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Abstract

Germline copy number variants (CNVs) are known to affect a large portion of the human
genome and have been implicated in many diseases. Although whole-genome sequencing can
help identify CNVs, existing analytical methods suffer from limited sensitivity and specificity.
Here we show that this is in large part due to the non-uniformity of read coverage, even after
intra-sample normalization, and that this is exacerbated in regions of low-mappability. To
improve on this, we propose PopSV, an analytical method that uses multiple samples to control
for technical variation and enables the robust detection of CNVs. We show that PopSV is able to
detect up to 2.7 times more variants compared to previous methods, with an accuracy of about
90%. Applying PopSV to 640 normal and cancer whole-genome datasets, we demonstrate that
CNVs affect on average 7.4 million DNA bases in each individual, a 23% increase over previous
estimates. Notably, we find that regions of low-mappability are approximately 8 times more
likely to harbor CNVs than the rest of the genome, which contrasts with somatic CNVs that are
nearly uniformly distributed. In addition to the known enrichment in segmental duplication, we
also observe that CNVs are enriched near centromeres and telomeres, in specific types of satellite
and short tandem repeats, and in some of the most recent families of transposable elements.
Although CNVs are found to be depleted in protein-coding genes, we identify 7206 genes with
at least one exonic CNV, 682 of which harbored CNVs in low-mappability regions that would
have been missed by other methods. Our results provide the most exhaustive map of CNVs
across the human genome to date and demonstrate the broad functional impact of this type of
genetic variation including in regions of low-mappability.
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1 Introduction

Structural variants (SVs) are defined as genetic mutations affecting more than 100 base pairs and
encompasses several types of rearrangements: deletion, duplication, novel insertion, inversion and
translocation1. Deletions and duplications, which affect DNA copy number, are also collectively
known as copy number variants (CNVs). SVs arise from a broad range of mechanisms and show
a heterogeneous distribution of location and size across the genome1,2,3. In healthy individual,
SVs are estimated to cumulatively affect a higher proportion of the genome as compared to single
nucleotide polymorphisms (SNPs)4. Numerous diseases including Crohn’s Disease5, schizophre-
nia6, obesity7, epilepsy8, autism9, cancer10 and other inherited diseases11,12, harbor SVs with a
demonstrated detrimental effect13,14,15.

While cytogenetic approaches and array-based technologies have been used to identify large
SVs, whole-genome sequencing (WGS) could in theory uncover the full range of SVs both in terms
of size and type16. Numerous methods have been implemented to detect SVs from WGS data
using either paired-end information17,18, read-depth (RD) variation19,20,21, breakpoints detection
through split-read approach22 or de novo assembly23. However, the presence of technical bias
in WGS is an important challenge. Indeed, it has been shown that various features of sequencing
experiments, such as mappability24,25, GC content26 or replication timing27, have a negative impact
on the uniformity of the coverage28. Unfortunately, this variability is difficult to fully correct for
as it involves different factors, some of which are unknown, that vary from one experiment to
another. This issue particularly impairs the detection of SV with weaker signal, which is inevitable
in regions of low-mappability, for smaller SVs or in cancer samples with stromal contamination or
cell heterogeneity.

As a result, existing approaches suffer from limited sensitivity and specificity3,16, especially
in specific regions of the genome, including regions of low-complexity and low-mappability24,25.
Some methods29,30 try to model ambiguous mapping and repeat structure but address only specific
situations. Another strategy to improve the accuracy of SV detection has been to use an ensemble
approach that combines information from different methods relying on different types of reads.
Large re-sequencing projects such as the 1000 Genome Project3,31 and the Genomes of Netherlands
(GoNL) project32,33 have adopted this strategy and have successfully identified many SVs using an
extensive panel of detection methods combined with low-throughput validation. Such a strategy
increases the specificity of the calls but is less sensitive. In these studies, as in many others, repeat-
rich regions and other problematic regions are frequently removed or smoothed at some step of
the analysis, to improve the accuracy of the calls. Thus, low-mappability regions are just scarcely
covered in some of the most recent CNV catalogs31. This is unfortunate given that CNVs in such
regions have already been associated with various diseases34,35,36,12 and that these regions are also
more likely variable. Indeed, CNVs are known to be enriched in segmental duplications2, short and
long tandem repeats can be highly polymorphic37,38 and SV formation can be facilitated by repeat
templates39.

In this work, we start by showing that technical variation challenges the uniformity of coverage
assumption despite state-of-the-art intra-sample normalization. To correct for this, we propose a
new method, PopSV, an approach that relies on RD but uses a set of reference samples to control
for technical variation and detect abnormal read coverage. Our approach differs from previous
RD methods, such as RDXplorer40 or CNVnator20, that scan the genome horizontally and look
for regions that diverge from the expected global average. Even when approaches rely on a ratio
between an aberrant sample and a control, such as FREEC19 or BIC-seq41, we show that they do
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not sufficiently control for experiment-specific noise as compared to PopSV. Glusman et al. 42 go
further by normalizing the RD with pre-computed RD profiles that fit the GC-fingerprint of a
sample but this approach excludes regions with extreme RD and doesn’t integrate the variance in
the pre-computed RD profiles which is essential to robustly deal with mappability bias. PopSV is
also different from approaches such as cn.MOPS21 and Genome STRIP43 that scan simultaneously
the genome of several samples and fit a Bayesian or Gaussian mixture model in each region. Those
methods have more power to detect SVs present in several samples but may miss sample-specific
events. Moreover, their basic normalization of coverage and fully parametric models forces them
to conceal a sizable portion of the genome and variants with weaker signal.

To demonstrate the utility of PopSV in characterizing CNVs across the genome, we apply the
method to 640 WGS individuals from three human cohorts: a twin study with 45 individuals44, a
renal cell carcinoma datasets with 95 tumor and control pairs45 and 500 unrelated individuals from
the GoNL dataset32. Using this data we compare the performance of PopSV with existing CNV
detection methods and validate the quality of the predictions. We also characterize the patterns of
CNVs across the human genome and show that CNVs are enriched in regions of low-mappability
and in different classes of repeats. Finally, we look at the functional significance of these structural
variants and show that CNVs overlap thousands of genes, with hundreds of them hit by CNVs
associated with regions of low-mappability.

2 Results

Intra-sample normalization does not remove coverage biases It is usually assumed that
after correction for known biases such as GC content26 and mappability24,25, sequencing reads in
a WGS experiment are uniformly distributed across the genome. To test this hypothesis, we first
filtered and normalized the RD in the normal samples of the renal cancer dataset, following standard
techniques. We computed the RD as the number of properly mapped read in non-overlapping
genomic windows (bins) of size 5 kilo bases (Kb). Read counts in the bins were corrected for
GC-bias and, to be conservative in this initial analysis, regions with extreme read coverage were
removed (Methods). Bin counts were then quantile normalized to obtain the same distribution for
all samples (Fig. S1). Unexpectedly, and in contrast to simulated datasets, the inter-sample mean
coverage in each bin was observed to vary from one genomic region to the other, highlighting the
presence of additional biases (Fig. 1a). Supporting this observation, the bin coverage variance
across samples was lower than expected and also varied between genomic regions (Fig. S2). Such
region-specific bias is overlooked when global estimates and genome-scanning methods are used to
detect coverage differences. To further investigate this bias, we computed the proportion of the
genome where a given sample had either the highest or the lowest coverage of all samples. Some
samples looked more affected by this bias than others, as they consistently showed the highest,
or the lowest, coverage across large portions of the genome (Fig. 1b). Similar patterns were
also observed in the other two cohorts (Methods and Fig. S3 and S4). In short, we observed
significant coverage biases even after intra-sample normalization and when focusing on the least
problematic regions of the genome. Not surprisingly, this effect was even stronger when the whole
genome was being evaluated (Fig. S5). This artificial variation has implications for CNV detection
approaches that assume a uniform distribution of the RD technical variation across the genome or
across samples19,20,41. First, the rate of false positives will be higher as the coverage will artificially
fluctuate. Moreover, this experimental noise will confuse the detection of weaker signal, e.g. in
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Figure 1: Coverage bias in whole-genome sequencing and the PopSV approach. a)

Distribution of the bin inter-sample mean coverage (red) and null distribution (blue: bins shuffled, green:

simulated normal distribution). b) Proportion of the genome in which a given sample (x-axis) has the

highest (red) or lowest (blue) RD. In the absence of bias all samples should be the most extreme at the same

frequency (dotted horizontal line). c) PopSV approach. First the genome is fragmented and reads mapping

in each bin are counted for each sample and GC corrected (1). Next, coverage of the sample is normalized (2)

and each bin is tested by computing a Z-score (3), estimating p-values (4) and identifying abnormal regions

(5). d) The line and points represent the coverage of one sample with a duplication (highlighted in yellow);

the violin plots represent the distribution of the coverage in the reference samples.
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low-mappability regions, for smaller CNVs or in cancer samples with stromal contamination or cell
heterogeneity.

A population-based normalization and CNV detection method The main idea behind
PopSV is to assess whether the coverage observed in a given location of the genome diverges sig-
nificantly from the coverage observed in a set of reference samples. In PopSV, the genome is first
segmented into bins and RD is computed for each sample as the number of reads with proper
mapping in each bin. In a typical design, the genome is segmented in non-overlapping consecu-
tive windows of equal size, but custom designs could also be used. After normalization, the value
observed in each bin is compared to the values observed in the reference samples and a Z-score is
calculated (Fig. 1c, 1d and Methods). False Discovery Rate (FDR) is estimated based on these
Z-score distributions and a bin is marked as abnormal based on a user-defined FDR threshold. Con-
secutive or nearby abnormal bins are merged and considered as one variant. Other segmentation
approaches, such as the circular binary segmentation can also be used. The normalization step is
critical here since we have shown that simple approaches will fail to give acceptable normalized RD
scores (Fig. 1b). Moreover, with global median/variance adjustment or quantile normalization, the
remaining subtle experimental variation impairs the abnormal RD test (Fig. S6a). With PopSV,
we propose a new normalization procedure, which we call targeted normalization, that retrieves,
for each bin, other genomic regions with similar profile across the reference samples and uses these
regions to normalize RD (Methods). In contrast to other methods, targeted normalization shows
better distribution features (Fig. S6b). It is important to note that it is critical for the success
of this targeted normalization that the set of reference samples used is comparable to the tested
samples. We have included in PopSV a set of exploratory tools to help assess this (Methods).

Sensitivity and specificity of PopSV To demonstrate the effectiveness of PopSV, we first
applied it to the twin dataset (Methods). Using 5 Kb bins, we observe smooth normal-like Z-score
distributions and overall consistency of the bin values in the twin pairs (Fig. 2a). Applying the
same methodology to the normal/tumor cancer cohort lead to similar results and highlighted, as
expected, a large number of duplications and deletions in the tumors (Fig. S7). Encouragingly, in
regions of low-mappability, the Z-score distribution was found to be identical to the one in regions
of normal mappability (Fig. S8). Next, we estimated the copy number of each bin by dividing the
RD in a given sample by the average RD across the reference samples multiplied by two, to reflect
the fact that reference set is assumed to be diploid in each bin. We anticipate the copy number
estimate to be reliable if the detected event spans the entire bin but less accurate for smaller event
or partial signal (e.g. contamination or cell heterogeneity in cancer). The distribution of these
copy-number estimates further supported the quality of the PopSV calls, with clear peaks around
integer values (Fig. 2b). It’s important to note that, in contrast to some of the other methods21,43,
this aggregation around integer values is completely independent of the calling process which only
marked bins with abnormal RD.

To evaluate the performance of PopSV, we compared it to FREEC19 and cn.MOPS21, two popular
RD methods that can be applied to WGS datasets to identify CNVs. FREEC segments the RD
values of a sample using a LASSO-based algorithm while cn.MOPS considers simultaneously several
samples and detects copy number variation using a Poisson model and a Bayesian approach. First,
in the twin study, we measured the number of CNVs identified in each twin that were also found
in the matching twin (Methods). High frequency CNVs were removed to ensure that systematic
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Figure 2: Sensitivity, specificity and resolution of PopSV. a) Z-scores for the genomic bins

from two twins (x- y- axis). Non-zero positive or negative Z-score supports a duplication or a deletion,

respectively. b) Focusing on large events, copy numbers can be estimated accurately and segregate close to

integer values. c-d) Number (c) and proportion (d) of variants from a twin that was replicated in the other

twin. e) Samples are clustered using PopSV calls in regions of extremely low coverage and recover almost

perfectly the family structure. f) Proportion of 500 bp calls of different sizes (x-axis) overlapping a 5 Kbp

call.
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errors were not biasing our replication estimates. Using 5 Kb bins, PopSV recovered on average more
replicated CNV events per sample, 324 versus 102 and 92 for FREEC and cn.MOPS respectively,
while maintaining comparable specificity (Fig. 2c and 2d). Notably, focusing on the regions of
low mappability, we found that PopSV also outperforms the other approaches with 174 replicated
events per sample on average, while cn.MOPS and FREEC only found 70 and 19 respectively. In
those regions, PopSV had a slightly higher specificity with 96% of the calls being replicated (Fig.
2d). To explore the quality of the CNV calls further, we clustered individuals according to the CNV
calls and compared the result to the known pedigree for these samples (Methods). We found that
PopSV shows better concordance as assessed by the Rand index (Fig. S9). Even using only the
regions of extremely low coverage resulted in a clustering dendogram mimicking almost perfectly
the family relationships (Fig. 2e). Additionally, the distribution of CNV recurrence shows a clearer
peak at 3-sample for PopSV (Fig. S10), which is expected due to the aggregation of CNVs present
in both twins and one parent.

To further assess the performance of PopSV, we also tested the approach on the cancer dataset
by comparing the agreement between germline events in tumor/normal pairs in a similar way as
was done for the twin pairs. We observed comparable results with PopSV reporting on average 293
replicated CNV calls per sample while cn.MOPS and FREEC only detected 75 and 48 such events
respectively (Table S1). Once again, the specificity of the different methods was comparable at
around 88%. This was true overall as well as in low mappability regions where PopSV found twice
as many replicated calls.

Resolution and validation of the PopSV calls To evaluate the performance of PopSV at
different resolutions, we repeated the analysis of the twin dataset using 500 bp bins. With smaller
bins there is more noise and long stretches of bins of low significance might be missed. For this
reason, the 500 bp calls were combined with the 5 Kb calls (Methods). At this resolution, we
observed that PopSV still found on average 1.7 and 6.3 times more replicated calls per sample
compared to cn.MOPS and FREEC while maintaining similar specificity (Table S1). PopSV also
detected on average 1.3 and 23.2 times more replicated variants in regions of low mappability
compared to cn.MOPS and FREEC respectively, and had the highest specificity of all tested methods.
Similar results were observed with 500 bp bins in the renal cancer data set (Table S1). We also
compared the 5 Kb and the 500 bp individual calls and observed high consistency (see Methods).
Remarkably, the results suggest that PopSV could detect 75% of the events as large as half the
bin size (Fig. 2f). Additionally, we assessed the performance in each genomic bin individually
(Methods). This analysis showed that PopSV is reliable across the range of mappability, GC and
repeat content (Fig. S11), and, overall, across a larger fraction of the genome compared to FREEC
and cn.MOPS(Table S2).

Finally, some variants were experimentally validated. First, we randomly selected 20 one-copy
and two-copy deletions, among small (∼ 700 bp) and large (∼ 4 Kb) variants and visually inspected
them to design PCR primers (Methods). In total, 18 out of 20 (90%) were successfully validated,
close to our in silico estimates (Table S3). Next, we designed PCR primers for the validation of rare
deletions in low-mappability regions. For these regions we had to perform local read re-assembly
in order to better predict potential breakpoints (Methods). In this case, 11 out of the 18 (61%)
deletions in low-coverage regions were successfully validated (Table S4). We note that designing
primers in repeat-rich regions is challenging and that this might lead to an under-estimation of
the true validation rates. Additionally, we observed that the majority of the non-validated CNVs
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were predicted to be deletion smaller than 100 bp. If we focus on deletions larger than 100 bp, the
validation rate in regions of low-mappability was increased to 77% (10/13) once again very close
to our in silico estimates.

Global patterns of CNVs across the human genome Having demonstrated the sensitivity,
specificity and resolution of PopSV, we wanted to characterize the global patterns of CNVs across
the human genome. We started with an analysis of the twins and the normal samples in the renal
cancer dataset, both of which have an average sequencing depth around 40X. We will be especially
interested in looking at calls in regions of low-mappability which represents 12.6% of the human
genome (Fig. S12 and Methods).

PopSV was used to make calls using 500 bp and 5 Kb bins, which were then merged to create a
final set of variants as before. On average per genome, 7.4 Mb of the reference genome had abnormal
read coverage, 4 Mb showing an excess of reads indicating duplications and 3.4 Mb showing a lack
of reads indicating deletions (Table 1). In both datasets, the average variant size was around 4 Kb
and 70% of the variants found were smaller than 3 Kb. We compared our numbers to equivalent
CNVs detected in the recent human SV catalog from the 1000 Genomes Project31 (Methods).
In that study, we calculated that 6.0 Mb of the reference genome was found to be variable on
average in each genome (Table S5). We also notice that no variants except for a few deletions were
identified in low mappability regions in this catalog. Similarly, small duplications (< 3 Kbp) are
absent from this catalog. In contrast, the set of variants identified by PopSV included variants in
low mappability regions as well as small deletions and duplications (Table 1), explaining in part
the ∼ 23% increase. While the study from the 1000 Genomes Project31 explored a wider range of
SVs, our set of variant is likely more representative of the distribution of CNVs in a normal genome
since a broader portion of the genome could be analyzed.

Next, we applied PopSV to the 500 unrelated samples from the GoNL cohort (Table 1). Due
to a lower sequencing depth (∼13X), we used bins of size 2 Kb and 5Kb that gave the best signal
to noise ratio (Methods). Slightly fewer variants were found in these samples mainly because of
the reduced sequencing depth, which limits the detection of smaller CNVs. Nevertheless, a large
sample size helps better characterize the frequency patterns and provides a more comprehensive
map of rare CNVs. In total, across these three cohorts, 326 Mb were found to be affected by a
CNV with more duplications (325,602) detected than deletions (248,937). This contrasts with the
CNVs reported by the 1000 Genomes Projects31 that were heavily skewed towards deletions (Table
1 and Table S5), likely due to the usage of different methods to detect various types of CNVs.
The frequency distribution of deletions and duplications found using PopSV was also much more
balanced compared with the ones from Sudmant et al. 31 (Fig. S13). Of note, we observed the same
when comparing PopSV with other methods: PopSV’s frequencies are more similar between deletions
and duplications compared to FREEC (Fig. S14). As expected, both deletions and duplications
detected by cn.MOPS tend to be skewed towards more common events.

CNVs are enriched near centromeres and telomeres and in regions of low-mappability
Large CNVs have been shown to be enriched near centromeres, telomeres and assembly gaps
(CTGs)46. We were interested in exploring this observation further using the set of high reso-
lution calls from PopSV. We compared the distribution of CNVs calls made across the 3 datasets
to randomly distributed regions of similar sizes (Fig. S15 and Methods). In an average genome, we
found that 33% of the CNVs calls were within 1 Mb of a CTG, while we would have expected 11%
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by chance. To verify that these observations were not simply a consequence of the methodology
used, we also looked at the somatic CNVs (sCNVs) that we could detected in the renal dataset.
For this purpose, we extracted the variants found by PopSV in the tumor sample of an individual
but missing from its paired normal sample (Methods). As expected, somatic CNVs were found to
be significantly larger and to affect a much larger fraction of the genome (Table S6). Reassuringly,
and in contrast to germline CNVs, sCNVs were not preferentially found near CTGs (Fig. S15),
with only 14% of the sCNVs within 1 Mb of a CTG.

Notably, when looking at the genomic distribution of CNVs, we also observed a 8.2 fold-
enrichment of variants in regions of low mappability (Fig. 3a). Segmental duplications (SD), DNA
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Figure 3: CNVs in normal genomes. a) Enrichment of CNVs in different genomic classes (x-axis)

across different cohorts (colors). Bars show the fold enrichment compared to control regions. The error bar

represent 80% of the samples. b) Example of CNV likely caused by non-allelic homologous recombination

between two L1PA3 repeats. The line and points represent the coverage of one sample with a duplication

(highlighted in yellow); the violin plots represent the distribution of the coverage in the reference samples. c)

Frequency of CNVs of different sizes and overlap with coding exons. d) Example of a duplication in ZNF322

exon, located in a challenging region (low coverage).
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satellites and Short Tandem Repeats (STR) were also significantly enriched with fold-enrichment of
7.1, 7.8 and 1.2, respectively. The over-representation of CNVs in SDs has been described before2

and in a recent study47, half of the CNV base pairs were shown to overlap a SD. To investigate
the contribution of low-mappability regions beyond SDs, random control regions were selected to
have the same size distribution as the real CNVs, to have comparable overlap with SDs and to
have similar distance to CTG (Methods). Even after controling for these known enrichments, we
found that CNVs overlapped low-coverage regions twice as much as expected (Fig. S16a). This
two-fold enrichment is independent of the SD association and consistently observed in the 3 co-
horts of normal genomes. In contrast to germline CNVs, sCNVs were once again found to be more
uniformly distributed (Fig. 3a). These results suggest that the enrichments of germline CNVs near
CTGs and in regions of low-mappability are trustworthy and are unlikely the be the result of a
methodological artifact.

Various repeat families are more prone to harbor CNVs We wanted to characterize further
the distribution of germline CNVs in relation to different genomic features, including looking at
the contribution of different repeat classes. By comparing CNVs to the same control regions with
matched overlap with SD and distance to CTGs we can look for patterns that are specific to repeat
sub-families without the risk of being biased by the global enrichments. Using this approach, we
found that CNVs were still significantly enriched in satellites repeats and in short tandem repeats
(STRs) (P-value < 10−13, Fig. S16a), with fold-enrichments of 2.3 and 1.1 respectively. In contrast,
and as expected, protein-coding genes and exons were found to be significantly under-represented.

Although it is known that satellites and simple repeats DNA are more unstable48, the extent to
which CNVs are found in these regions in humans had, to our knowledge, not been systematically
explored. Satellite repeats are grouped into distinct families depending on their repeated unit
and we found that not all satellite repeats were equally likely to overlap a CNV (Fig. S16b). In
particular, Alpha satellites have the highest and most significant enrichment (P-value 5.8×10−14),
with more than 3.5 times more CNVs than in the control regions. Satellite-like Repeat 1 (SATR1)
was also enriched in CNVs. We noted that satellites tend to span completely CNVs (Fig. S17),
suggesting that satellites are likely directly involved, in contrast to having a passive role, in the
CNV formation. Short and long tandem repeats can be highly polymorphic37,38. Constrained by
read length, recent studies49,50 focused on variation of STRs smaller than 100 bp. In our analysis
we found that CNVs were significantly enriched in the largest annotated STRs (>100 bp or >400
bp, Fig. S18). STR can be grouped by motif and we further tested the largest and most frequent
families (Fig. S16c). Except for TA(/AT ) tandem repeats, we conclude that the enrichment is
driven by other STR families, most likely without specific involvement of sub-families. Here the
repeats tend to overlap just a fraction of the variant, but a clear subset of the variants are fully
covered by these tandem repeats (Fig. S17).

Finally, although transposable elements (TEs) as a whole did not show enrichment (Fig. 3a),
the Other repeat class, which corresponds to SVA repeats, was found to be significantly enriched in
the three datasets (Fig. S16d). Moreover, looking at TEs at the level of individual repeat families,
we found a number of them to be enriched including SVA D-F or L1Hs. Surprisingly, a few older
ERV families, including HERV-H that has been shown to be expressed and important in human
embryonic stem cells51,52, were also in the list of enriched TEs. Several families of older L1 repeats
(e.g. L1PA2 to L1PA5) were also enriched and often implicated in what appears to be non-allelic
homologous recombination (see examples in Fig. 3b and S19). Reassuringly, the somatic CNVs
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once again did not show any of these enrichments (Fig. S16d).

Impact of CNVs in low-mappability regions on protein-coding genes Although both
small and large CNVs were depleted in genes (Fig. 3c and Methods), 7206 protein-coding genes
were found to have an exon overlapping an event in at least one of the 640 normal genomes studied
(Table 2). Moreover, if we included the promoter regions (10 Kbp upstream of the transcription

Set CNVs
Genes with CNVs

Exon + Promoter + Intron

Germline CNVs

All CNVs 91733 7206 11341 13259

Low coverage 26888 682 1151 1977
Extremely low coverage 10010 347 465 521

STR 4286 45 286 748
Satellite 1822 2 21 33
TE 20491 164 1747 3998
STR/Sat/TE 22313 166 1760 4014

Somatic CNVs

All CNVs 331778 18121 18909 18969

Low coverage 9508 450 836 1384
Extremely low coverage 2476 173 295 328

STR 2829 39 267 662
Satellite 1423 2 24 35
TE 45205 400 3820 7137
STR/Sat/TE 46630 402 3839 7154

Table 2: Impact of CNVs on protein-coding genes. The CNVs number represents the number

of different CNVs, after collapsing CNVs with more than 50% reciprocal overlap. Repeat CNV: more than

90% of the CNV is annotated as repeat. Genes are protein-coding genes and the promoter region is defined

as the 10 Kbp region upstream of the transcription start site.

start site), at least 11341 protein-coding genes were potentially affected by at least one CNV
(Methods). Focusing on regions of low-mappability, we found 4286 different CNVs that were
completely included in regions annotated as STR. These STR-CNVs overlapped exonic regions of
45 protein-coding genes, and 286 genes when including the promoter region (Table 2). In contrast,
for CNVs included in satellite regions, only 21 genes had an exon or the promoter region overlapping
one of the 1822 Satellite-CNVs. Finally we focused on CNVs that completely spans regions of
extremely low mappability (see Methods). Even there, 347 genes were found to have an exon
overlapping such a CNVs and this number increased to 465 if we included the promoter regions.
These CNVs are distinct from larger aberrations (see Fig. 3d for example) and could easily be
missed by other approaches masking low mappability regions. Of note, we also found that 173
genes were affected by somatic exonic CNVs located within these extremely low coverage regions
(Table 2).
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3 Discussion

Why are SVs so difficult to detect in WGS data? We have answered this question by showing that
the various experimental biases cannot be corrected for using basic intra-sample normalization and
affect the uniformity of read coverage across the genome. It is important to note that the amplitude
of these biases varied from one cohort to the next and did not appear to be strictly linked to the
sequencing platform used but also to the way the samples were prepared (Fig. 1a, 1b, S3 and S4).
With PopSV, samples that were sequenced with the same technology and protocols can now be
analyzed jointly to control for these biases. When only a few samples are available this inter-sample
normalization procedure might be less efficient but we estimate that with 20 reference samples or
more PopSV will be preferable over methods working on single samples (or pairs of samples). We
note that WGS is probably one of the most straightforward next-generation sequencing (NGS)
protocol that only involves DNA extraction, shearing, sometimes amplification, and sequencing.
It is likely that other NGS experiments, such as ChIP-Seq, are also similarly affected by sample
preparation conditions and that these would also benefit from a similar inter-sample normalization
procedure.

Comparing different calling methods is not straightforward, especially when different strategies
are implemented. To begin, we compared PopSV, cn.MOPS and FREEC using the same large bin
size (5 Kb) in order to assess their ability to detect different types of signal: full versus partial signal,
single versus multiple bin support, normal versus low mappability. Next, we ran the methods with
a smaller bin size (500 bp) to compare the methods in a situation with higher background noise.
In each comparison we made sure that PopSV had similar specificity estimates compared to other
methods, in order to reliably compare the sensitivity. We concluded that PopSV was more capable
of detecting partial or single-bin signal (Fig. 2c and 2f), which is valuable to be able to observe
smaller variants or variants in more challenging regions. Even when the background noise was
significant, PopSV showed the best sensitivity and could reliably test a wider range of the genome
(Table S1 and S2). In contrast to cn.MOPS, FREEC and ensemble methodologies32,31, PopSV was
also able to detect both deletions and duplications as efficiently (Fig. S13 and S14).

A notable strength of this new approach is that it enables the analysis of CNVs across the
genome. Using PopSV on 140 normal genomes with high sequencing depth (∼40X) and 500 addi-
tional samples with medium coverage (∼13X), we found that regions of low mappability, which only
represent 12.6% of the genome, overlap with 65% of the CNVs detected. The fact that this enrich-
ment was observed for germline events and not somatic events was both reassuring and interesting
because of the implications on the selection forces at play. Having a more complete CNV cata-
log also enabled an unbiased characterization of the CNV patterns across genome and potentially
increases the power for trait-association studies. In particular, we were able for the first time to
quantify the extent to which some regions in the genome are more prone to harbor such structural
rearrangements. For example, we could describe genome-wide enrichment for different families of
DNA satellites, simple repeats and several TE families, such as SVA, L1Hs and HERV-H. Although
PopSV doesn’t characterize fully STR variation it is able to detect CNVs in large STRs, something
that cannot be done by STR detection methods using WGS. A recent analysis of an haploid human
cell line53 found a large number of novel SVs thanks to the use of long sequencing reads. Their
study highlighted the variation involving complex repetitive DNA. Although the short reads in our
study don’t allow for a full characterization, we could detect the presence of such CNVs across a
large population of normal genomes.

Because PopSV looks for abnormal read coverage in each bin independently, it does not require
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the coverage to be uniform across the genome. For this reason, a natural extension of PopSV
would be to apply it to targeted sequencing data, such as whole-exome sequencing data. In this
context, the fragmented nature of the coverage and the differences in baseline from one region to
another would seamlessly be integrated and corrected for by the set of samples used as a reference.
Actually, several methods for CNV detection from whole-exome data that use information from
other samples already exist54,55, although they do not control for the biases described above the way
PopSV does. Similarly, another logical extension of PopSV would be to apply it not only to correctly
mapped reads but also to discordant reads to detect abnormal discordant coverage. Here, any type
of discordant mapping, such as read pairs with incorrect insert size, orientation or with only one
pair mapped could be counted together or separately. Discordant reads are intrinsically difficult
to work with because they are usually ambiguous and found in regions of low-mappability. Issues
of ambiguous mapping are context-specific and are exceedingly difficult to model directly. The
advantage of working with a set of reference samples, as in the PopSV framework, is that we would
have a way to control for this variability empirically. An additional advantage of incorporating the
discordant reads in PopSV is that it would also allow for defining more precise breakpoints for the
SVs detected, including in regions of low-mappability.

In summary, we have presented a novel method that enables the systematic detection of CNVs
across the genome. Applying this method to a set of 640 WGS datasets, we were able to produce
the most exhaustive map of CNVs across the human genome, including regions that were not well
covered by the most recent CNV catalog31. We also highlighted the broad potential impact of this
type of genetic variation including in regions of low mappability. In the future, we anticipate that
population-based methods, such as PopSV, will facilitate the identification not only of CNVs but
also of other types of SVs in both normal and cancer genomes.

4 Data and code availability

The PopSV R package and documentation are available at http://jmonlong.github.io/PopSV/.
The scripts used to produce the graphs and numbers in this study have been deposited on https:

//figshare.com/s/ba79730bb87a1322480d. It also contains the necessary data to reproduce our
results. The raw sequences of the different datasets have already beed deposited by their respective
consortium (Methods).
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Abbreviation

CNV Copy-Number Variation or Copy Number Variant.

Kb Kilo base.

RD Read-Depth, also called read coverage or depth of coverage.

SV Structural Variation or Structural Variant.

WGS Whole-Genome Sequencing.
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7 Methods

7.1 Data

Twin study All patients gave informed consent in written form to participate in the Quebec
Study of Newborn Twins44. Ethic boards from the Centre de Recherche du CHUM, from the
Université Laval and from the Montreal Neurological Institute approved this study. Sequencing
was done on an Illumina HiSeq 2500 (paired-end mode, fragment length 300 bp). The reads
were aligned using a modified version of the Burrows-Wheeler Aligner (bwa version 0.6.2-r126-tpx
with threading enabled). The options were ’bwa aln -t 12 -q 5’ and ’bwa sampe -t 12’. The
aligned reads are available on the European Nucleotide Archive under ENA PRJEB8308. The 45
samples had an average sequencing depth of 40x (minimum 34x / maximum 57x).

Renal cell carcinoma WGS data from renal cell carcinoma is presented in details in the CageKid
paper45. In short, 95 pairs of normal/tumor tissues were sequenced using GAIIx and HiSeq2000
instruments. Paired-end reads of size 100 bp totaled an average sequencing depth of 54x (minimum
26x / maximum 164x). Reads were trimmed with FASTX-Toolkit and mapped per lane with BWA
backtrack to the GRCh37 reference genome. Picard was used to adjust pairs coordinates, flag du-
plicates and merged lane. Finally realignment was done with GATK. Raw sequence data have been
deposited in the European Genome-phenome Archive, under the accession code EGAS00001000083.

Genome of the Netherlands WGS data from the GoNL project is described in details in
Francioli et al. 32 . This data have been derived from different sample collections:

• The LifeLines Cohort Study, supported by the Netherlands Organization of Scientific Re-
search (NWO, grant 175.010.2007.006), the Dutch government’s Economic Structure En-
hancing Fund (FES), the Ministry of Economic Affairs, the Ministry of Education, Culture
and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Col-
laboration of Provinces (SNN), the Province of Groningen, the University Medical Center
Groningen, the University of Groningen, the Dutch Kidney Foundation and Dutch Diabetes
Research Foundation.

• The EMC Ergo Study.

• The LUMC Longevity Study, supported by the Innovation-Oriented Research Program on
Genomics (SenterNovem IGE01014 and IGE05007), the Centre for Medical Systems Biology
and the National Institute for Healthy Ageing (Grant 05040202 and 05060810).

• VU Netherlands Twin Register.

In short, samples were sequenced on an Illumina HiSeq 2000 instrument (91-bp paired-end reads,
500-bp insert size). We downloaded the aligned read sequences (BAM) for the 500 parents in the
data set. We further performed indel realignment using GATK 3.2.2, adjusted pairs coordinates
with Samtools 0.1.19, marked duplicates with Picard 1.118, and performed base recalibration (GATK
3.2.2). The average sequencing depth was 14x (minimum 9x / maximum 59x).
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Genomic annotations Gencode annotation (V19) was directly downloaded from the consortium
FTP server at ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.
annotation.gtf.gz. Other genomic annotations were downloaded from the UCSC database56

server at http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database. The file names of the
corresponding annotations are

Mappability wgEncodeCrgMapabilityAlign100mer.bw

Cytogenetic bands cytoBandIdeo.txt.gz

Centromere, telomere, assembly gap gap.txt.gz

Segmental duplication genomicSuperDups.txt.gz

Simple repeat / Short Tandem Repeats simpleRepeat.txt.gz

RepeatMasker rmsk.txt.gz

7.2 Technical variation in Read-Depth from Whole-Genome Sequencing

To investigate the bias in RD we first fragmented the genome in non-overlapping bins of 5 Kbp.
The number of properly mapped reads was used as RD measure, defined as read pairs with correct
orientation and insert size, and a mapping quality of 30 (Phred score) or more. In each sample,
GC bias was corrected by fitting a Loess model between the bin’s RD and the bin’s GC content.
Using this model, the correction factor for each bin was estimated from its GC content. Bins with
extreme coverage were identified when deviating from the median coverage by more than 3 standard
deviation. After these conventional intra-sample corrections, RD across the different samples were
combined and quantile normalized. At that point the different samples had the same global RD
distribution and no bins with extreme coverage or GC bias.

Two control RD datasets were constructed to represent our expectation when no bias is present.
One was derived from the original RD by shuffling the bins’ RD in each sample. In the second, RD
was simulated from a Normal distribution with mean and variance fitted to the real distribution.
Simulation or shuffling ensures that no region-specific or sample-specific bias remains. To investigate
region-specific bias, we computed the mean and standard deviation of the RD in each bin across
the different samples. The same was performed in the control datasets. If there is no bias, the
distribution of these estimators should be similar in the original, shuffled and simulated RD.

Next, to investigate experiment-specific bias, we retrieved which sample had the highest coverage
in each bin. Then we computed, for each sample, the proportion of the genome where it had the
highest coverage. If no bias was present, e.g. in the shuffled and simulated datasets, each sample
should have the highest coverage in 100

N % of the genome (with N the number of samples). If some
experiment are more affected by technical bias it would be more often extreme. The same analysis
was performed monitoring lowest coverage.

Finally, the same analyses were repeated with the challenging regions. Instead of excluding any
bin with an extreme coverage in a sample, we kept any bin that was extreme in at least one sample.
Hence it is the exact complement of the bins analyzed previously.

7.3 PopSV a population-based approach

Binning and coverage measure The genome is fragmented in non-overlapping consecutive bins
of fixed size. We ran two separate analysis on the three datasets. Bin sizes of 5 Kbp and 500 bp
were used on the Twin study and renal cell carcinoma. Because of its lower sequencing depth, the
500 bp run on GoNL gave only partial results. More precisely, we observed a truncated distribution
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of the copy-number estimates, with most of the 1 and 3 copy number variants missing. It means
that at this resolution many one-copy variation cannot be differentiated from background noise.
For this reason we finally ran GoNL analysis using 2 Kbp and 5 Kbp bins.

In each bin and each sample the number of reads that overlap the bin and are properly mapped
are counted to get a measure of coverage. Here proper mapping means read pairs with correct
orientation and insert size, and a mapping quality of 30 (Phred score) or more. The bin counts
were then corrected for GC bias. In each sample, a LOESS model was fitted between the bin’s
count and bin’s GC content. A normalization factor was then defined for each bin from its GC
content.

Constructing the set of reference samples In each dataset we choose the reference sam-
ples as follows: in the renal cancer dataset from the normal samples, in the Twins dataset from
all the samples, in GoNL from a subset of 200 samples (see below). For each dataset, a Princi-
pal Component Analysis (PCA) was performed across samples on the counts normalized globally
(median/variance adjusted). The resulting first two principal components are used to verify the
homogeneity of the reference samples. In the presence of extreme outliers or clear sub-groups,
a more cautious analysis is recommended. For example, outliers can stay included in the set of
reference samples keeping in mind it might harbor more false calls later. Independent analysis in
each of the identified sub-group is also a solution, especially when the same samples are to be used
as reference. Although our three datasets showed different levels of homogeneity, we didn’t need
to exclude samples or split the analysis. The effect of weak outlier samples was either corrected by
the normalization step or integrated in the population-view.

In GoNL, we decided to use only 200 of the 500 samples as reference. They were selected to
span a maximum of the space defined by the principal components. In contrast to random selection,
this ensures that weak outliers are included in the final set of reference samples, hence maximizing
the technical variation integrated in the population-view.

Moreover, the principal components were used to select one control sample from the final set
of reference samples. This sample is used in the normalization step as a baseline to normalize
other samples against. We picked the sample closest to the centroid of the reference samples in the
Principal Component space.

Normalization Although uniformity of the coverage across the genome is not required for our
approach, RD values must be comparable across samples. When a particular region of the genome
is tested, sample specific variation of technical origin must be minimized. This is done through a
normalization step.

Naive global normalization approaches like the Trimmed-Mean M(TMM) or quantile normal-
ization have been first implemented and tested. The TMM normalization robustly aligns the mean
RD value in the samples. Quantile normalization forces the RD distribution to be exactly the same
in each samples. After witnessing the presence of un-characterized sample-specific variation, we
implemented a more suited normalization.

Targeted normalization uses information across the set of reference samples to identify similar
bins across the genome and normalize their counts separately (see Fig. S20). For each bin, the
top 1000 bins with similar coverage patterns across the reference samples are used to normalize
the coverage of the bin. TMM normalization is used on these top 1000 bins to derive the correct
normalization factor for the bin to normalize. Similarity between two bins is measured using
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Pearson correlation between the counts across the reference samples. Hence the top 1000 bins are
most similar in term of relative coverage across the samples to the coverage in the bin to normalize.
If some bias is present in some samples, the top 1000 bins should also harbor this bias. Hence other
regions with similar bias patterns are used to correct for it. In this targeted approach, each genomic
region is normalized independently. The 1000 supporting bins are saved and used to normalized
new samples (e.g. case sample). Although computationally expensive it ensures that all bins are
normalized with the same effort. In contrast global normalization or even PCA-based approaches
corrects for the most common or spread bias, but a subset of regions with specific bias might not
be corrected.

In order to compare the performance of the different normalization approaches we computed
a set of quality metrics. The normalized RD will need to be suited for testing abnormal pattern
across samples: under the null hypothesis, i.e. for normal bins, the RD should be relatively normally
distributed and the samples rank should vary randomly from one bin to the other. The first metric
is the proportion of bins with non-normal RD across the samples. Shapiro test was performed
on each bin and a P-value lower than 0.01 defined non-normal RD. Then the randomness of the
sample ranks was tested by comparing the RD of each sample a region with the median across
all samples. In regions of 100 consecutive bins, we counted how many times the RD in a sample
was higher than the median across sample. If the ranks are random this value should be around
0.5. The probability under the Binomial distribution is computed for each sample and corrected
for multiple testing using Bonferroni correction. If any sample has an adjusted P-value lower than
0.05 we consider that the region has non-random ranks. The resulting QC metric is simply the
proportion of regions with non-random sample ranks. This QC is specifically testing how much
sample-specific bias remains. The remaining QC metrics look at the Z-score distribution in each
sample. The proportion of non-normal Z-scores is computed by comparing the density curves of
the Z-scores and simulated Normal Z-scores. We compute the proportion of the area under the
density curve that doesn’t overlap the Normal density curve. This estimate of the proportion of
non-normal Z-scores is computed in each sample. The final metrics are the average and maximum
across the samples.

Abnormal RD test and Z-score computation The test is based on Z-scores computed for
each bin, corrected afterward for multiple testing. The Z-score represents how different the read
count in the tested sample is from the reference samples. It is simply:

z =
BCb

t −BCb
ref

sd(BCb
ref )

where BCb
t is the bin count, i.e. the number of reads, in bin b and sample t.

Inevitably some samples are hosting common CNVs. We observed that just a couple of samples
hosting a CNVs could be enough to bias the standard deviation used in the score computation and
mask these CNVs in the coming tests. In many cases the RD signal was clearly showing several
groups of samples with proportional read counts. To improve the Z-score computation in those
regions, a simple approach was used: the samples were stringently clustered using their RD and
the group with higher number of samples was chosen as reference and used to compute the mean
and standard deviation for the Z-score computation. In practice, this clustering affects only bins
with clear clusters but would remove just a few or no samples in most situations. Furthermore, a
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median-based estimator was used for the standard deviation as it is less sensitive to outlier removal.
A trimmed mean was also preferred over normal mean for its robustness to outliers.

Significance and multiple testing correction The Z-scores for all the bins of a sample are
pooled and significance is estimated. Under the null hypothesis of normally distributed read counts,
the Z-scores should also follow a normal distribution. For multiple testing correction, the Z-score
empirical distribution is used to fit a normal and estimate the P-value and Q-value of each test.
This step is performed using fdrtool R package.

By default the null distribution fitting for P-value computation assumes that only a low pro-
portion of bins violates the null hypothesis. In aberrant genomes, e.g. in tumor samples, it is
often an unrealistic assumption. We devised a new strategy to set the proportion of the empirical
distribution, later used to estimate the null distribution variance. Here the null Z-score distribution
is assumed to be centered on 0 and its variance is estimated by trimming the tails of the empirical
distribution. To find a correct trimming factor, an iterative approach started from a low trimming
factor and increased its value until reaching a plateau for the variance estimator. Indeed, once the
plateau is reached, additional trimming doesn’t change the estimated variance because there is no
more abnormal Z-scores, only the central part of the null distribution. Samples with an important
proportion of abnormal genome, e.g. tumor samples, showed more appropriate fit.

Of note, the P-values for positive Z-scores (duplication) and negative Z-scores (deletion) are
estimated separately. Thus imbalance in the deletion to duplication ratio, or large aberration that
lead to asymmetrical Z-score distribution doesn’t affect the P-value estimation. Multiple testing
correction is performed after pooling all the P-values.

Copy number estimation and other metrics Following the significance estimation, consec-
utive bins with abnormal coverage are merged into a call. In addition to the Z-score, P-value,
Q-value and number of bins of each call, PopSV retrieves the average coverage in the reference
samples and the fold change in the sample tested.

Copy number is also estimated by dividing the coverage in a region by the average coverage
across the reference samples, multiplied by 2 (as diploidy is expected). In our bin setting, the
estimation is correct if the bin spans completely the variant. For this reason we trust the copy
number estimate for calls spanning 3 or more consecutive bins, as it is computed using the middle
bin(s) which completely span the variant. In other cases we expect the copy number estimate to
be under-estimated.

All this additional information can be used to order or retrieve high confidence calls. For
examples, several consecutive bins or a copy number estimate around an integer value increases our
confidence in a call. In our validation and analysis however, we used the entire set of calls.

The ZZ plots are computed directly from the Z-score of each bin in two different samples (e.g.
paired normal/tumor samples, twins). The global distribution of the Z-score is also compared to
the mappability estimate of the bins. At this point, we use the mappability track available from
UCSC56 (see Genomic annotations) and compute the mean level across the bin.

Coverage tracks For each run, we constructed coverage tracks based on the average coverage
in the reference samples. Bins where the reference samples had, on average, the expected coverage
were classified as expected coverage. Bins with a coverage higher or lower than 3 standard deviation
from the median were classified as high coverage or low coverage respectively. To ensure robustness,
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the standard deviation was derived from the Median Absolute Deviation. We use low coverage
regions to define low-mappability regions, as the low coverage is a result of the lower mappability
of a region.

Eventually, we also defined extremely low coverage region which have an average coverage close
to 0. These region are defined by the peaks around 0 in the distribution of average coverage (see
Figure S12). This sub-class of low coverage region is used in a few of the following analysis to
highlight the most challenging regions.

7.4 Validation and benchmark

Running FREEC and cn.MOPS FREEC was run on each sample separately, starting from the
BAM file. FREEC internally corrects the RD for GC and mappability bias. In order to compare its
performance in low-mappability region, the minimum “telocentromeric” distance was set to 0. The
remaining parameters were set to default. Of note an additional run with slightly looser parameter
(breakPointThreshold=0.6) was performed to get a larger set of calls used in some parts of the
in silico validation analysis to deal with borderline significant calls.

cn.MOPS was run on the same GC-corrected bin counts used for PopSV. All the samples are
analyzed jointly. Of note an additional run with slightly looser parameter (upperThreshold=0.32
and lowerThreshold=-0.42) was performed to get a larger set of calls used in some parts of the
in silico validation analysis to deal with borderline significant calls.

Clustering the Twins samples A distance between two samples A and B is defined as : 1 −
2 |VA∩VB |
|VA|+|VB | where VA represents the variants found in sample A, VA ∩ VB the variants found in both

A and B, and |V | the cumulative size of the variants. Hence the similarity between two samples is
represented by the amount of sequence found in both divided by the average amount of sequence
called. This distance is used for hierarchical clustering of the samples. Different linkage criteria
(average, complete and Ward) were used for the exploration. In our dendograms we used the average
linkage criterion. The same clustering was performed using only calls in regions with extremely low
coverage (reference average ≤10 reads, see Coverage track section).

Frequency peak in Twins The frequency at which a region is affected by a CNV was compared
between the different methods. In the Twins dataset, we expect a peak around frequency of 3
samples : the two twins and one parent. To compare the different methods the height of the
peak, in the frequency distribution, represent the proportion of the affected genome called at each
frequency.

Replication in twins For each twin, a CNV call was defined as replicated if also found in
the other twin. In order to avoid missing calls with borderline significance, we used slightly less
confident calls for the second twin. We removed calls present in more than 50% of the samples as
they could be systematic errors that would look replicated. Hence a replicated call is most likely
true as it is present in a minority of samples but consistently in the twin pair. The proportion of
replicated calls per sample gives an estimate of specificity. The level of sensitivity is represented
by the number of replicated calls. Even if we removed systematic calls, the most frequent calls in
the cohort are more likely to look replicated by chance, compared to rare calls. To normalize for
this effect, we use the frequency distribution to compute the number of replicated calls expected
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by chance. In practice the null concordance for each call is simulated by a Bernoulli distribution
of parameter the frequency of the call. This number of replicated calls by chance is subtracted to
the original number of replicated calls to give a adjusted measure of sensitivity. Although we don’t
know the true number of variant, this number of replicated calls is used to compare the different
methods. The same analysis is also performed using only calls located in low-mappability regions
in order to get an estimate on challenging regions. A call was considered in a low mappability
region if more than 90% of its sequence was annotated as so.

In addition to this per-sample concordance, we compute a per-region concordance estimate by
pooling all the calls from all the samples. When more than 90% of the twins called in a specific
bin have the other twin called too, the bin is classified as reliable. Then the bins can be grouped
according to their GC content or repeat content to test that the quality of the calls is stable.
This approach is particularly useful to verify that the proportion of reliable bins is similar in bin
with extreme GC content or different repeat content. Finally we compute a null distribution with
the same approach but using randomly selected samples instead of the sample called in each bin.
Dividing the proportion of reliable bin by its null equivalent gives an idea of the significance of the
observation. This fold-enrichment from the null is used to compare the different methods. Figure
S21 shows PopSV’s robustness and superior performance even in challenging regions. In addition,
we use this per-region metric to estimate the amount of the genome that can be correctly tested.
Here the genome is fragmented in 1 Mbp windows and we count how many show more reliable
regions than reliable by chance. The 1 Mbp fragmentation is used in order to avoid biases from
segmentation behavior. If the regions were used as-is, a segmentation that tend to locally call longer
segments will look largely superior even-though it calls the same variants. The fragmentation of
the genome in large windows limits this bias and allows for fair comparison between the different
methods. By counting how many 1 Mbp windows can be called correctly, we estimate how much
of the genome can be correctly tested by each method. We observed that a higher fraction of
the genome is reliably called with PopSV compared to cn.MOPS and FREEC (1.5 and 2.7 more,
respectively, Table S2 and Methods).

Replication between paired normal and tumor samples The same approach as described
previously when comparing pairs of twins was applied in the renal cancer dataset, on pairs of
normal/tumor samples. Here true germline calls should also be found in the paired tumor sample,
and replication estimates is computed using normal samples only. Again both per-sample and per-
region estimates are computed and compared between methods. Reliability is defined based on the
proportion of the normal samples with consistent calls in their paired tumor (Table S1 and S2).

Concordance between different bin sizes We compared the calls using small bins (500 bp)
and the calls using larger bins (5 Kbp). In theory, calls from the 5 Kb analysis should be supported
by many 500 bp calls. We also expect large stretches of 500 bp calls to be detected in the 5 Kb
analysis. This comparison is informative as it explores the quality of the calls, the size of detectable
events and the resolution for different bin size. First we counted how many small bin calls supported
any large bin call. These metrics were separated according to the size of the large bin call. Overall,
we find that 5 Kb calls are well supported by 500 bp calls, with only 14% of the 5 Kb bins not
supported by any 500 bp bin (Fig. S22a). To investigate large bin calls with no supporting small
bin call, we display the average Z-scores in the small bins overlapping large bin calls. This is useful
to test if the lack of support is due to lower confidence or real discordance between the different
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runs. If the Z-scores in the small bins deviates from 0 in the correct direction we conclude that
they support the large bin call. Even for these unsupported 5 Kb calls, we find that the 500 bp
bins RD was consistently enriched (or depleted) although not enough to be called with confidence
(Fig. S22b and S22c). This is expected given the higher background noise in the 500 bp analysis
that will reduce the power to call these variants. Next, we looked at the proportion of 500 bp
calls, grouped by size, that were found in the 5 Kb calls. More specifically, we grouped them by
size to verify that large enough small bin calls are present in the large bin calls. This analysis is
used to both test the sensitivity of PopSV with a particular bin size, and its resolution to variants
smaller than the bin size. Indeed this framework allow us to ask questions such as: how much of the
variants spanning only half a bin are detected ? We find that the concordance gradually increases
until the 500 bp calls reach 5 Kb in size where the concordance rises to nearly 100% (Fig. 2f). This
suggests that PopSV is able to detect approximately 75% of the events as large as half its bin size,
and almost all events larger than its bin size. As expected, only a small proportion of the small
500 bp calls overlap 5 Kb calls and they likely corresponds to fragmented larger calls. Considering
the trade-off between bin size and noise, this suggests to run PopSV with a few bin sizes to better
capture variants of different sizes.

Experimental validation Experimental validation was performed on samples from the Twin
study. The 20 variants chosen for experimental validation were randomly selected among both
one-copy and two-copy deletions. We selected both small (∼ 700 bp) and large (∼ 4 Kbp) variants
in each class. The coverage at base pair resolution was visually inspected for each deletion in
order to map the breakpoints. PCR primers were designed to target the whole deleted region.
We performed long-range PCR followed by gel electrophoresis. We then compared the size of the
amplified fragment in affected and control samples. If the affected sample showed a lower band
than a control with a predicted 2 copies, the deletion was considered validated. On the other hand
if affected sample and controls had one similar band, the deletion was considered non-validated.
Of note, the validation rate might be under-estimated because visual prediction of the breakpoint
is not always accurate and could lead to non-validation when the variant is actually present.

We then randomly selected deletions overlapping low mappability regions and detected in 6
samples or less. We chose to test rare variants because they are likely enriched in false-positives.
Hence, this batch of validation represents the most challenging regions to call and validate, and
enriched in false-positives. Here we couldn’t use the base-pair coverage to fine-tune the breakpoints
because the low-mappability blurs any clear signal. Instead we retrieved the reads (and their pairs)
mapping to the region and assembled them. With this approach we could sometimes get a better
breakpoint resolution and design PCR primers that would amplify the deleted region. In addition
to gel electrophoresis, the amplified DNA of some regions was sequenced using Sanger sequencing.

7.5 Genomic patterns of CNVs

Merging results using two different bin sizes Small bins gives better resolution for smaller
variant. Large bins gives better sensitivity. For this reason we merged the calls from the 500 bp bin
and 5 Kbp bin runs. Variant supported by both sets of calls were merged into one. To decide which
set to use to define breakpoints and other information (e.g. copy number estimate), the proportion
of overlap was used. If call(s) using small bins overlapped more than a third of a call from the
large bin run, it was considered fully recovered by the small bin call which was then used to define
breakpoints and other information. If not, the large bin run was considered more appropriate to
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define the final breakpoints and additional information. Calls unique to each run were simply added
to the final set of calls.

Computing global estimates of copy number variation In Table 1, a call in low coverage
region is completely located within extremely low coverage regions (as defined by our coverage
tracks). The amount of sequence affected in a genome is computed by merging all the variants
(e.g. if several samples are combined) and counting the number of bases in this merged set. After
the merging step, each base of the genome either overlapped a merged variant or not. Hence each
affected base is counted only once, even if it overlaps CNVs in several samples, or with large copy
number differences.

Comparing with 1000 Genomes SV set The SV catalog from Sudmant et al. 31 was down-
loaded and parsed into our preferred BED-like format. We first checked that we could reproduce the
numbers in the main SV paper. Then we retrieved the set of autosomal deletion, duplication and
CNVs. We removed deletions smaller than 300 bp as well as variants with high frequency (> 80%).
This sub-set of SV represent CNVs that could in theory be detected by PopSV’s approach. Using
this sub-set, we derived the number of variants, number of variants smaller than 3 Kbp, number
of variants in extremely low coverage regions, and amount of genome affected. These number are
computed exactly as the one presented in Table 1 for PopSV’s results, and hence can be compared.

Distance to centromere, telomere and assembly gaps The centromeres, telomeres and as-
sembly gaps (CTGs) are annotated in the gap track from UCSC56. However some chromosomes
were missing telomere annotations. We defined them as the 10 Kbp region at the ends of chromo-
somes derived from the cytogenetic bands track.

The distance from each variant to the nearest CTG was computed and represented as a cu-
mulative proportion, meaning the proportion of variants located at a distance d or closer to a
CTG.

Because this distribution changes with the size of the variants, we sampled random regions in
the genome with similar sizes and computed the same distance distribution. Thanks to this null
distribution we are able to see if variants are closer/further to CTG than we would expect by
chance.

Simulating control regions Control regions are simulated to have the same size distribution and
same overlap with specified genomic features. In practice, this was used to control for the distance
to centromere, telomeres and assembly gaps, as well as the overlap with segmental duplications.
Hence the patterns observed afterwards are not caused by the over-representation of region in
segmental duplication or their proximity to CTGs.

First, thousands of bases are randomly chosen in the genome. The distance between each base
and the genomic features is then computed. At this point, simulating a region of a specific size and
with specific overlap profile can be done by randomly choosing as center one of the bases that fit
the profile :

{b, ∀ feature f,Of (dbf −
Sr

2
) < 0}
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with Of equals 1 if the original region overlaps with feature f , -1 if not; dbf is the distance
between base b and feature f ; and Sr is the size of the original region.

Hence for each input region, a control region is selected as described and will have by construc-
tion the exact same size and overlap profile (Fig. S23) as the input.

The number of random bases is important: a low number might result in duplicated regions
in the output, but a high number is more computationally demanding. In practice, we perform
the simulation twice with 105 random bases. The second run is used to simulate again all the
duplicated regions from the first run.

Of note, to control for the distance to CTG, we select the base that fit the defined profile
and with the closest distance to CTG as desired. Although it doesn’t result in exactly the same
distribution, it gave satisfactory results (Fig. S23).

Enrichment in genomic features CNVs and control regions are overlapped with genomic
features. We then compute the proportion of regions overlapping each feature.

The proportion of overlap and the control regions are computed separately for each sample.
Hence the control region fits perfectly the profile of the variants in each sample and is not simply
a reflection of the majority of the samples. For each sample (and each feature), the enrichment
measure is the difference between the proportion in the original and control regions. A Wilcoxon
test on this measure assesses how significant is the potential deviation from 0. The fold-enrichment
is the ratio between overlap proportion between original and control regions.

Eventually, we display how much of a variant overlap a feature of interest. This distribution is
useful to get a sense if the genomic feature overlap completely the variants or just a small fraction
of them.

Somatic variant definition Somatic variants were defined as variant in a tumor samples with
no or low overlap with variant in the paired normal sample. In CageKid data, overlapping tumor
variant with the ones from the paired normal showed almost only two peaks, at 0 and 100% overlap.
A tumor variant was defined as somatic if it overlapped less than 10% of any variant in the paired
normal.

Frequency distribution The frequency at which a region is affected by a CNV is computed using
calls from the 640 samples. The copy-number change is not taken into account in the computation
and the frequency is derived for all the nucleotide that overlaps at least one CNV. The cumulative
proportion of affected genome is shown for each frequency in the frequency curve. In addition,
frequency curves are computed using small or large variants, exonic or non-exonic variants, and
deletions or duplications.

Eventually, we perform the same analysis with the set of comparable CNVs extracted from the
1000 Genomes catalog. Of note, the CNV set was down-sampled to 640 random samples in order
to give comparable frequency curves.

CNV impact Exons of protein-coding genes and promoter regions (10 Kbp upstream of the
transcription start site) were extracted from the Gencode annotation v19. We counted how many
different genes had their exons, exons + promoter and exon + promoter + introns hit by a CNV,
in a sample or in the entire dataset.
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We did the same for CNVs that overlapped more than 90% of specific classes of repeats. These
numbers are shown in table 2. For example, STR-CNVs are CNVs with more than 90% of the
region annotated as STR.
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Figure S1: Distribution of the bin counts after removal of regions of extreme coverage
and normalization. a) All samples have exactly the same RD distribution after quantile normal-
ization. We build the distribution under the null hypothesis (i.e. uniform coverage) by shuffling
the bins (b) or simulating RD from a Normal distribution (c).
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Figure S2: Variation and bias in whole-genome sequencing experiments. Distribution of

the bin inter-sample standard deviation coverage (red) and null distribution (blue: bins shuffled, green:

simulated normal distribution).

Dataset Region Bin size Number of concordant calls Fold change PopSV vs Proportion of concordant calls
PopSV FREEC cn.MOPS FREEC cn.MOPS PopSV FREEC cn.MOPS

Twin study
whole genome

5kbp 324.5 101.5 91.5 3.20 3.55 0.92 0.93 0.95
500bp-5kbp 883.0 140.0 506.5 6.31 1.74 0.89 0.92 0.88

low coverage
5kbp 173.5 19.0 69.5 9.13 2.50 0.96 0.89 0.94
500bp-5kbp 546.0 23.5 407.5 23.23 1.34 0.94 0.90 0.87

Renal cancer
whole genome

5kbp 293.0 48.0 75.0 6.10 3.91 0.88 0.80 0.88
500bp-5kbp 949.0 80.0 564.0 11.86 1.68 0.79 0.72 0.75

low coverage
5kbp 107.0 6.0 52.0 17.83 2.06 0.91 0.78 0.87
500bp-5kbp 445.0 2.0 267.0 222.50 1.67 0.83 0.62 0.72

Table S1: Concordance in different datasets, methods and bin size. The numbers are the

average across samples.

Dataset Bin size Number of reliable 1 Mb bins Fold change PopSV vs
PopSV FREEC cn.MOPS FREEC cn.MOPS

Twin study
5kbp 1260 753 353 1.67 3.57
500bp-5kbp 2034 762 1360 2.67 1.50

Renal cancer
5kbp 2107 808 484 2.61 4.35
500bp-5kbp 2699 1149 2106 2.35 1.28

Table S2: Amount of genome reliably tested in different datasets, methods and bin size.
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Figure S3: Variation and bias in whole-genome sequencing in the Twins dataset. a)

Average bin RD across the samples (red) and null distribution (blue: bins shuffled, green: simulated normal

distribution). b) Same with standard deviation. c) Proportion of the genome in which a sample (x-axis) has

the highest(red) or lowest(blue) RD. In the absence of bias all samples should be the extreme one with the

same frequency (dotted horizontal line).
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Figure S4: Variation and bias in whole-genome sequencing in the GoNL dataset. a)

Average bin RD across the samples (red) and null distribution (blue: bins shuffled, green: simulated normal

distribution). b) Same with standard deviation. c) Proportion of the genome in which a sample (x-axis) has

the highest(red) or lowest(blue) RD. In the absence of bias all samples should be the extreme one with the

same frequency (dotted horizontal line).
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Figure S5: RD bias is stronger when including all genomic regions. In renal cancer normals,

the same analysis as summarized in Fig. 1a and 1b is performed using all genomic regions, i.e. without

filtering for extreme coverage. Quantile normalization is used again to force the same RD distribution in

all samples. Of note, in a) and b) the distribution of the mean and variance across samples is shown on a

log-scale as it spans several orders of magnitude.
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Figure S6: Comparison of different normalization approaches. a) For each normalization

approach, the sample with the least normal Z-score distribution is shown. b) After targeted normalization,

a lower proportion of the genome looks problematic for the analysis. Less bins have non-normal bin counts

(top-left), the sample ranks are more random pointing at less sample-specific bias (top-right), and Z-scores

fit better a Normal distribution on average (bottom-left) and in the worst sample (bottom-right). The dotted

line is computed from simulated bin counts.

Validated Chr. Start End Class Left PCR primer Right PCR primer

V 3 6649794 6654897 large CN 0 CCTTAGTATTTCAGTGGTTTCTGTAGGTAT ATAAATATCAGTGCTCAACTTGGACTT
V 5 127407030 127411341 large CN 0 TATTCATATTAACCTATCCTCACAGAAAGA TTTTTAAGAGATTTGAACTAAAATTCCAC
V 3 5535139 5539535 large CN 0 TACTTTTTGAATTTGTAAATTTCCTTTGTA GAAATCAGAAAATCAAGATCATACTGAAG
V 1 116229111 116233162 large CN 0 GTGTTACAGAATTAGTTTTACTGAGTGGTC ATCTATAAAGAACTTTTTCCAAATAAACCA
V 1 158961082 158966958 large CN 1 GTAGAATGAGCTGTGTTATGAGATGGT ATGACTTTCTATTGTTTGAAATGTAGTGAC
V 15 26748887 26752614 large CN 1 CAATTTATCTATCAAGTTATTTCACGGTAG AGTGAGATTTCATTTTAAGCTTGTCTTC
V 6 33937344 33942846 large CN 1 ACATTGTAGCCTGATGACCTTGTTC TGTGTTCTGAGGTTTACTTTATAATCTAGG
V 12 82095501 82099389 large CN 1 ACCTATAACTAAGTGTAGCTGCTGTAACTG TCAGTAAAAATGATTACTACAGTGGAAAAT
V 5 8255604 8260914 large CN 1 TGAACATACATTCATACACACATAATACAA TACATCACTGAACAAACCTCTATAGTCATA
V 20 7398397 7403743 large CN 1 AATAAACATTCTCTATAAACCCTAAAATGG CTTTGTACCATATTTCATAAACGTAGAGTC
V 18 40053822 40057873 large CN 1 TAACTTTCTTTTCTAAAGCTTTTGGAGTAT GTGAATTAAGATTCAATGTCTCTGCTAATA
V 16 48904951 48906510 small CN 0 TCTTATTTATTTTGACAGTCCTTTACTCTG AGATAATCAACTCTTTGTTTATTCTTTCAG
V 2 241086647 241087801 small CN 0 ATCAACATTTAGCCAGTGTTGTCTTAG GTCTCTTGTGCTCTATCTTTGGCTT
V 13 110221621 110222631 small CN 0 ACCTCAGGAGAACTACTTCATACATTTCTA GTATGAAAAACACTCATGGATATCATTTCT
V 11 60571017 60572170 small CN 0 AATGTTGAAGTGTGTCTTTCTGTAATATCT GTGTTTTGTGTCGCTATTTGTTTAGTA
V 5 166402295 166404219 small CN 0 TCACTTTATTCATAACATTTCAGTGTAGAG GATCATATGCTTAAAATGCTAATGAGG
N 3 160126422 160127288 small CN 1 TAAGATACAAGAAATAGAGATAACACTGGG TCTGAACACTTATTTTAAGAAAATGAAAAA
N 17 10612674 10613775 small CN 1 AATTTAGCAGTCTCTTACATTTCTTCTACC TCTCTTCTATAAAAATAAATGGCTAAAAGC
V 10 70253713 70255155 small CN 1 AATAAAATCAAAGGTGATATTACTGACAGA ATATACTCTTTTAACTTTTGACCATTTTGG
V 8 53700635 53702050 small CN 1 TAAGGAAAATTTAGTATAGTCTGGACCTGT ATGGAAATATATCTCTGATGGGTGAC

Table S3: Experimental validation results. Location of the validated (V) and non-validated (N)

CNVs for different classes. The last two columns show the primer sequences used for PCR amplification.
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Figure S7: ZZ plots between normal and tumor pairs. In renal cancer, Z-scores from each normal

samples (x-axis) is plotted against Z-scores from its tumor samples (y-axis). This graph is an aggregation

of all normal/tumor pairs. Z-scores are winsorized at -30 and 30 for visibility purpose.

36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2016. ; https://doi.org/10.1101/034165doi: bioRxiv preprint 

https://doi.org/10.1101/034165
http://creativecommons.org/licenses/by-nc-nd/4.0/


●

●
●
●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●●●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●●●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●
●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●
●

●

●

●

●
●
●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●
●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●
●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●●●
●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●●●●

●

●

●●●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●●●●●●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●●●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●

●

●●●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●
●●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●
●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●
●●

●●●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●
●●
●●

●

●●●
●●

●●●

●
●

●

●

●

●

●●●●

●

●

●

●●
●●
●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●
●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●●
●●

●

●●

●
●

●●●●●

●●●

●●

●

●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●

●

●
●

●

●●●●●●
●●●

●●

●
●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●●●●●
●

●●
●●●

●●●

●
●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●●●
●●●●
●

●
●

●

●

●●●●●●●●

●

●

●
●

●

●

●

●
●●

●

●

●●●

●

●
●

●

●●●

●

●

●

●●

●

●

●
●●

●

●
●

●

●●●●

●●
●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●●
●●
●●

●●●●
●

●

●

●●●
●

●

●

●

●●

●●

●

●●

●●
●

●

●●●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●

●

●

●

●●
●

●

●
●

●

●

●
●●

●●
●

●

●

●

●●

●
●

●

●

●

●
●

●●

●
●

●

●
●
●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●
●
●

●

●

●●●

●

●

●●●

●

●●●●

●

●

●

●
●

●

●●

●

●

●●
●

●●

●

●●

●

●

●

●●

●
●

●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●
●●●
●

●
●

●
●

●●
●

●

●
●
●
●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●●

●●●
●●
●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●●●●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●
●

●●
●

●●●

●

●

●●
●●●●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●●●●
●●●

●

●●

●

●
●
●

●

●

●●●

●

●

●

●●

●●●

●

●●●

●●●●●

●

●

●●
●

●

●

●

●

●●

●

●●●

●
●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●
●●●
●
●

●●●

●
●●
●

●●

●

●
●
●
●

●

●●

●

●

●●

●

●

●

●
●●

●●

●

●
●

●●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●
●
●

●

●●

●●
●●

●

●●●●

●

●

●
●

●●

●

●

●●●●

●

●
●

●

●

●

●●

●●
●
●●

●

●

●

●●
●
●

●

●

●
●●
●

●

●
●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●
●

●
●

●

●
●

●

●
●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●●

●

●
●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●
●

●●

●

●

●

●●

●

●●

●

●●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●
●●

●●

●●

●

●●
●
●

●
●●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●●●

●

●

●

●
●

●●

●●
●
●●●
●●●

●

●

●●

●

●
●●●
●

●

●

●

●

●

●

●
●
●
●●●●

●●

●●

●

●

●●●●●

●●

●

●

●

●●

●

●
●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●●●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●

●

●

●

●
●

●●●
●

●
●
●

●●
●

●

●

●
●
●●●
●
●●
●
●●●

●

●

●

●

●
●

●

●

●

●●
●●
●
●●●●

●
●

●●
●

●

●

●●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●
●●●●

●

●●
●

●

●●

●
●
●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●
●

●
●

●
●

●
●

●●

●

●
●●

●

●

●
●

●

●
●
●

●

●

●

●●●●

●

●●

●●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●●●

●
●
●

●

●
●
●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●●
●
●

●●

●

●
●

●

●

●

●●

●●

●
●●

●

●

●

●

●●●

●

●●

●●

●

●
●●
●●●

●

●●

●

●●●

●

●

●●

●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●●

●

●●
●
●
●
●●●●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●
●
●●

●

●

●
●

●

●●

●●

●
●

●●

●
●

●

●●

●

●

●●

●

●●

●

●

●
●

●●●

●●

●

●
●

●

●
●
●●●

●
●

●●
●

●●

●●

●●●●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●●

●

●
●●

●●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●●

●
●●●
●

●

●
●●●

●
●

●

●

●

●

●

●

●●●

●

●
●

●●●●●●

●

●●

●

●●●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●●●
●

●

●

●

●●●
●
●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●
●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●●
●
●

●●
●

●

●

●●

●●
●

●

●

●

●●
●
●●●
●

●

●

●

●

●

●
●

●
●
●

●

●

●●●●●

●●

●

●●

●●

●

●●
●
●
●

●●

●

●

●

●●●
●

●●●

●

●

●

●

●
●●
●
●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●

●●
●

●●

●

●

●
●
●

●

●
●

●●
●
●

●
●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●●

●

●

●

●

●●

●
●●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●●●

●

●

●

●●
●
●●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●
●

●
●
●●●
●
●●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●

●●
●
●●●●●●
●

●●
●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●
●●●

●●

●●

●

●●●

●

●●
●

●

●
●
●●●
●

●●

●

●
●

●

●

●●

●

●

●
●
●●●

●●●

●

●

●

●

●●●

●

●

●●

●

●●●
●

●

●

●

●

●
●

●

●
●●

●
●
●
●●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●●
●

●

●
●●
●

●
●
●

●●

●●

●●
●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●
●
●●●●

●

●
●

●
●

●●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●●
●
●●●

●

●●

●●●
●
●●

●●●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●
●

●●●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●●

●
●●
●●●●

●

●
●

●

●●●

●●
●●

●

●

●●

●

●●
●●
●●
●
●

●●
●

●
●

●

●

●
●

●

●
●

●
●●

●●●

●
●

●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●
●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●●●
●

●

●

●
●

●

●
●
●●●

●

●

●

●●
●

●
●

●●

●

●●●●

●

●

●

●

●

●●●

●

●

●●
●

●

●●●●●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●
●●

●

●
●

●

●
●

●●

●●

●

●●

●
●●●

●

●
●

●●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●
●●●

●

●

●

●
●●

●

●
●

●
●

●●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●●

●●

●●
●

●●●●●●

●

●

●
●

●
●
●

●

●

●●●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●
●
●

●

●●●

●

●

●
●●

●●
●

●

●

●●

●
●

●●●

●

●●●

●

●

●

●

●

●

●

●
●●●●
●●
●●

●
●●●
●
●
●
●

●

●●●
●●
●

●

●●●●

●

●
●

●

●
●
●

●●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●
●

●

●

●●

●●●

●

●

●

●●

●●

●●

●

●

●

●

●
●●

●

●●
●

●
●●

●

●

●

●

●

●●●

●

●●

●
●●

●

●●

●
●

●

●
●

●●

●

●

●

●

●●
●
●
●

●●
●

●●

●●

●

●

●●

●
●●

●
●

●

●

●

●
●
●●

●

●●

●

●●●●

●

●

●●●
●●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●
●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●
●●●●●
●

●

●
●
●

●●
●

●●

●

●
●

●

●

●●

●●●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●
●●

●●

●

●
●

●

●

●

●

●●●

●
●●

●
●

●●

●

●

●●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●
●

●

●●

●

●●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●●●●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●
●●
●

●
●
●
●●●●
●

●

●

●

●●●

●

●●●

●●

●
●●

●

●
●
●●
●
●

●

●

●
●●●

●
●
●●

●

●●

●

●
●
●
●

●●

●
●

●

●

●
●●●

●●●
●

●

●

●●●●

●

●

●●

●
●

●

●

●

●

●

●●●●●●

●

●
●●●

●

●

●

●

●●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●●
●

●●

●●●●

●

●●
●

●●

●
●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●
●
●

●●

●●

●

●

●

●
●●

●●
●●

●

●●●

●
●

●

●●

●●●

●

●

●

●●

●

●●●

●

●●●●

●

●

●

●
●●

●

●
●●

●

●
●●
●●

●
●
●●
●

●

●

●

●●

●●●
●
●
●

●

●
●

●
●

●
●

●

●●●
●

●●

●

●
●

●

●

●

●●
●

●
●

●

●
●
●

●

●

●
●

●

●●●

●

●

●●
●

●●

●●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●●●●

●

●●
●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●
●●

●
●

●●●
●
●●●
●●

●

●

●

●●
●

●●

●

●●

●

●

●●

●

●

●●●

●
●

●●

●

●●●

●

●

●●●●●
●

●●●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●●●●

●
●

●
●

●

●●
●

●
●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●●●

●●

●

●

●
●
●

●

●

●

●
●
●

●●

●
●

●

●●●●●●

●

●

●

●

●

●

●●

●
●

●●
●

●

●
●

●●

●

●

●●●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●
●

●

●

●●●●●

●

●●
●
●
●

●

●
●●●
●

●

●●

●

●●

●

●

●

●●
●
●
●
●
●

●

●

●
●
●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●
●
●

●
●

●
●

●

●

●

●

●●

●

●
●●●

●
●

●●

●●

●

●

●

●

●

●●

●
●

●

●
●
●
●

●
●

●●●

●

●

●●●●
●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●
●
●●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●
●
●
●
●

●●

●

●

●

●

●

●

●●●
●

●

●

●
●●

●

●

●
●

●

●
●

●●●●

●●●●

●

●

●
●

●

●

●

●

●●●●●●●●●●

●
●●

●

●

●

●●●
●

●

●
●
●

●

●

●

●

●

●●●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●
●

●

●●

●

●

●
●

●

●●●

●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●
●●

●

●

●●
●

●
●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●
●
●

●

●

●
●

●●●●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●●●
●

●

●

●●

●

●●

●

●●
●
●

●

●
●

●

●

●

●
●

●●●

●

●
●

●

●
●●

●

●●●

●

●

●

●●

●

●
●

●●
●

●

●●

●

●

●

●

●●

●

●

●
●

●
●●

●●●●●
●●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●●●

●●

●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●●●●
●

●●●
●

●

●●●●

●

●

●

●●●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●●
●

●●

●●●●

●
●●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●●●
●

●

●●

●●

●

●

●

●

●●
●

●

●

●

●
●

●
●●

●
●
●
●●●

●
●

●

●

●

●

●●●●●●●●●●●

●

●
●●

●

●

●●
●

●●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●
●●
●
●

●

●

●

●
●

●
●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●
●●●

●

●

●

●●

●

●

●

●

●

●●

●
●●

●
●
●●

●

●

●

●●
●

●

●
●
●

●
●●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●●●
●●
●

●

●

●
●

●●●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●
●
●●

●
●
●

●

●●

●

●

●
●

●
●

●

●●

●●●
●
●

●

●

●
●
●

●●●

●
●
●
●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●

●

●●●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●
●
●

●

●●
●

●●
●
●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●●

●●●
●
●●●●●

●

●●
●●

●

●

●

●

●

●

●
●●

●●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●●●●●
●

●

●

●

●●

●

●

●

●
●

●

●●
●
●
●
●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●●●

●

●

●

●

●
●

●

●●●
●
●

●●●●●

●●
●
●

●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●●●

●●●

●

●

●

●
●●
●

●
●

●
●
●
●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●

●●
●

●
●●●

●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●●●●
●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●

●
●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●●

●●●●●

●●

●

●
●

●●●●●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●

●

●
●●

●
●●

●

●●

●
●
●

●

●
●●
●

●

●

●

●●●
●●

●

●

●

●
●
●●

●
●

●

●●

●
●●

●

●
●●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●
●
●
●

●

●

●

●
●

●

●

●●

●●

●

●●
●
●

●

●●●

●

●●

●

●●

●

●

●●

●

●●●●●
●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●
●
●●●
●●
●●

●

●●●
●
●●
●●
●
●

●

●

●

●

●●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●
●

●●

●●

●

●

●

●
●

●
●
●
●

●●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●●
●
●
●

●

●

●

●●●●●
●
●

●

●●●●
●

●●●

●

●
●

●

●●●
●
●

●●

●●

●●

●

●●

●
●
●

●

●●●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●
●●

●●
●

●●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●
●

●

●●●

●
●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●
●●

●●

●
●
●

●

●

●●

●●
●

●
●

●

●
●

●

●
●

●●●
●

●

●

●●
●
●
●

●●

●

●

●●

●

●

●●●

●

●●●

●●

●

●

●

●
●●

●

●●
●●

●

●

●●●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●●●
●

●

●
●●

●

●
●
●
●●

●

●●
●

●
●
●●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●●
●●

●●
●

●
●

−10

−5

0

5

10

[0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
mappability range

Z
−

sc
or

e

Figure S8: Z-score distribution versus the mappability of the bin. One randomly selected
sample from the Twin dataset. At this stage, mappability was extracted from the UCSC track
(Methods).

Chr. Start End CN PCR product size PCR product size when deletion Validated Gel Sanger Sequencing

14 40098378 40100213 0 2586 751 Yes Different bands Yes: confirmed

5 85559864 85564846 1.05 5690 708 Yes Different bands Yes: confirmed

6 14299746 14299801 0.79 755 700 Yes Double bands No

7 153000055 153000246 1.76 1137 946 Yes Double bands Yes: confirmed

4 96401034 96401460 1.13 745 319 Yes Double bands No

16 34230052 34230512 1 1139 679 Yes Double bands No

16 8688137 8689592 1.02 2121 666 Yes Double bands Yes: confirmed

2 12018994 12022932 1.02 4291 353 Yes Double bands Yes: confirmed

3 121051576 121060845 1.14 9485 216 Yes Double bands No

3 54433855 54433912 0 952 895 Yes One band Yes: insertion

2 151031059 151038246 1.11 7485 298 Yes Small band only No

9 45462450 45462522 1.1 530 458 No One band No

7 63233184 63233261 1.33 390 313 No One band Yes: nothing

9 106371251 106371330 1.28 484 405 No One band No

16 20466400 20466487 1.27 393 306 No One band No

5 85559864 85564842 0.78 5690 712 No One band No

10 65703860 65708900 1.64 5430 390 No One band No

7 159117395 159122761 1.09 5909 543 No One band No

2 83066824 83068234 0.57 2097 687 NA No amplification No

13 35996202 35996254 1.13 546 494 NA Non-specific No

4 159799983 159801372 1.03 2313 924 NA Non-specific Yes: not clear

7 52963172 52964911 1.48 2316 577 NA Non-specific No

10 69323932 69326507 1.62 2795 220 NA Non-specific Yes: not clear

6 58618198 58624080 1.04 6518 636 NA Non-specific No

Table S4: Experimental validation in low-coverage regions. The result of the PCR validation

was either concordant with PopSV call (Yes), discordant (No) or inconclusive (NA). In some cases, Sanger

sequencing was performed. The CN column is the estimated copy-number of the deleted allele.
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Figure S9: Twin dataset: sample clustering and pedigree. Samples are clustered using the CNV

calls from the different methods (colors). The amount of genomic sequence called in only one of two samples

defines the distance used for clustering. After cutting the hierarchical cluster tree (e.g. Fig. 2e) at different

levels (x-axis), cluster groups are compared to the known pedigree using the Rand index (y-axis). Different

clustering linkage criterion (point style) are used and the one showing the best Rand index is highlighted by

the line.

Sample Type
Total variants Variants per sample Variants < 3 Kbp Affected genome (Mb)

WG LC WG LC Total Per sample Total Per sample

2504 All 2382489 3628 924 2 1420566 551 581.08 6.04

CNV 312401 0 124 0 0 0 85.05 2.74
DEL 2041543 3628 787 2 1420566 551 298.70 3.13
DUP 28545 0 11 0 0 0 264.09 0.32

Table S5: 1000 Genomes deletions, duplications and CNVs. We removed variants with high

frequency (> 80%), variants in the chromosome X, and variants smaller than 300 bp in order to compare

with PopSV’s numbers (Table 1). WG: whole genome; LC: low-coverage regions. Affected genome represents

the amount of the reference genome that overlaps at least one CNV.
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Figure S10: Twin dataset: recurrence distribution. The distribution of the event frequency shows

a nice peak at 3-samples frequency when focusing on regions involving at least one twin (top). Using regions

with no twin involved (bottom), the 3-samples peak should disappear.

Set Sample
Variants Avg Size (Kbp) Variants <3 Kbp Affected genome (Mb)

Total Per sample Proportion Per sample Total Per sample

WC LC min mean max
Renal cancer somatic 95 391860 4124.84 44.40 58.54 0.48 1966.36 2455.18 4.16 232.83 664.86

deletion 194181 2044.01 2.72 70.81 0.42 865.64 1695.56 0.01 136.35 413.66
duplication 197679 2080.83 43.68 46.50 0.53 1100.72 1464.00 0.12 96.48 367.53

Table S6: Somatic CNVs in renal cancer dataset.Same as Table 1 and S5. WG: whole genome;

LC: low-coverage regions. Affected genome represents the amount of the reference genome that overlaps at

least one CNV.
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Figure S11: Proportion of reliable bins. Bins are grouped by coverage class (top-left), GC content

(top-right), segmental duplication content (bottom-left) and simple repeat content (bottom-right). Reliable

bins are defined by the concordance between twin pairs. The bars show the proportion of reliable bins.

The null proportion (blue) represents the proportion expected by chance, computed by randomly selecting

samples.
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Figure S12: Average coverage in 5 Kbp bins across reference samples in the Twins
dataset.We define low-mappability regions as the regions with consistently low RD across the reference

samples (red).
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Figure S13: Variant frequency compared to the 1000 Genomes. The x-axis represents the

frequency at which a genomic region is affected by a CNV. The y-axis represent the cumulative proportion

of the affected genome.
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Figure S14: Variant frequency with different methods. The x-axis is log-scaled and represents

the frequency at which a genomic region is affected by a CNV. The y-axis represent the cumulative proportion

of the affected genome.
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Figure S15: Distance to a centromere, telomere or assembly gap (CTG). The y-axis rep-

resents the cumulative proportion of the affected genome. The control curve is computed from uniformly

distributed genomic regions with matched size.
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Figure S16: CNVs enrichment after controlling for segmental duplication overlap and
distance to CTG. Enrichment of CNVs in a) different genomic features, b) satellite families, c) simple

repeats, d) TE classes and top sub-families in the different cohorts (colors). Bars show the fold enrichment

compared to control regions. The error bar represent 80% of the samples.
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Figure S17: Overlap between CNVs and repeats. The histograms represent the proportion of

the CNV region that overlaps a) a segmental duplication, b) satellite or c) a simple repeat, when they do

overlap. The null distribution is computed from the same control regions used for the enrichment analysis

(Methods).
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Figure S18: Enrichment in simple repeats grouped by size. Simple repeats are grouped by size

of the annotated instance (x-axis). The fold enrichment between variant and control regions is shown in the

y-axis. The boxplot show the distribution across all the samples, here from the Twins dataset.
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Figure S19: Polymorphism likely caused by non-homologous allelic recombination be-
tween L1PA repeats. Similar to Fig. 1d, violin plots represent the coverage in the reference samples,

and the line and point the coverage in one sample. Here L1PA6 seems to serve as a template for a non-

homologous allelic recombination resulting in a deletion.
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Figure S20: Targeted normalization. The coverage across the reference samples (blue) in the bin to

normalize is used to find supporting bins across the genome. These supporting bins only are used to compute

the normalization factor. The same supporting bins will be used to normalize the bin count in a test sample

(red).
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Figure S21: Reliable bin enrichment in different methods. Bins are grouped by coverage class

(top-left), GC content (top-right), segmental duplication content (bottom-left) and simple repeat content

(bottom-right). The y-axis represents the fold enrichment between the proportion of reliable bins and its

expected value by chance (red versus blue in Figure S11).
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Figure S22: 5Kbp calls supported by 500bp calls. a) 5 Kbp calls of different sizes (x-axis) are

split according to the proportion of the call supported by 500 bp calls. The Z-score of 500 bp bins in 5 Kbp

calls is consistent with the call for deletion b) and duplication c) signal. 5 Kbp calls with lower significance

(e.g. single-bin calls) are less supported by 500 bp calls (a) but their Z-scores are in the consistent direction

(b,c) although not always significant enough to be called.
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Figure S23: Control regions quality control. a) Control regions and CNVs have exactly the same

proportion of overlap with the segmental duplications. b) When controlling for it, the distribution of the

distance to a centromere, telomere or gap is very similar between CNVs and control.
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