses 562 

A. Overall survival prediction scores are plotted for the all, high (>24 months), med (12-24 563 

months) and low (< 12 months) categories as a stacked (%) net chart. The colors represent the 564 

single-and combined-parameter random forest analyses: mutation categories – frequencies of 565 

somatic depth-filtered mutations categorized into C->A, C->T, C->G, T->C, T->G & T->A, 1 566 

flank – presence of mutations with a certain 5' and 3' flank combination, 3 flank – presence of 567 

mutations with a certain 5' and 3' tri-nucleotide flank combination, somatic mutations – 568 
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presence of mutations at certain locations coding for genes, genes – genes with mutations, 569 

pathways – pathways affected by mutations, LOH – chromosomal arms affected by LOH, meth 570 

– probes within dmrs, combined - combination of parameters chosen as best predictors in the 571 

single-parameter analyses. 572 

 573 

B. Individual components of overall survival prediction scores are plotted for all, high, med 574 

 and low categories as stacked (%) net chart, for all the single- and combined-parameter 575 

 analyses. The components are: repC – number of repeatability (confidence) classes, repE – 576 

 confidence scores of predictors, sen – sensitivity (number of accurate predictions) and spec – 577 

 specificity (classes of accurate predictors) 578 

 579 

Supplementary Fig. 2: Performance evaluation of the RF analyses using A. .632+ 580 

bootstrapping. .632+ bootstrapping was performed for all iterations of single- and combined-581 

parameter RF runs. The errors were obtained was for all, low, med and high categories of 582 

disease-free survival and plotted as box-and-whisker plots using R ggplot (see Supplementary 583 

Scripts). B. Performance evaluation of the RF analyses using cross-validation. Cross validation 584 

was performed using the OTSCC  mutation categories (1) and 1 flank (2) data as training sets 585 

and similar data from three cancer types, individually, namely, LUSC, GBM and SKCM from 586 

TCGA, or all combined, as the prediction sets.  Individual components of DFS prediction 587 

scores are plotted for all, high, med and low categories as stacked (%) net chart. The 588 

components are: repC – number of repeatability (confidence) classes, repE – confidence scores 589 

of predictors, sen – sensitivity (number of accurate predictions) and spec – specificity (classes 590 

of accurate predictors). 591 

Supplementary Fig. 3: Pathway mapping with interactions of key predictors of disease free survival 592 

in OTSCC. 593 
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Supplementary Scripts: Scripts used to deriving data and infer conclusions. 594 
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