
Human copy number variants are enriched in regions of low
mappability

Jean Monlong1,2, Patrick Cossette3, Caroline Meloche3, Guy Rouleau4, Simon L.
Girard1,3,5, and Guillaume Bourque1,2,6,+

1Department of Human Genetics, McGill University, Montréal, H3A 1B1, Canada
2Canadian Center for Computational Genomics, Montréal, H3A 1A4, Canada

3Centre de Recherche du Centre Hospitalier de l’Universite de Montréal, Montréal, H2X
0A9, Canada.

4Montréal Neurological Institute, McGill University, Montréal, H3A 2B4, Canada.
5Departement des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi,

G7H 2B1, Canada
6McGill University and Génome Québec Innovation Center, Montréal, H3A 1A4, Canada

+Correspondence: guil.bourque@mcgill.ca

February 20, 2018

Abstract

Copy number variants (CNVs) are known to affect a large portion of the human genome and
have been implicated in many diseases. Although whole-genome sequencing (WGS) can help
identify CNVs, most analytical methods suffer from limited sensitivity and specificity, especially
in regions of low mappability. To address this, we use PopSV, a CNV caller that relies on
multiple samples to control for technical variation. We demonstrate that our calls are stable
across different types of repeat-rich regions and validate the accuracy of our predictions using
orthogonal approaches. Applying PopSV to 640 human genomes, we find that low-mappability
regions are approximately 5 times more likely to harbor germline CNVs, in stark contrast to
the nearly uniform distribution observed for somatic CNVs in 95 cancer genomes. In addition
to known enrichments in segmental duplication and near centromeres and telomeres, we also
report that CNVs are enriched in specific types of satellite and in some of the most recent
families of transposable elements. Finally, using this comprehensive approach, we identify 3,455
regions with recurrent CNVs that were missing from existing catalogs. In particular, we identify
347 genes with a novel exonic CNV in low-mappability regions, including 29 genes previously
associated with disease.

1 INTRODUCTION

Genomic variation of 50 base pairs or more are collectively known as structural variants (SVs)
and can take several forms including deletions, duplications, novel insertions, translocations and
inversions1. Copy number variants (CNVs) are unbalanced SVs, i.e. affecting DNA copy number,
and include deletions and duplications. A wide range of mechanisms can produce SVs and is
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responsible for the diverse SV distribution across the genome, both in term of location and size1,2,3.
In healthy individuals, SVs are estimated to cumulatively affect a higher proportion of the genome
as compared to single nucleotide polymorphisms (SNPs)4. SVs have been associated with numerous
diseases including Crohn’s Disease5, schizophrenia6, obesity7, epilepsy8, autism9, cancer10 and
other inherited diseases11,12, and many SVs have a demonstrated detrimental effect.

While large SVs have been first studied using cytogenetic approaches and array-based technolo-
gies, whole-genome sequencing (WGS) is in theory capable of detecting SVs of any type and size13.
Numerous methods have been implemented to detect SVs from WGS data using either paired-end
information14,15, read-depth (RD) variation16,17,18, breakpoints detection through split-read ap-
proach19 or de novo assembly20. CNVs, potentially the most impactful SVs, can be detected by any
of these strategies but are often resolved with a RD approach as it directly looks for signs of copy
number changes. However, several features of WGS experiments result in technical bias and con-
tinue to be a major challenge. For example, GC content21, mappability22,23, replication timing24,
DNA quality and library preparation25 have a detrimental impact on the uniformity of the RD26.
Unfortunately, this variability is difficult to fully correct for as it involves different factors, some
of which are unknown, that vary from one experiment to another. This issue particularly impairs
the detection of CNV with weaker signal, which is inevitable in regions of low-mappability that
represent around 10% of the human genome27, for smaller CNVs or in cancer samples with cell het-
erogeneity or stromal contamination. As a result, existing approaches suffer from limited sensitivity
and specificity3,13, especially in regions of low-complexity and low-mappability22,23. Even when
problematic regions were masked and state-of-the-art bias correction21,28 were applied, we showed
that technical variation in RD could still be found across three WGS datasets studied (Monlong et
al., under review).

To control for technical variation, we recently developed a CNV detection method, PopSV,
which uses a set of reference samples to detect abnormal RD (Monlong et al., under review). In
each genome tested, the RD in a region is compared to the same region in the reference samples.
PopSV differs from most previous RD methods, such as RDXplorer29 or CNVnator17, that scan the
genome horizontally and look for regions that diverge from the expected global average. Even when
approaches rely on a ratio between an aberrant sample and a control, such as FREEC16 or BIC-
seq30, we showed that they do not sufficiently control for experiment-specific noise as compared to
PopSV (Monlong et al., under review). Glusman et al.31 does go further and normalize the RD
with pre-computed RD profiles that fit the GC-fingerprint of a sample but this approach excludes
regions with extreme RD and does not integrate the variance observed in individual regions. PopSV
is also different from approaches such as cn.MOPS18 and Genome STRIP32 that scan simultaneously
the genome of several samples and fit a Bayesian or Gaussian mixture model in each region. Those
methods have more power to detect CNVs present in several samples but may miss sample-specific
events. Moreover, their basic normalization of the RD and fully parametric models forces them to
conceal a sizable portion of the genome and variants with weaker signal. Finally, another strategy
to improve the accuracy of CNV detection has been to use an ensemble approach that combines
information from different methods relying on different types of reads. Large re-sequencing projects
such as the 1000 Genome Project3,33 and the Genomes of Netherlands (GoNL) project34,35 have
adopted this strategy and have successfully identified many CNVs using an extensive panel of de-
tection methods combined with low-throughput validation. Such a strategy increases the specificity
of the calls at the cost of sensitivity.

Notably, with most of the tools and approaches described above, repeat-rich regions and other
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problematic regions of the genome are often removed or smoothed at some step of the analysis, to
improve the accuracy of the calls. Although some methods36,37 try to model ambiguous mapping and
repeat structure, only particular situations are addressed and, as a consequence, low-mappability
regions are just scarcely covered in the most recent CNV catalogs33. This is unfortunate given
that CNVs in such regions have already been associated with various diseases12,38,39,40,41 and that
these regions are also more likely variable. Indeed, different types of genomic repeats are likely
to contribute to CNV formation. For example, CNVs are known to be enriched in segmental
duplications2 and short and long tandem repeats are also known to be highly polymorphic42,43.
Moreover, repeat templates, like segmental duplications or transposable elements, can facilitate the
formation of CNV through non-allelic homologous recombination and other mechanisms44.

Given these facts and the growing realization of the importance of repetitive regions in the
genome45,46, we wanted to investigate the performance of PopSV in low-mappability regions and
explore the comprehensive CNV distribution across a large cohort of healthy individuals. After
showing that population-based RD measures are better than existing mappability estimates to
correct for variable coverage, we apply PopSV to 640 WGS individuals from three human cohorts: a
twin study with 45 individuals47, a renal cell carcinoma datasets with 95 tumor and control pairs48

and 500 unrelated individuals from the GoNL dataset34. We compare the performance of PopSV
on these datasets with existing CNV detection methods in regions of low-mappability and validate
the quality of the predictions across different repeat profiles using PCR validation. Additionally,
using publicly available long-read sequencing data and assemblies, we show that PopSV is able to
detect some highly ambiguous CNVs. Next, having demonstrated the quality of the PopSV calls,
we characterize the patterns of CNVs across the human genome and produce a CNV catalog where
variants of different types are better represented compared to existing catalogs. We further find
that CNVs are significantly enriched in regions of low-mappability and in different classes of repeats.
Finally, we identify novel CNV regions in low-mappability regions that were absent from previous
CNV catalogs and describe their impact on protein-coding genes.

2 MATERIALS AND METHODS

Data Three publicly available WGS datasets were used. The first is a twin study47 with an
average depth of 40x across 45 individuals, including 10 families of parents and monozygotic twins.
The second is a renal cell carcinoma dataset48 (CageKid) with 95 tumor/normal pairs and an
average depth of 54x. The third contains 500 unrelated individuals from the GoNL34 dataset with
an average depth of 14x. In each study, the sequenced reads had been aligned using bwa49. See
SUPPLEMENTARY INFORMATION for more details on access and read processing.

Read count across the genome The genome was fragmented in non-overlapping bins of fixed
size. As a RD measure we used the number of properly mapped reads, defined as read pairs with
correct orientation and insert size, and a mapping quality of 30 (Phred score) or more. In each
sample, GC bias was corrected by fitting a LOESS model between the bin’s RD and the bin’s GC
content. We used a bin size of 5 Kbp for most of the analysis. When specified, we used smaller bin
sizes of 500 bp or 2 Kbp.

RD and mappability estimates To compare RD and mappability estimates in the Twin study,
we first removed bins with extremely high RD if deviating from the median RD by more than 5
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standard deviation. The RD across the different samples were then combined and quantile normal-
ized. For each bin, we computed the average RD and standard deviation across the samples. We
downloaded the mappability track for hg1927 and computed the average mappability in each bin.
We compared the RD in one randomly selected sample with the mappability estimates and with
the inter-sample RD average. To correct for the variation explained by the mappability estimates
we fitted a generalized additive model using a cubic regression spline between the mappability esti-
mates and RD in the sample (see SUPPLEMENTARY INFORMATION). With these estimations
and the global standard deviation we computed a Z-score for each bin. A similar set of Z-scores
was computed using the inter-sample average and standard deviation. The normality of these two
Z-score distributions were compared in term of excess kurtosis and skewness. The Z-score distribu-
tions were also compared in different mappability intervals. Finally, 45 samples of each cohort were
combined and their RD quantile normalized. The inter-sample RD mean and standard deviation
were then computed separately in each cohort and compared with the mappability estimates and
RD in the selected sample.

PopSV approach for CNV detection PopSV was first described and applied in a CNV analysis
of epilepsy patients (Monlong et al., under review). Briefly, a set of samples are chosen as reference
and used to guide the normalization of each bin. After normalization the average RD and standard
deviation in each bin are saved and used to transform the RD in all samples into Z-scores. CNVs are
called in each sample when the RD is significantly higher or lower than in the reference samples. The
Z-scores can be segmented using the circular binary segmentation50 or after statistical testing at the
bin level. More details are available in the original publication (Monlong et al., under review) and
in the SUPPLEMENTARY INFORMATION. With PopSV there is no filtering, masking, smoothing
or altering of repeat-rich regions: all the regions with properly mapped reads are analyzed.

Coverage track and low-mappability regions The average RD in the reference samples, a
feature used during CNV calling, was used as a coverage track. Bins with a RD lower than 4 standard
deviation from the median were classified as low-mappability (or low coverage). To highlight the
most challenging region, we also defined extremely low coverage regions if the average RD was lower
than 100 reads. We overlapped these regions with protein-coding genes and segmental duplications
(see SUPPLEMENTARY INFORMATION), and computed the distance to the nearest centromere,
telomere or assembly gap. We also counted the number of protein-coding genes overlapping at least
one low-coverage region.

CNV detection using other methods FREEC16 and CNVnator17 were run on each sample sep-
arately starting from the BAM files and using the same bin size as for PopSV (5 Kbp). cn.MOPS18

was run on the same GC-corrected bin counts than for PopSV and samples from the same dataset
were jointly analyzed. After retrieving split reads using YAHA51, LUMPY52 was run and we kept
all the deletions, duplications and intra-chromosomal translocations larger than 300 bp. See SUP-
PLEMENTARY INFORMATION for more details.

Clustering samples using the CNV calls The similarity between two samples is defined by
the amount of sequence called in both divided by the average amount of sequence called (see SUP-
PLEMENTARY INFORMATION). This distance is used for hierarchical clustering of the samples
in the Twin study using different linkage criteria (average, complete and Ward). The clustering was
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performed using calls in regions with extremely low coverage (≤100 reads on average in the reference
samples) only. The Rand index estimated the concordance between the clustering and the known
pedigree, grouping the samples per family (see SUPPLEMENTARY INFORMATION).

Replication in twins For each twin and each method, a CNV call was defined as replicated if also
found in the other monozygotic twin but in less than 50% of the population to remove systematic
errors. The frequency was computed by counting samples with any overlapping CNVs. In order to
avoid missing calls with borderline significance, we used slightly less confident calls for the second
twin (see SUPPLEMENTARY INFORMATION). For each method, we computed the number and
proportion of replicated calls per sample. We computed these metrics using all the calls, calls in
low-mappability regions only, calls in segmental duplications, calls overlapping annotated repeats
and calls overlapping annotated satellites, all using a minimum overlap of 90% of the call’s sequence.
Finally, we computed the replication estimates for calls located at 1 Mbp or less from a centromere,
telomere or assembly gap.

Replication between paired normal and tumor samples The same approach was applied in
the renal cancer dataset. Here, replicated calls were found in a normal sample and its paired tumor
but in less than 50% of the normal samples.

Replication estimates and reliable regions Using CNV calls found in less than 50% of the
population, we defined as reliable a 10 Kbp region where more than 90% of the overlapping calls were
replicated calls. We then compared the number and proportion of reliable regions for each method
and in different types of region. As before, we compared regions overlapping low-mappability
regions, segmental duplications, annotated repeats, satellites, or located at less than 1Mbp from a
centromere, telomere or assembly gap.

Experimental validation A subset of variants in the Twin study were experimentally validated.
First, we randomly selected one-copy and two-copy deletions, among small (∼ 700 bp) and large
(∼ 4 Kbp) variants among the calls produced with 500 bp and 5 Kbp bins. The calls were visu-
ally inspected to design PCR primers (see SUPPLEMENTARY INFORMATION). We randomly
selected 20 regions from those with available PCR primers. Next, we randomly selected deletions
overlapping low-mappability regions and called in 6 samples or fewer. Because RD could not be used
efficiently to fine-tune the breakpoints’ location, we retrieved the reads (and their pairs) mapping to
the region and assembled them (see SUPPLEMENTARY INFORMATION). We randomly selected
17 regions from those with PCR primers. In addition to gel electrophoresis, the amplified DNA of
some regions was sequenced by Sanger sequencing.

Analysis of CEPH12878 High coverage PCR-free Illumina WGS data for 30 samples, including
CEPH12878, was downloaded from the 1000 Genomes Project (1000GP)33 (see SUPPLEMENTARY
INFORMATION). PopSV was run using 5 Kbp bins and all the samples as reference. Using the
same coverage track as before we selected all deletions in CEPH12878 overlapping low-mappability
regions (at least 90% of the call). We first looked for support in CEPH12878 assemblies that
used Illumina short-read sequencing, BioNano Genomics genome maps and either single molecule
sequencing from the Pacific Biosciences (PacBio) platform53 or 10X Genomics linked-read sequenc-
ing54. For each selected deletion from PopSV, we aligned the flanking reference sequences to the
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assemblies using BLAST55 (see SUPPLEMENTARY INFORMATION). When both flanks could
be mapped to a contig, we visually inspected MUMmer plots56 which either supported the deletion,
the reference genome sequence or were too noisy to assess. We further annotated the selected calls
if they overlapped with the deletions identified in Pendleton et al.53 over a minimum of 1 Kbp. Fi-
nally, we downloaded the corrected PacBio reads and built a local assembly and consensus around
each selected PopSV deletion (see SUPPLEMENTARY INFORMATION). We visually inspected
MUMmer plots of the assembled and consensus sequences to confirm the presence of the deletion.

CNV catalog We called CNVs separately in each cohort with PopSV using as reference samples
the 45 samples in the Twin study, the normal samples in the cancer dataset and 200 samples in the
GoNL dataset. For the Twin study and the renal cancer dataset, PopSV was run using 500 bp bins
and 5 Kbp bins. Because of the lower sequencing depth, PopSV was run using 2 Kbp bins and 5
Kbp bins for the GoNL dataset. For each sample, calls from the 2 different runs were merged when
consistent (see SUPPLEMENTARY INFORMATION). To compute the total number of calls, we
collapsed calls with a reciprocal overlap higher than 50%. The amount of sequence affected in a
genome is computed by merging all the variants in the cohort and counting the affected bases in
the reference genome.

Comparison with the 1000 Genomes Project SV catalog Autosomal deletions, duplications
and CNVs from the 1000GP SV catalog33 were downloaded (see SUPPLEMENTARY INFORMA-
TION). To compare the amount of CNV with PopSV, we removed deletions smaller than 300 bp
as well as variants with high frequency (> 80%). We compared CNV frequency between the 620
unrelated samples and a down-sampled set of 620 randomly selected individuals from the 1000GP
SV catalog. The frequency was derived for all the nucleotide that overlaps at least one CNV as
the proportion of individuals with a CNV in this locus. The frequency distribution was computed
separately for the different CNV types.

Comparison with CNV catalogs from long-read studies The SV catalog from Chaisson et
al.57 was downloaded and overlapped with the CNV catalogs from 1000GP and PopSV results on
our 640 genomes. Here, the 1000GP catalog contained deletions, duplications and CNVs of any size
and frequency. Using control regions and logistic regression we tested for an enrichment of variants
in the SV catalog from Chaisson et al.57 (see SUPPLEMENTARY INFORMATION). The analysis
was performed separately on deletions, duplications, low-mappability regions and extremely low-
mappability regions. The same analysis was performed using the SV catalog from Pendleton et
al.53.

Novel CNV regions Using the 620 unrelated individuals across the three cohorts, we selected
CNVs present in more than 1% of the population (7 individuals or more) and not overlapping any
CNV in the 1000GP catalog33. We used deletions, duplications and CNVs of any size and frequency
from the 1000GP. Novel CNVs were collapsed into novel CNV regions, i.e. contiguous regions in
which each base is overlapped by at least one novel CNV. The novel CNV regions were annotated
using the low-mappability and extremely low-mappability tracks.

Distance to centromere, telomere and assembly gaps The centromeres, telomeres and as-
sembly gaps (CTGs) were retrieved from the gap track in UCSC58. In chromosomes with missing
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telomere annotation, we defined the telomere as the 10 Kbp region at the ends of chromosome.
The distance from each variant to the nearest CTG was computed and represented as a cumulative
proportion. Because this distribution changes with the size of the variants, we sampled random
regions in the genome with similar sizes and computed the same distance distribution (see SUP-
PLEMENTARY INFORMATION). Thanks to this null distribution we were able to see if variants
were located closer/further to CTG than expected by chance.

Enrichment in genomic features We tested for CNV enrichment in different genomic fea-
tures: genes, exons, low-mappability regions, segmental duplications, satellites, simple repeats and
transposable elements. The different satellite families, frequent simple repeat motives, transposable
element families and sub-families were also tested. For each sample, we computed a fold-enrichment
as the fold change in proportion of regions overlapping a feature between CNV and control regions
(see SUPPLEMENTARY INFORMATION). The significance was assessed using logistic regression
on the CNV and control regions. To control for the enrichment in segmental duplications we used
control regions with similar overlap profile (see SUPPLEMENTARY INFORMATION). We also
added a variable representing the overlap with segmental duplications as a co-factor in the logistic
regression model. When numerous tests were performed, e.g. satellite families, simple repeat mo-
tives, transposable element families or sub-families, the P-values were corrected for multiple testing
using Benjamini-Hochberg procedure. Finally, for each CNV and control region, we computed the
proportion of the region overlapped by satellites, simple repeats and transposable elements.

Overlap with gene annotation Exons of protein-coding genes and promoter regions (10 Kbp
upstream of the transcription start site) were extracted from the Gencode annotation v19. We
counted how many genes overlapped a CNV in the population when considering exons only, exons
and promoter region, or gene body and promoter region. In addition, we computed these numbers
using only genes associated with a disease in the OMIM database (Online Mendelian Inheritance
in Man; http://omim.org/). These numbers were also computed for CNVs that overlapped more
than 90% of various classes of repeats. For example, Satellite-CNVs are CNVs with more than 90%
of their region annotated as satellites.

3 RESULTS

3.1 Modeling RD using population-based measures instead of mappability scores

When counting uniquely mapped reads, the mappability of a region is a major predictor of the
observed RD. Theoretical mappability estimates27 strongly correlated with the RD in a sample but
many regions with intermediate mappability diverged from the predicted levels of RD (Fig. S1a).
By computing the average RD across the 45 samples from the Twin study in each 5 Kbp bin we
found that this divergence is consistent across samples and not simply due to a high RD variance
(Fig. 1a). These mappability estimates only approximate RD variation and cannot explain the
RD profile in numerous regions. In contrast, population-based metrics more directly estimate the
expected RD level (Fig. S1b). Similarly to what was done in Monlong et al. (under review) in high-
mappability regions, we hypothesized that population-based estimates of RD mean and standard
deviation could be used directly and help analyze regions with reduced RD. To test this hypothesis,
Z-scores corrected by the mappability-based estimates were compared to Z-scores derived from
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Figure 1: Mappability and population-based RD estimates. a) Inter-sample mean RD and
average mappability in 5 Kbp bins. Regions with the same mappability estimate can have different RD
levels. b) Z-score distribution. In mappability, Z-scores were computed from the mappability-predicted RD
and global standard deviation; In population estimates from the inter-sample mean and standard deviation.
c) Z-score distribution across the mappability spectrum. d) Average RD in the Twin study. The right-tail
of the histogram was winsorized using the IQR and the different coverage classes are shown with colors.
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both the inter-sample mean and standard deviation. The population-based Z-scores better followed
a Normal distribution with an excess kurtosis of 0.2 and skewness of 0.004 compared to 29.4 and
-2.284 respectively for mappability-adjusted Z-scores (Fig. 1b). The distribution of the population-
based Z-scores was also more stable across the mappability spectrum (Fig. 1c). When comparing
samples from the three different datasets, we noticed cohort-specific profiles in term of RD level
and variance even though RD had been quantile normalized (Fig. S1c and S1d), suggesting that
population-based estimates will be better at capturing subtle cohort-specific variation.

These results suggest that a population-based strategy such as PopSV (Monlong et al., un-
der review) could be extended to investigate CNVs in regions of low-mappability. To define low-
mappability regions in the population, we used the average RD in the reference samples track
produced by PopSV. In the Twin study for example, 12.6% of the covered 5 Kbp bins were labeled
as low-coverage (Fig. 1d), more than half of which were regions with extremely low coverage (lower
than 100 reads on average). Slightly fewer regions were labeled as low-coverage in the other cohorts
(Fig. S2). As expected, low-coverage regions were depleted in gene content with only 15.3% of
the 5 Kbp bins in these regions overlapping a protein-coding gene versus 48.8% for other regions.
Nonetheless, 4,044 protein-coding genes overlapped a low-coverage region. Finally, 23.2% of the
low-mappability regions overlapped segmental duplications and 69.1% were located at less than 1
Mbp from a centromere, telomere or assembly gap, versus respectively 2.9% and 8.8% for other
regions.

3.2 Replication rates in regions of low-mappability

We previously demonstrated that CNV detection with PopSV was overall more sensitive than
FREEC16, CNVnator17, cn.MOPS18 and LUMPY52 methods (Monlong et al., under review). In
the following, we focused on the performance of PopSV in low-mappability regions. We first in-
vestigated the general concordance of the CNV calls with the pedigree in the Twin study. Using
calls in extremely low-mappability regions (average RD below 100 reads) only, we clustered the
individuals and compared the result to the known pedigree. We found that PopSV showed better
concordance, as assessed by the Rand index (Fig. S3), compared to the other methods. Indeed,
the clustering dendogram from PopSV calls, even in these challenging regions, captured almost per-
fectly the family relationships (Fig. 2a). We then investigated if the call replication rate was stable
across different mappability profiles. Using calls present in less than 50% of the population to avoid
systematic bias, the overall replication rate in the other twin was found to be 89.7%. Focusing on
calls in low-coverage regions, we found a comparable replication rate of 92.5%. The replication rate
remained constant in regions with different repeat profiles (Fig. 2b) such as regions overlapping
segmental duplication, annotated repeats, or close to centromeres, telomeres and assembly gaps. In
contrast, the other methods showed a reduced replication and higher variance in repeat-rich regions.
The superior replication rate was complemented by a larger number of calls: PopSV called between
2.7 and 9.9 times more replicated CNVs per sample in low-coverage regions compared to the other
methods. We observed the same results in the cancer dataset when comparing the agreement be-
tween germline events in normal/tumor pairs. PopSV had between 1.8 and 17.8 times more calls in
low-mappability regions compared to the other methods and a stable replication rate across repeat
profiles (Fig. S4). We next wanted to assess the performance in each region of the genome, rather
than overall rates per sample, and used the replication in twins to identify regions with reliable calls.
Again we observed that PopSV was as reliable overall as in regions with different repeat profiles (Fig.
2c). This analysis also showed that PopSV provides reliable calls in a larger fraction of the genome
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Figure 2: PopSV’s performance in low-mappability regions. a) Cluster using PopSV calls in
extremely low coverage regions (below 100 reads). b) Proportion and number of calls replicated in the
monozygotic twin. The point shows the median value per sample, the error bars the 95% confidence interval.
c) Proportion and number of regions with reliable calls, computed from call replication in twins.
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compared to other methods. The strongest gain was observed for regions overlapping satellites
or overlapping almost completely annotated repeats, with around twice as many regions reliably
called by PopSV. cn.MOPS showed the second best performance, especially in regions overlapping
segmental duplications or close to centromeres, telomeres and assembly gap.

3.3 Validation of CNVs in regions of low-mappability

Using Real-Time PCR validation across 151 regions, we previously demonstrated that the replica-
tion estimates from the Twin dataset are consistent with experimental validation (Monlong et al.,
under review). We had tested variants of different types, sizes and frequencies and validated 90.7%
of the calls, similar to our twin-based replication estimates. Here we tested additional deletions
in individuals from the Twin study using PCR validation. We first validated randomly selected
deletions and found a validation rate close to the overall replication rate, with 18 out of 20 deletions
(90%) successfully validated (Table S1). In a second validation batch, we focused on rare deletions
in low-mappability regions, of which 11 out of the 17 (65%) were successfully validated (Table S2).
We noticed that the majority of the non-validated deletions were predicted to be smaller than 100
bp and most likely due to a problem during the breakpoint fine-tuning. If we consider only deletions
larger than 100 bp, the validation rate in regions of low-mappability increased to 83% (10/12) once
again close to PopSV’s replication rates in the Twin dataset.

Regions with extreme repeat content remained difficult to target and validate using PCR ap-
proaches. To further interrogate the performance of PopSV in those regions, we turned to whole-
genome data from long-read sequencing technology. Publicly available assemblies for CEPH12878
samples confirmed several deletions called by PopSV in low-mappability regions. Out of the 14
homozygous deletions that could be assessed, 13 were confirmed in a contig, 12 of which were ob-
served in both assemblies53,54. Only one region seemed to be a false positive, an assembled contig
supporting the reference sequence in one assembly. Eleven regions could not be assessed because
the flanks in the reference genome didn’t map to any assembled contigs or their MUMmer plots
neither supported a deletion nor the reference sequence. In summary, we confirmed 92.8% of the
homozygous deletions in low-mappability regions that could be compared with the assemblies. Dele-
tions can be confirmed by direct comparison of the variant region and, if homozygous, should be
present in the assembly. In contrast, heterozygous deletions could be missing from an assembly
if only the reference allele was assembled. We confirmed 27 out of the 44 heterozygous deletions
in low-mappability regions that could be assessed (Table S3). As expected, only one allele was
supported for many regions: 16 regions with only the deleted allele observed and 17 regions with
only the reference allele observed. Both deleted and reference alleles were observed for 11 variants.
Although only 61.3% of the heterozygous deletion were confirmed, many variants might have been
missed because of assembly preference to one allele, as suggested by the similar number of regions
with only one supported allele. Using variants identified by Pendleton et al.53 and by assembling
raw PacBio reads, we found support for 3 additional homozygous deletions and 15 heterozygous
deletions that had remained inconclusive in the assembly comparison. Most of the regions that
couldn’t be confirmed were located close to assembly gaps in the reference genome (Fig. S5). This
observation highlighted that even with long-read sequencing data, it is not straightforward to clearly
assess some genomic regions close to assembly gaps.
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3.4 Global patterns of CNVs across the human genome

Having demonstrated the robustness of PopSV in low-mappability regions, we wanted to characterize
the global patterns of CNVs across the human genome. We were especially interested in looking
at calls in regions of low-mappability which represents between 9-12% of the human genome (Fig.
1d and S2). We started with an analysis of the twins and the normal samples in the renal cancer
dataset, both of which have an average sequencing depth around 40X. PopSV was used to call CNV
using 500 bp and 5 Kbp bins, which were then merged to create a final set of variants. On average
per genome, 7.4 Mbp of the reference genome had abnormal read coverage, 4 Mbp showing an
excess of reads indicating duplications and 3.4 Mbp showing a lack of reads indicating deletions
(Table 1). In both datasets, the average variant size was around 3.7 Kbp and 70% of the variants
found were smaller than 3 Kbp. We compared our numbers to equivalent CNVs detected in the
most recent human SV catalog from the 1000 Genomes Project (1000GP), where 6.1 Mbp was
found to be copy-number variable on average in each genome (Table S4). In those calls, we notice
that no variants except for a few deletions were identified in regions of extremely low-mappability
regions. Similarly, small duplications (< 3 Kbp) were absent from that catalog. In contrast, the
set of variants identified by PopSV included variants in extremely low-mappability regions as well
as small deletions and duplications (Table 1), explaining in part the ∼ 20% increase in affected
genome. While the study from the 1000GP33 explored a wider range of SVs, our catalog is likely
more representative of the distribution of CNVs in a normal genome since a larger portion of the
genome could be analyzed.

Next, we applied PopSV to the 500 unrelated samples from the GoNL cohort (Table 1). Due to a
lower sequencing depth (∼13X), we used bins of size 2 Kbp and 5Kbp, explaining the lower number
of variants found in these samples. Nevertheless, a large sample size helps better characterize
the frequency patterns and provides a more comprehensive map of rare CNVs. In total, across
these three cohorts, 325.6 Mbp were found to be affected by a CNV with more duplications (50,856)
detected than deletions (44,110). This contrasts with the CNVs reported by the 1000GP33 that were
heavily skewed towards deletions (Table S4), likely due to the conservative ensemble approached
used to detect CNVs. The frequency distribution of deletions and duplications found using PopSV
were also much more balanced compared with the ones from the 1000GP33 (Fig. 3a).

We also compared our CNV catalog with an orthogonal set of calls from Chaisson et al.57 that
were obtained using long-read sequencing. Although these calls came from a different genome,
we expect both catalogs to share a number of common variants. We found a significant overlap
between the two catalogs, overall and separately for deletions, duplications, low-mappability regions
and extremely low-mappability regions (Fig 3b). In all categories, the overlap was stronger for
PopSV’s catalog compared to the 1000GP CNV catalog. We noted that the enrichment for the
1000GP catalog disappeared for duplications and low-mappability regions but was even stronger for
PopSV’s catalog. Like PopSV, the long-read sequencing study57 also found a better balance between
deletions and duplications. Similar observations were made using another set of calls from long-read
sequencing of the CEPH12878 sample53 (Fig. S6).

3.5 CNVs are enriched near centromeres and telomeres and in regions of low-
mappability

Large CNVs have been shown to be enriched near centromeres, telomeres and assembly gaps
(CTGs)59. We were interested in exploring this observation further using the set of high reso-
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Figure 3: Comparison with CNV catalogs from the 1000 Genomes Project33 (1000GP)
and a long-read sequencing study57. a) The x-axis represents the proportion of individuals with
a CNV overlapping a region. The y-axis represents the cumulative proportion of the affected genome. b)
Overlap with the SV catalog from Chaisson et al.57. In each cohort (color), the proportion of collapsed
calls overlapping calls from Chaisson et al.57 or control regions with similar size distribution was modeled
using a logistic regression. Boxplots show variation across 50 sampling of control regions. low-map: calls in
low-mappability regions; ext. low-map: calls in extremely low-mappability regions.

lution calls from PopSV. We compared the distribution of CNVs calls made across the 3 datasets
to randomly distributed regions of similar sizes (Fig. S7). In an average genome, we found that
33.5% of the CNVs calls were within 1 Mbp of a CTG, while we would have expected only 11.2%
by chance. To verify that these observations were not simply a consequence of the methodology
used, we also looked at the somatic CNVs (sCNVs) that we could detect in the renal cell carcinoma
dataset. For this purpose, we extracted the variants found by PopSV in the tumor sample of an
individual but missing from its paired normal sample. Reassuringly, and in contrast to germline
CNVs, sCNVs were not preferentially found near CTGs (Fig. S7), with 11.1% of the sCNVs within
1 Mbp of a CTG.

After correcting for the distance to CTGs, we also observed a 4.7 fold-enrichment of variants
in regions of low mappability (Fig. 4a). Segmental duplications (SD), DNA satellites and Short
Tandem Repeats (STR) were also significantly enriched with fold-enrichment of 3.6, 2.6 and 1.2,
respectively. The over-representation of CNVs in SDs has been described before2 and in a recent
study60, half of the CNV base pairs were shown to overlap a SD. To investigate the contribution of
low-mappability regions beyond SDs, we used matched control regions and included segmental du-
plication overlap in the logistic regression model. Even after controlling for this known enrichment,
we found that CNVs overlapped low-coverage regions more than twice as much as expected (Fig.
S8a). This two-fold enrichment is independent of the SD association and consistently observed in
the 3 cohorts of normal genomes. In contrast to germline CNVs, sCNVs were once again found
to be more uniformly distributed (Fig. 4a and S8a). These results suggest that the enrichments
of germline CNVs near CTGs and in regions of low-mappability are unlikely to be the result of a
methodological artifact.
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Figure 4: CNVs in normal genomes. a) Enrichment of CNVs in different genomic classes (x-axis)
across different cohorts (colors) and controlling for the distance to centromere/telomere/gap. Bars show
the median fold enrichment compared to control regions. The error bar represents 90% of the samples in
the cohort. b) Enrichment of CNVs in repeat families (x-axis) controlling for the overlap with segmental
duplication and distance to centromere/telomere/gap. The error bars were winsorized at 7 for clarity. STR:
Short Tandem Repeat; TE: Transposable Element.
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3.6 Various repeat families are more prone to harbor CNVs

We wanted to further characterize the distribution of germline CNVs in relation to different repeat
classes and families. By comparing CNVs to the same control regions with matched overlap with SD
and distance to CTGs we can look for patterns that are specific to repeat sub-families without the
risk of being biased by the global enrichments (Fig. 4b). Using this approach, we found that CNVs
were still significantly enriched in satellites repeats and in short tandem repeats (STRs) (P-value
< 10−4, Fig. S8a), with fold-enrichments of 2.3 and 1.2 respectively.

Although it is known that DNA satellites and simple repeats are more unstable61, the extent to
which CNVs are found in these regions in humans had, to our knowledge, not been systematically
explored. Satellite repeats are grouped into distinct families depending on their repeated unit
and we found that not all satellite repeats were equally likely to overlap a CNV (Fig. S8b). In
particular, Alpha satellites have the highest and most significant enrichment (P-value < 10−5), with
more than 3 times more CNVs than in the control regions (Fig. 4b). We noted that satellites tend
to span completely CNVs (Fig. S9), suggesting that satellites are likely directly involved in the
CNV formation. Short and long tandem repeats can be highly polymorphic42,43. Constrained by
read length, recent studies62,63 focused on variation of STRs smaller than 100 bp. In our analysis
we found that CNVs were significantly enriched in the largest annotated STRs (>100 bp or >400
bp, Fig. 4b). STR can be grouped by motif and we further tested the largest and most frequent
families (Fig. S8c). Except for the weak enrichment in AT (TA) repeats, the STR enrichment
appeared mostly independent of the repeat motif. Here the repeats tend to overlap just a fraction
of the variant, but a clear subset of the variants are fully covered by these tandem repeats (Fig. S9).
Finally, although transposable elements (TEs) as a whole did not show enrichment (Fig. 4a), the
“Other” repeat class, which contains SVA repeats, was found to be significantly enriched in the two
higher depth datasets (Fig. 4b). Moreover, looking at TEs at the level of individual repeat families,
we found a number of them to be significantly enriched including SVA F or L1Hs. Surprisingly,
HERV-H, an older ERV sub-families, was also in the list of enriched TEs. This sub-family has been
shown to be expressed and important in human embryonic stem cells64,65. Several families of older
L1 repeats (e.g. L1PA2 to L1PA4) were also enriched and often implicated in what appears to be
non-allelic homologous recombination (see examples in Fig. S10). Reassuringly, the somatic CNVs
once again did not show any of these enrichments (Fig. 4b).

3.7 Impact of CNVs in regions of low-mappability

Compared to the latest 1000GP catalog33, we identified 3,455 novel regions with CNVs in more
than 1% of the population. 81.3% of these regions were located in low-mappability regions while
18.4% were located in extremely low-mappability regions. Among the regions with a CNV in the
CEPH12878 sample, we identified a deletion in the second intron of the TRIM16 gene that was
found by both Pendleton et al.53 and PopSV. Across the 640 individuals analyzed by PopSV, 12%
carried the variant. Thanks to the long-read data, the exact breakpoints had been pinpointed
in Pendleton et al.53 and it was in fact a SVA-F transposable element located within the 6 Kbp
intron in the reference genome but absent from the assembled sequence. SVA-F is one of the
youngest repeat family in the human genome and their high similarity remains a challenge for CNV
analysis. Furthermore, the variant is located within a segmental duplication with 98.5% similarity
and absent from public catalogs such as the 1000GP or GoNL. Another deletion supported by
both public assemblies and local reassembly of the PacBio read was located 12 Kbp downstream
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of TMPRSS11E. 6.6% of the individuals carried the variant in the PopSV catalog. The assembled
sequence helped pinpoint the breakpoints to an annotated L1PA2 in the reference genome. The
variant was also located in a segmental duplication and absent from public catalogs such as the
1000GP or GoNL. Finally, a deletion affecting 8 different exons from the CR1 gene was found
by both Pendleton et al.53 and PopSV in CEPH12878. CR1 has been associated with Alzheimer
disease66 and is located within embedded segmental duplications with high similarity. The deletion
was present in 3% of the population analyzed with PopSV but is absent from public CNV catalogs.

Overall, 7,206 protein-coding genes were found to have an exon overlapping a variant in at
least one of the 640 normal genomes studied (Table 2). If we included the promoter regions (10
Kbp upstream of the transcription start site), at least 11,341 protein-coding genes were potentially
affected by at least one CNV in the population. Focusing on regions of low-mappability, we found
4,285 different CNVs that were completely included in regions annotated as STR. These STR-
CNVs overlapped the coding sequence of 45 protein-coding genes, and 286 genes when including the
promoter region (Table 2). In contrast, for CNVs included in satellite regions, only 21 genes had
an exon or the promoter region overlapping one of the 1,822 Satellite-CNVs. Finally, we focused on
CNVs that were novel compared to the 1000GP33 and in low-mappability regions. Even there, 347
genes were found to have an exon overlapping such CNVs and this number increased to 560 when
including the promoter regions. Out of these 347 genes, 29 were previously associated to a mendelian
disorder in the OMIM database (Online Mendelian Inheritance in Man; http://omim.org/).

Set CNVs Genes with CNVs OMIM genes with CNVs
Exon + Promoter + Intron Exon + Promoter + Intron

All CNVs
All 91,735 7,206 11,341 13,259 1,241 1,857 2,196
Low coverage 32,707 848 1,491 2,648 95 160 371
Extremely low coverage 9,348 304 401 442 11 14 25
TE 20,491 164 1,747 3,998 29 233 664
STR 4,285 45 286 748 5 39 129
Satellite 1,822 2 21 33 0 0 0

Novel CNVs
All 17,046 418 680 1,102 38 59 135
Low coverage 15,263 347 560 894 29 47 111
Extremely low coverage 6,591 189 263 285 5 6 8
TE 3,896 17 192 504 1 12 66
STR 1,806 14 81 230 0 9 41
Satellite 890 1 4 5 0 0 0

Table 2: Impact of CNVs on protein-coding genes. The CNVs number represents the number of
different CNVs, after collapsing CNVs with more than 50% reciprocal overlap. Repeat CNV: more than 90%
of the CNV is annotated as repeat. Genes are protein-coding genes and the promoter region is defined as the
10 Kbp region upstream of the transcription start site. Novel CNVs are located within regions annotated as
novel compared to the 1000 Genome Project catalog.

4 DISCUSSION

Despite the strong interest in CNVs because of their role in diseases, detecting them accurately
has remained a challenge, especially in regions of low-mappability. This is mostly due to technical
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variation in RD that cannot be fully modeled by mappability estimates. Using a recently developed
CNV-calling approach that relies on a set of reference samples to estimate the expected RD (Monlong
et al., under review), we show that it is possible to accurately detect CNVs across the genome, even
in repeat-rich regions. Indeed, using monozygotic twins and normal/tumor pairs, we were able
to demonstrate that the performance of PopSV was stable and in most cases superior to other
methods across different types of low-mappability regions. Although experimental validation can
be challenging in these regions, we were able to confirm a number of deletions using PCR validation
as well as variants in some of the most difficult regions by taking advantage of public datasets from
long-read sequencing studies.

Notably, using PopSV on 140 normal genomes with high sequencing depth (∼40X) and 500 ad-
ditional samples with medium coverage (∼13X), we found that regions of low mappability, which
only represent ∼10% of the genome, were around 5 times more likely to harbor CNVs. The fact that
this enrichment was observed for germline events and not somatic events was both reassuring and
interesting because of the implications on the selection forces at play. In particular, we were able for
the first time to quantify the extent to which some regions in the genome are more prone to harbor
such structural rearrangements. For instance, beyond the known enrichment in segmental duplica-
tions, we found genome-wide enrichments for different families of DNA satellites, simple repeats and
TE, such as SVA, L1Hs and HERV-H. Moreover, although PopSV doesn’t fully characterize STR
variation, it was able to detect CNVs in large annotated STRs. These CNVs could complement the
output of STR detection methods that look for STR variation within sequencing reads and for this
reason cannot test STRs longer than ∼100 bp. Here, we found a strong CNV enrichment in STRs
larger than 400 bp suggesting that large STRs should be included in genome-wide STR variation
screens. Overall, having a more complete CNV catalog enabled an unbiased characterization of
the CNV patterns across the genome and could potentially increase the power for trait-association
studies.

Recent studies using long-read sequencing57,53 found many novel SVs and highlighted variation
involving complex repetitive DNA. The increased resolution and ability to span repeated regions
expanded existing SV catalogs but only a handful of genomes have been sequenced in this way so far
due to the higher cost of this technology. Although breakpoint and allele characterization is limited
with short reads, we were able to detect the presence of such CNVs across a large population of
normal genomes. Compared to previous studies, our CNV catalog strongly overlaps with the variants
found by long-read sequencing studies in low-mappability regions. With hundreds of genomes at our
disposal we identified frequent CNVs in repeat-rich regions that had escaped previous population-
scale surveys. In the CEPH12878 sample, we independently identified low-mappability variants and
showed that some novel deletions were recurrent in our cohort. For example, an exonic deletion
in the CR1 gene absent from public CNV catalogs was identified by the long-read sequencing and
found in ∼3% of the samples tested by PopSV. CR1 has been associated with Alzheimer Disease66

thus this exonic deletion in a low-mappability region might be relevant for association studies. Using
our full CNV catalog, we identified 3,455 novel regions that were not present in 1000G public SV
database33 but found in more than 1% of our 640 genomes. These regions overlapped exons of 418
protein-coding genes, 38 of which were associated with a disease phenotype in the OMIM database.
The amount of genes hit by CNVs in novel or low-mappability regions and the enrichment of CNVs
in repeat-rich regions suggest that they be included in genome-wide surveys. As other types of
variant are likely enriched in repeat-rich regions, we anticipate that population-based methods,
such as PopSV, will facilitate the identification not only of CNVs but also of other types of SVs in
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both normal and cancer genomes.

5 DATA AND CODE AVAILABILITY

The PopSV R package and documentation are available at http://jmonlong.github.io/PopSV/.
The scripts and instructions to reproduce the graphs and numbers in this study have been deposited
at http://github.com/jmonlong/reppopsv/ and archived in https://doi.org/10.5281/zenodo.
1181852.

6 ACESSION NUMBERS

The CNV catalog and annotations were deposited at https://figshare.com/s/8fd3007ebb0fbad09b6d.
The raw sequences of the different datasets had already been deposited by their respective consor-
tium (see SUPPLEMENTARY INFORMATION).
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9 SUPPLEMENTARY TABLES

Validated Chr. Start End Class Left PCR primer Right PCR primer
V 3 6649794 6654897 large CN 0 CCTTAGTATTTCAGTGGTTTCTGTAGGTAT ATAAATATCAGTGCTCAACTTGGACTT
V 5 127407030 127411341 large CN 0 TATTCATATTAACCTATCCTCACAGAAAGA TTTTTAAGAGATTTGAACTAAAATTCCAC
V 3 5535139 5539535 large CN 0 TACTTTTTGAATTTGTAAATTTCCTTTGTA GAAATCAGAAAATCAAGATCATACTGAAG
V 1 116229111 116233162 large CN 0 GTGTTACAGAATTAGTTTTACTGAGTGGTC ATCTATAAAGAACTTTTTCCAAATAAACCA
V 1 158961082 158966958 large CN 1 GTAGAATGAGCTGTGTTATGAGATGGT ATGACTTTCTATTGTTTGAAATGTAGTGAC
V 15 26748887 26752614 large CN 1 CAATTTATCTATCAAGTTATTTCACGGTAG AGTGAGATTTCATTTTAAGCTTGTCTTC
V 6 33937344 33942846 large CN 1 ACATTGTAGCCTGATGACCTTGTTC TGTGTTCTGAGGTTTACTTTATAATCTAGG
V 12 82095501 82099389 large CN 1 ACCTATAACTAAGTGTAGCTGCTGTAACTG TCAGTAAAAATGATTACTACAGTGGAAAAT
V 5 8255604 8260914 large CN 1 TGAACATACATTCATACACACATAATACAA TACATCACTGAACAAACCTCTATAGTCATA
V 20 7398397 7403743 large CN 1 AATAAACATTCTCTATAAACCCTAAAATGG CTTTGTACCATATTTCATAAACGTAGAGTC
V 18 40053822 40057873 large CN 1 TAACTTTCTTTTCTAAAGCTTTTGGAGTAT GTGAATTAAGATTCAATGTCTCTGCTAATA
V 16 48904951 48906510 small CN 0 TCTTATTTATTTTGACAGTCCTTTACTCTG AGATAATCAACTCTTTGTTTATTCTTTCAG
V 2 241086647 241087801 small CN 0 ATCAACATTTAGCCAGTGTTGTCTTAG GTCTCTTGTGCTCTATCTTTGGCTT
V 13 110221621 110222631 small CN 0 ACCTCAGGAGAACTACTTCATACATTTCTA GTATGAAAAACACTCATGGATATCATTTCT
V 11 60571017 60572170 small CN 0 AATGTTGAAGTGTGTCTTTCTGTAATATCT GTGTTTTGTGTCGCTATTTGTTTAGTA
V 5 166402295 166404219 small CN 0 TCACTTTATTCATAACATTTCAGTGTAGAG GATCATATGCTTAAAATGCTAATGAGG
N 3 160126422 160127288 small CN 1 TAAGATACAAGAAATAGAGATAACACTGGG TCTGAACACTTATTTTAAGAAAATGAAAAA
N 17 10612674 10613775 small CN 1 AATTTAGCAGTCTCTTACATTTCTTCTACC TCTCTTCTATAAAAATAAATGGCTAAAAGC
V 10 70253713 70255155 small CN 1 AATAAAATCAAAGGTGATATTACTGACAGA ATATACTCTTTTAACTTTTGACCATTTTGG
V 8 53700635 53702050 small CN 1 TAAGGAAAATTTAGTATAGTCTGGACCTGT ATGGAAATATATCTCTGATGGGTGAC

Table S1: Experimental validation results. Location of the validated (V) and non-validated (N)
CNVs for different classes. The last two columns show the primer sequences used for PCR amplification.
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Chr. Start End CN PCR product size PCR product size when deletion Validated Gel Sanger Sequencing
14 40098378 40100213 0 2586 751 Yes Different bands Yes: confirmed
5 85559864 85564846 1.05 5690 708 Yes Different bands Yes: confirmed
6 14299746 14299801 0.79 755 700 Yes Double bands No
7 153000055 153000246 1.76 1137 946 Yes Double bands Yes: confirmed
4 96401034 96401460 1.13 745 319 Yes Double bands No

16 34230052 34230512 1 1139 679 Yes Double bands No
16 8688137 8689592 1.02 2121 666 Yes Double bands Yes: confirmed
2 12018994 12022932 1.02 4291 353 Yes Double bands Yes: confirmed
3 121051576 121060845 1.14 9485 216 Yes Double bands No
3 54433855 54433912 0 952 895 Yes One band Yes: insertion
2 151031059 151038246 1.11 7485 298 Yes Small band only No
9 45462450 45462522 1.1 530 458 No One band No
7 63233184 63233261 1.33 390 313 No One band Yes: nothing
9 106371251 106371330 1.28 484 405 No One band No

16 20466400 20466487 1.27 393 306 No One band No
5 85559864 85564842 0.78 5690 712 No One band No

10 65703860 65708900 1.64 5430 390 No One band No
7 159117395 159122761 1.09 5909 543 No One band No
2 83066824 83068234 0.57 2097 687 NA No amplification No

13 35996202 35996254 1.13 546 494 NA Non-specific No
4 159799983 159801372 1.03 2313 924 NA Non-specific Yes: not clear
7 52963172 52964911 1.48 2316 577 NA Non-specific No

10 69323932 69326507 1.62 2795 220 NA Non-specific Yes: not clear
6 58618198 58624080 1.04 6518 636 NA Non-specific No

Table S2: Experimental validation in low-coverage regions. The result of the PCR validation
was either concordant with PopSV call (Yes), discordant (No) or inconclusive (NA). In some cases, Sanger
sequencing was performed. The CN column is the estimated copy-number of the deleted allele.

Homozygous deletion
deletion support reference support number of calls

0 0 11
0 1 1
1 0 1
2 0 12

Heterozygous deletion
deletion support reference support number of calls

0 0 18
0 1 10
0 2 7
1 0 6
1 1 4
1 2 4
2 0 10
2 1 3

Table S3: Investigating low-mappability deletion calls with two CEPH12878 assemblies.
The first two columns represent the number of assemblies (0, 1 or 2) supporting the deleted allele or the
reference allele. The third column shows the number of PopSV calls in each category.
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Sample Type Total variants Variants per sample Avg Size (Kbp) Variants < 3 Kbp Affected genome (Mbp)
WG ELC Per sample Total Per sample

2,504 All 41,979 1,024.44 2.22 6.00 700.52 580.03 6.14
DEL 36,102 975.32 2.22 4.67 700.52 342.97 4.56
DUP 8,503 48.26 0.00 32.54 0.00 331.48 1.57

Table S4: Deletions, duplications and CNVs in the 1000 Genomes Project. We removed
variants with high frequency (> 80%), variants in the chromosome X, and variants smaller than 300 bp
in order to compare with PopSV’s numbers (Table 1). WG: whole genome; ELC: extremely low-coverage
regions. The Total number of variants is the total number after collapsing recurrent variants. Affected
genome represents the amount of the reference genome that overlaps at least one CNV.
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Figure S1: Coverage, mappability and population-based measures. a-b) Read coverage in a
sample (y-axis) versus mappability (a) or the inter-sample average coverage (b). c-d) Inter-sample mean (c)
and standard deviation (d) were fitted against the mappability in each cohort separately. The tiles represent
all cohorts pooled together.
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Figure S2: Average coverage in reference samples in the CageKid (a) and GoNL (b)
datasets.
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Figure S3: Rand index between the pedigree information and the dendogram from CNV
calls in low-coverage regions. The dendogram for CNV-based clustering was cut at different levels
(x-axis) and the groups compared to the pedigree (family-level) with the Rand index (y-axis). For each
method, the line highlights the best performance across three linkage criteria.
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Figure S4: PopSV’s performance in low-mappability regions in CageKid dataset. Proportion
and number of calls replicated in the paired tumor. The point shows the median value per sample, the error
bars the 95% confidence interval.
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Figure S5: Distance to assembly gaps and supporting evidence from long-read sequencing
in CEPH12878. Deletions in low-mappability regions were grouped by their supporting evidence (y-axis
and colors). assemblies: deletion observed in at least one of the two public assemblies. PB-SV: overlap with
a structural variant called from the PacBio reads53. PB-reads: deletion observed in the local assembly or
consensus of the PacBio reads. Variants with no support are represented by the white boxplot.
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Figure S6: Overlap between PopSV catalog and calls from Pendleton et al.. Recurrent calls
were collapsed in each catalog (i.e PopSV and the 1000 Genomes Project (1000GP)). The proportion of the
collapsed calls overlapping calls from Pendleton et al.53 was computed. The fold-enrichment is produced by
drawing control regions with similar size distribution as Pendleton’s calls. low-map: calls in low-mappability
regions; ext. low-map: calls in extremely low-mappability regions.

35

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/034165doi: bioRxiv preprint 

https://doi.org/10.1101/034165
http://creativecommons.org/licenses/by-nc-nd/4.0/


GoNL CK somatic

Twins CageKid

0 20 40 60 0 20 40 60

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

distance to centromere/telomere/gap (Mbp)

cu
m

ul
at

iv
e 

pr
op

or
tio

n

CNV
expected

Figure S7: Distance to a centromere, telomere or assembly gap. The y-axis represents the
cumulative proportion of the affected genome. The expected curve is computed from uniformly distributed
genomic regions with matched size.

36

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/034165doi: bioRxiv preprint 

https://doi.org/10.1101/034165
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1

2

3

gene body exon low mappability segmental duplication satellite STR transposable element

fo
ld

 e
nr

ic
hm

en
t

Twins
CageKid
GoNL
CK somatic

(a)

*

*

*

*

*

0

1

2

3

4

5

B
S

R
/B

et
a

R
E

P
52

2

TA
R

1

D
20

S
16

G
S

AT

G
S

AT
X

H
S

AT
4

H
S

AT
5

H
S

AT
6

H
S

AT
I

H
S

AT
II

LS
A

U

M
S

R
1

S
A

R

S
U

B
T

E
L_

sa

G
S

AT
II

S
S

T
1

C
E

R

A
C

R
O

1

(G
A

AT
G

)n

S
AT

R
2

S
AT

R
1

(C
AT

T
C

)n

A
LR

/A
lp

ha

fo
ld

 e
nr

ic
hm

en
t

(b)

*
* *

*

*
*

* * * *
*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*
*

*

**

0.0

0.5

1.0

1.5

A

A
A

A
A

C

A
A

A
AT

A
A

A
C

A
A

A
G

A
G

C
A

G
A

T
C

T
T

T
C

T
T

T
T

G

A
A

AT

A
AT G
T T

T
T

TA A
C

T
G TA AT

ot
he

rs

fo
ld

 e
nr

ic
hm

en
t

(c)

Figure S8: CNVs enrichment after controlling for segmental duplication overlap and
distance to CTG. Enrichment of CNVs in a) different genomic features, b) satellite families and c) simple
repeats in the different cohorts (colors). Bars show the median fold enrichment across samples compared to
control regions. The star represents significant enrichment from the logistic regression.
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Figure S9: Overlap between CNVs and repeats. The histograms represent the proportion of the
CNV region that overlaps a) a satellite, b) a simple repeat or c) a transposable element, when they do
overlap. The expected distribution is computed from the control regions used for the enrichment analysis.
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Figure S10: Polymorphism likely caused by non-homologous allelic recombination be-
tween L1PA repeats. Examples of CNV likely caused by non-allelic homologous recombination between
two L1PA3 repeats (a) or L1PA6 (b). The line and points represent the coverage of one sample with a dupli-
cation (a) or a deletion (b), highlighted in yellow; the violin plots represent the distribution of the coverage
in the reference samples.
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11 SUPPLEMENTARY INFORMATION

11.1 Data

Twin study All patients gave informed consent in written form to participate in the Quebec Study
of Newborn Twins47. Ethic boards from the Centre de Recherche du CHUM, from the UniversitÃľ
Laval and from the Montreal Neurological Institute approved this study. Sequencing was done
on an Illumina HiSeq 2500 (paired-end mode, fragment length 300 bp). The reads were aligned
using a modified version of the Burrows-Wheeler Aligner (bwa version 0.6.2-r126-tpx with threading
enabled). The options were ’bwa aln -t 12 -q 5’ and ’bwa sampe -t 12’. The aligned reads
are available on the European Nucleotide Archive under ENA PRJEB8308. The 45 samples had an
average sequencing depth of 40x (minimum 34x / maximum 57x).

Renal cell carcinoma WGS data from renal cell carcinoma is presented in details in the CageKid
paper48. In short, 95 pairs of normal/tumor tissues were sequenced using GAIIx and HiSeq2000
instruments. Paired-end reads of size 100 bp totaled an average sequencing depth of 54x (minimum
26x / maximum 164x). Reads were trimmed with FASTX-Toolkit and mapped per lane with BWA
backtrack to the GRCh37 reference genome. Picard was used to adjust pairs coordinates, flag
duplicates and merged lane. Finally, realignment was done with GATK. Raw sequence data have been
deposited in the European Genome-phenome Archive, under the accession code EGAS00001000083.

Genome of the Netherlands WGS data from the GoNL project is described in details in
Francioli et al.34. This data have been derived from different sample collections:

• The LifeLines Cohort Study, supported by the Netherlands Organization of Scientific Research
(NWO, grant 175.010.2007.006), the Dutch governmentâĂŹs Economic Structure Enhancing
Fund (FES), the Ministry of Economic Affairs, the Ministry of Education, Culture and Sci-
ence, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration
of Provinces (SNN), the Province of Groningen, the University Medical Center Groningen,
the University of Groningen, the Dutch Kidney Foundation and Dutch Diabetes Research
Foundation.

• The EMC Ergo Study.

• The LUMC Longevity Study, supported by the Innovation-Oriented Research Program on
Genomics (SenterNovem IGE01014 and IGE05007), the Centre for Medical Systems Biology
and the National Institute for Healthy Ageing (Grant 05040202 and 05060810).

• VU Netherlands Twin Register.

In short, samples were sequenced on an Illumina HiSeq 2000 instrument (91-bp paired-end
reads, 500-bp insert size). We downloaded the aligned read sequences (BAM) for the 500 parents in
the data set. We further performed indel realignment using GATK 3.2.2, adjusted pairs coordinates
with Samtools 0.1.19, marked duplicates with Picard 1.118, and performed base recalibration (GATK
3.2.2). The average sequencing depth was 14x (minimum 9x / maximum 59x).
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Genomic annotations Gencode annotation (V19) was directly downloaded from the consortium
FTP server at ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.
annotation.gtf.gz. Other genomic annotations were downloaded from the UCSC database58

server at http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database. The file names of the
corresponding annotations are

Mappability wgEncodeCrgMapabilityAlign100mer.bw
Cytogenetic bands cytoBandIdeo.txt.gz
Centromere, telomere, assembly gap gap.txt.gz
Segmental duplication genomicSuperDups.txt.gz
Simple repeat / Short Tandem Repeats simpleRepeat.txt.gz
RepeatMasker rmsk.txt.gz

11.2 Read count across the genome

The genome was fragmented in non-overlapping bins of fixed size. The number of properly mapped
reads was used as a coverage measure, defined as read pairs with correct orientation and insert size,
and a mapping quality of 30 (Phred score) or more. In each sample, GC bias was corrected by
fitting a LOESS model between the bin’s coverage and the bin’s GC content. For each bin, the
correction factor was computed as the mean coverage across all the bins divided by the predicted
coverage from the LOESS model and the GC content of the bin. We used a bin size of 5 Kbp for
most of the analysis. When specified, we used a smaller bin size of 500 bp.

11.3 RD and mappability estimates

To investigate the bias in RD we used the read counts in 5 Kbp bins. Bins with extremely high
coverage were identified and removed when deviating from the median coverage by more than 5
standard deviation. First the coverage of the 45 samples from the Twin study were combined and
quantile normalized. At that point the different samples had the same global coverage distribution
and no bins with extreme coverage or GC bias.

The mappability track27 was downloaded from UCSC58 (wgEncodeCrgMapabilityAlign100mer.bw)
and the average mappability was computed for each bin. One sample was randomly selected and we
compared its coverage with the mappability estimates. We then computed the mean and standard
deviation of the coverage in each bin across the other samples and compared it with the sample
coverage. We also compared the inter-sample average with the mappability estimates.

To compute Z-scores that integrates the observed coverage variation we used two approaches.
The first modeled the coverage metrics (average or standard deviation) using the mappability es-
timates and computed a Z-score from the predicted coverage and global standard deviation. A
generalized additive model was fitted using a cubic regression spline on the mappability estimates
(mgcv R package). In the second approach, Z-scores were computed using the inter-sample average
and standard deviation. The normality of these two Z-score distributions were compared in term
of excess kurtosis and skewness. For the kurtosis and skewness computation, we removed outlier
Z-scores with an absolute value greater than 10. These bins could be regions of CNV and would bias
the estimates. The Z-score distributions were also compared in bins from 10 different mappability
intervals.

We repeated this analysis pooling 45 samples from each of the three datasets. After quantile
normalization, the inter-sample coverage mean and standard deviation were computed separately
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in each cohort and compared with the mappability estimates.

11.4 CNV detection with PopSV

Binning the genome We ran two separate analysis on the three datasets. Bin sizes of 5 Kbp
and 500 bp were used on the Twin study and renal cell carcinoma. Because of its lower sequencing
depth, the 500 bp run on GoNL gave only partial results. More precisely, we observed a truncated
distribution of the copy-number estimates, with most of the 1 and 3 copy number variants missing.
It means that at this resolution many one-copy variation cannot be differentiated from background
noise. For this reason we ran GoNL analysis using 2 Kbp and 5 Kbp bins.

Constructing the set of reference samples In each dataset we choose the reference samples
as follows: in the renal cancer dataset from the normal samples, in the Twin study from all the
samples, in GoNL from a subset of 200 samples (see below). For each dataset, a Principal Component
Analysis (PCA) was performed across samples on the counts normalized globally (median/variance
adjusted). The resulting first two principal components are used to verify the homogeneity of the
reference samples. Although our three datasets showed different levels of homogeneity, we didn’t
need to exclude samples or split the analysis. The effect of weak outlier samples was either corrected
by the normalization step or integrated in the population-view.

In GoNL, we decided to use only 200 of the 500 samples as reference. They were selected to
span a maximum of the space defined by the principal components. In contrast to random selection,
this ensures that weak outliers are included in the final set of reference samples, hence maximizing
the technical variation integrated in the population-view.

Moreover, the principal components were used to select one control sample from the final set
of reference samples. This sample is used in the normalization step as a baseline to normalize
other samples against. We picked the sample closest to the centroid of the reference samples in the
Principal Component space.

CNV calling After targeted normalization the coverage in each sample is compared to the cov-
erage in the reference samples. A Z-score is computed and translated into a P-value that is then
corrected for multiple testing. Consecutive bins with significant excess or lack of reads are merged
and returned as potential duplication or deletion. Copy number estimates are derived from the cov-
erage across the bin and the average coverage across the reference samples. However, it is important
to note that the definition of a variant is different from other methods. Here a variant is defined by
the major allele in the population rather than the reference genome state. Most of the genome is in
a diploid state compared to the reference genome and sufficiently covered by sequencing reads that
the copy number state can be correctly estimated by PopSV’s population-based approach. However,
highly polymorphic variants are called relative to the major allele in the population and additional
efforts are required to assess the copy number state. Variants in extremely low-mappability regions
are also difficult to fully characterize and might be caused by rare insertion in the reference genome
or complex alleles. Nonetheless, PopSV can efficiently detect the presence of CNV in any situation.
More details are available in the method paper (Monlong et al., under review).

Coverage tracks For each run, we constructed coverage tracks based on the average coverage
in the reference samples. Bins where the reference samples had, on average, the expected coverage

42

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/034165doi: bioRxiv preprint 

https://doi.org/10.1101/034165
http://creativecommons.org/licenses/by-nc-nd/4.0/


were classified as expected coverage. Bins with a coverage lower than 4 standard deviation from
the median were classified as low-mappability(or low coverage). To ensure robustness, the standard
deviation was derived from the Median Absolute Deviation. We use regions with low coverage to
define low-mappability regions, as the low coverage is a result of the lower mappability of a region.
Because the standard deviation is used, the number of regions classified as low-mappability is lower
in datasets with more RD variance.

Eventually, we also defined extremely low coverage region which have an average coverage be-
low 100. This sub-class of low coverage region was used in a few analyses to highlight the most
challenging regions.

Regions were annotated with the overlap with protein-coding genes and segmental duplications
(see Genomic annotations), and the distance to the nearest centromere, telomere or assembly gap.
Finally, we computed the number of protein-coding genes overlapping at least one low-coverage
region.

11.5 Validation and benchmark

Running FREEC, CNVnator, cn.MOPS and LUMPY FREEC16 segments the RD values of a sample
using a LASSO-based algorithm. It was run on each sample separately, starting from the BAM file,
using the same bin sizes as for PopSV. FREEC internally corrects the RD for GC and mappability
bias. In order to compare its performance in low-mappability region, the minimum “telocentromeric”
distance was set to 0. The remaining parameters were set to default. Of note an additional run
with slightly looser parameter (breakPointThreshold=0.6) was performed to get a larger set of
calls used in some parts of the in silico validation analysis to deal with borderline significant calls.

CNVnator17 uses a mean-shift technique inspired from image processing. It was run on each
sample separately, starting from the BAM file, using the same bin sizes as for PopSV. CNVnator
also corrects internally for GC bias and we used default parameters. For the analysis using higher
confidence calls, we used calls with either ’eval1’ or ’eval2’ lower than 10−5 (instead of the default
0.05).

cn.MOPS18 considers simultaneously several samples and detects copy number variation using
a Poisson model and a Bayesian approach. It was run on the same GC-corrected bin counts used
for PopSV. All the samples are analyzed jointly. Of note an additional run with slightly looser
parameter (upperThreshold=0.32 and lowerThreshold=-0.42) was performed to get a larger set
of calls used in some parts of the in silico validation analysis to deal with borderline significant calls.

LUMPY52 which uses an orthogonal mapping signal: the insert size, orientation and split map-
ping of paired reads. The discordant reads were extracted from the BAMs using the recommended
commands. Split-reads were obtained by running YAHA51 with default parameters. All the CNVs
(deletions and duplications) larger than 300 bp were kept for the upcoming analysis. Calls with 5
or more supporting reads were considered high-confidence.

Clustering samples from the Twin study A distance between two samples A and B was
defined as : 1 − 2 |RA∩RB |

|RA|+|RB | where RA represents the regions called in sample A, RA ∩ RB the
regions called in both A and B, and |R| the cumulative size of the regions. Hence, the similarity
between two samples is represented by the amount of sequence found in both divided by the average
amount of sequence called. This distance is used for hierarchical clustering of the samples in the
Twin dataset. The clustering was performed using only calls in regions with extremely low coverage
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(reference average ≤100 reads). Different linkage criteria (average, complete and Ward) were used
for the exploration. In our dendograms we used the average linkage criterion. The concordance
between the clustering and the pedigree was estimated by the Rand index, grouping the samples
per family. For each method and linkage criteria, the Rand index was computed for every possible
dendogram cut (x-axis in Figure S3).

11.6 Experimental validation

Experimental validation was performed on samples from the Twin study. In a first validation batch,
variants were randomly selected among both one-copy and two-copy deletions. We selected both
small (∼ 700 bp) and large (∼ 4 Kbp) variants in each class. The coverage at base pair resolution
was visually inspected for each deletion and, when possible, the breakpoints were fine-tuned. PCR
primers were designed to target the whole deleted region. We randomly selected 20 variants out of
the variants for which we managed to design PCR primers. We then performed long-range PCR
followed by gel electrophoresis. PCR was performed using 50 ng of DNA and the Phusion High-
Fidelity DNA Polymerase from Thermo Fisher Scientific: 95 ◦C 5 minutes followed by 35 cycles (95
◦C 30 seconds, 64 ◦C 30 seconds, 72 ◦C 45 seconds) and 72 ◦C 10 minutes. Either a 1% or 1.8%
aragose gel was used, depending on the expected size of the amplified fragments. We used a 1 Kb
Plus DNA Ladder from Thermo Fisher Scientific.

The presence of a deletion was tested by comparing the size of the amplified fragment in affected
and control samples. If the affected sample showed a lower band than a control with a predicted
2 copies, the deletion was considered validated. On the other hand if affected sample and controls
had one similar band, the deletion was considered non-validated. Of note, the validation rate might
be under-estimated because visual prediction of the breakpoint is not always accurate.

We then randomly selected deletions overlapping low-mappability regions and detected in 6
samples or fewer. We chose to test rare variants because they are likely enriched in false-positives.
Hence, this batch of validation represents the most challenging regions to call and validate, and
enriched in false-positives. Here we couldn’t use the base-pair coverage to fine-tune the breakpoints
because the low-mappability blurs any clear signal. Instead, we retrieved the reads (and their pairs)
mapping to the region and assembled them. With this approach we could sometimes get a better
breakpoint resolution and design PCR primers that would amplify the deleted region. In addition
to gel electrophoresis, the amplified DNA of some regions was sequenced using Sanger sequencing.
We randomly selected 17 variants out of the variants for which we managed to design PCR primers.

1 cycle Ãă 95C: 5 minutes 35 cycles: 95C 30 sec, 64C 30 sec, 72C 45 sec 1 cycle: 72C 10 minutes
fin Ãă 4C

J’ai essayÃľ des fois le mÃłme protocole mais au lieu de 64C je mettais 65.5C
Le gel est un gel d’agarose 1
L’Ãľchelle c’est l’Ãľchelle 1 kb plus ladder de thermofisher.

11.7 Analysis of CEPH12878

Whole-Genome Sequencing data High coverage PCR-free Illumina WGS data for 30 samples,
including CEPH12878, was downloaded from the 1000 Genomes Project33. The ENA accession num-
ber is PRJNA260854. The files are also available on the FTP server at http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502/supporting/high_coverage_alignments/20141118_high_
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coverage.alignment.index. Although the sequencing depth is similar to the other datasets (aver-
age ∼53X), the reads are 250 bp long so the average number of reads per region is lower. Because of
the lower read coverage and sample size the CNV calls will be of slightly lower quality. Nonetheless,
PopSV was run using 5 Kbp bins and all the samples as reference. Using the same coverage track
as before we then selected all deletions in CEPH12878 and overlapping low-mappability regions (at
least 90% of the call). We then looked for support in public assemblies, SV catalogs and reads from
long-read sequencing technologies.

Comparison with assemblies We downloaded the genome assembly produced from short reads,
Pacbio and BioNano reads53 from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/013/985/
GCA_001013985.1_ASM101398v1/GCA_001013985.1_ASM101398v1_genomic.fna.gz. We also down-
loaded a second assembly that was used 10X Genomics linked reads instead of the Pacbio reads54. It
is available at http://kwoklab.ucsf.edu/resources/nmeth_201604_NA12878_hybrid_assembly.
fasta.gz

For each selected variant, we retrieved the two 50 Kbp flanking sequences in the reference
genome and aligned them against the public assemblies with BLAST55. The output was parsed to
identify regions with two flanks aligning in at least 1 Kbp of a contig. MUMmer plots56 between
the reference sequence and the contigs were visually inspected. The assembly supported PopSV calls
when a deletion was visible in the expected region (between the flanks). The assembly supported
the reference genome sequence when a contig crosses the variant without clear structural variant.

SV calls from a long-read sequencing study We downloaded the SV calls from the Pacbio
reads and assembled contigs in Pendleton et al.53. The VCF file is publicly available at ftp://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/NA12878.sorted.
vcf.gz. We overlapped PopSV calls with deletions from this SV catalogs. Because we used 5 Kbp
bins for PopSV, at least 1 Kbp of a PopSV calls needed to overlap a deletion from Pendleton et al.53

to be considered as sufficient support. Of note, the distribution of the overlap tended to be either
null or higher than 1 Kbp supporting this choice.

Local assembly of Pacbio reads Corrected Pacbio reads from Pendleton et al.53 were down-
loaded from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/
corrected_reads_gt4kb.fasta. Each read was split in 200 bp fragments and mapped to the hu-
man reference genome (version hg19). From this mapping information we selected full Pacbio reads
with at least one 200 bp mapping within a region of interest (with 30 Kbp flanks). For each region,
the reads were mapped to the reference sequence with exonerate and we kept reads with partial
mapping as they may support a SV. These reads were then assembled using Canu67. A consensus
sequence was also derived for reads clustered by alignment breakpoint and the clustalo68 software.
The assembled contigs and consensus were mapped to the reference genome to identify a potential
breakpoint. The two regions flanking the alignment breakpoint and the sequence spanning the
breakpoint were mapped to the entire genome. We used the results of this genome-wide mapping to
select the best candidates: assembled sequence whose flanks align uniquely to the region of interest
and with reduced alignment quality for the “middle” sequence that spanned the breakpoint. Can-
didate contig/consensus were further visualized with MUMmer plots56. The assembly supported
PopSV calls when a deletion was visible in the expected region (between the flanks).
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11.8 Genomic patterns of CNVs

Merging calls from two different bin sizes Small bins gives better resolution for smaller
variants. Large bins gives better sensitivity. For this reason we merged the calls from the 500
bp bin and 5 Kbp bin runs. Variant supported by both sets of calls were merged into one. To
decide which set to use for the breakpoints and other information (e.g. copy number estimate),
the proportion of overlap was used. If call(s) using small bins overlapped more than a third of a
call from the large bin run, it was considered fully recovered by the small bin call which was then
used to define breakpoints and other information. If not, the large bin run was considered more
appropriate to define the final breakpoints and additional information. Calls unique to each run
were simply added to the final set of calls. For the Twin dataset and the renal cancer dataset, calls
from the 500 bp and 5Kbp runs were merged. For the GoNL dataset, calls from the 2 Kbp and
5Kbp runs were merged.

Computing global estimates of copy number variation In Table 1, a call in extremely low
coverage region is overlapped at more than 90% by the extremely low coverage track. To compute
the total number of calls, we collapsed calls with an overlap higher than 50%. The amount of
sequence affected in a genome was computed by merging all the variants in the cohort and counting
the number of affected bases in this reference genome. After the merging step, each base of the
genome either overlapped a merged variant or not. Each affected base was counted only once, even
if it overlapped CNVs in several samples or with large copy number differences.

Comparison with the 1000 Genomes Project SV catalog The SV catalog from Sudmant et
al.33 was downloaded from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_
sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz. We retrieved the set of autoso-
mal deletion, duplication and CNVs. When comparing the global estimates of CNV with PopSV,
we removed deletions smaller than 300 bp as well as variants with high frequency (> 80%). This
remaining SVs represent CNVs that could in theory be detected by PopSV’s approach. Using this
sub-set, we derived the number of variants, number of variants smaller than 3 Kbp, number of vari-
ants in extremely low coverage regions, and amount of genome affected. These number are computed
exactly as the one presented in Table 1 for PopSV’s results.

CNV frequency comparison The frequency at which a region is affected by a CNV is computed
using calls from the 620 unrelated samples. The copy-number change is not taken into account in
the computation and the frequency is derived for all the nucleotide that overlaps at least one CNV.
Using each catalog we computed, for each base in the genome, the proportion of individuals with
a CNV. This frequency measure facilitates the comparison of catalogs with different methods and
resolution. We represented the distribution as a cumulative proportion distribution in Figure 3a.
The graphs read as “how much of the total affected genome is called in at more than X% of the
population”. The frequency distribution was computed separately for deletions and duplications
(and CNV in the 1000 Genomes Project catalog). Of note, the 1000 Genomes Project was down-
sampled to 640 random individuals in order to give comparable frequency curves.

Comparison with CNV catalogs from long-read studies First, the SV catalog from Chaisson
et al.57 was downloaded from http://eichlerlab.gs.washington.edu/publications/chm1-structural-variation/.
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Recurrent calls were collapsed in both PopSV and the 1000 Genomes Project catalogs. PopSV’s cat-
alog corresponded to all germline calls in the Twin study, renal cancer dataset and GoNL. The 1000
Genomes Project catalog contained all the deletions, duplications and CNVs, no matter the size or
frequency. The analysis was also performed separately on deletions, duplications, low-mappability
regions and extremely low-mappability regions. For each comparison, we randomly selected control
regions with sizes and overlap with assembly gaps similar to the SVs in Chaisson et al.57 (see Select-
ing control regions). A logistic regression tested the enrichment of CNVs in the Chaisson catalog
versus the control regions. The regression was performed on 50 different sampling of the control
regions for each comparison. The 50 samplings are represented by the boxplot in Figure 3b. We
compared the estimates from the logistic regression. They represent the log odds ratio of a CNV
overlapping the catalog from Chaisson. The same analysis was performed using the SV catalog
from Pendleton et al.53 downloaded from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
NA12878/NA12878_PacBio_MtSinai/NA12878.sorted.vcf.gz.

Distance to centromere, telomere and assembly gaps The centromeres, telomeres and as-
sembly gaps (CTGs) are annotated in the gap track from UCSC58. However, some chromosomes
were missing telomere annotations. We defined them as the 10 Kbp region at the ends of chromo-
somes derived from the cytogenetic bands track.

The distance from each variant to the nearest CTG was computed and represented as a cumu-
lative proportion, i.e. the proportion of variants located at a distance d or closer to a CTG.

Because this distribution changes with the size of the variants, we sampled random regions in
the genome with similar sizes and computed the same distance distribution (see Selecting control
regions). Thanks to this null distribution we were able to see if variants were located closer/further
to CTG than expected by chance.

Selecting control regions In several analyses we compared the CNVs with control regions. The
control regions have the same size distribution as the regions they are derived from (e.g. CNV,
annotation). In some analysis we further controlled for the overlap with specific genomic features.
For example, we controlled for the overlap with CTGs to avoid selecting control regions in assembly
gaps where no CNV or annotation is available. Controlling for the overlap with regions flanking
CTGs, we could simply control for the distance to CTGs. We also used this approach to control
for the overlap with segmental duplications and investigate patterns independent from this repeat
class.

To select control regions, thousands of bases were first randomly chosen in the genome. The
distance between each base and the genomic features was then computed. At this point, simulating
a region of a specific size and with specific overlap profile can be done by randomly choosing as
center one of the bases that fit the profile :{

b,∀ feature f,Of (d
b
f −

Sr
2
) < 0

}
(1)

with Of equals 1 if the original region overlaps with feature f , -1 if not; dbf is the distance between
base b and feature f ; and Sr is the size of the original region.

For each input region, a control region was selected as described and had by construction the
exact same size and overlap profile.
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Enrichment in genomic features We tested different genomic features, starting with: genes,
exons, low-mappability regions, segmental duplications, satellites, simple repeats and transposable
elements. The different satellite families, frequent simple repeat motives, transposable element
families were also tested. We overlapped each genomic feature with CNVs and control regions. We
then computed the fold change in proportion of regions overlapping a feature, in CNV versus control
regions. A pseudo count was added when computing this ratio:

Fold enrichment =
|CNV ∩Feature|+1

N+1
|Control∩Feature|+1

N+1

=
|CNV ∩ Feature|+ 1

|Control ∩ Feature|+ 1
(2)

where N is the number of CNVs (and control regions).
The fold enrichments were computed separately for each sample using control regions that fitted

perfectly the profile of the variants in the sample. To assess the significance of the enrichment, a
logistic regression was performed using CNV and control regions. The model to test one feature in
one sample was:

log

(
P (feature overlap)
P (no overlap)

)
= β0 + βCNV · CNV (3)

with CNV =

{
0 if control region
1 if CNV

To control for the enrichment in segmental duplication we used control regions with similar
overlap profile (see Selecting control regions). We also added a variable representing the overlap
with segmental duplication in the model:

log

(
P (feature overlap)
P (no overlap)

)
= β0 + βCNV · CNV + βSD · SD (4)

with SD =

{
0 if no SD overlap
1 if SD overlap

For each feature and cohort we computed the median P-value. When numerous tests were
performed (e.g. satellite families, simple repeat motives, transposable element families or sub-
families), the P-values were first corrected for multiple testing using Benjamini-Hochberg procedure.

Finally, we computed the proportion of the region overlapped by the different features (satellites,
simple repeats and transposable elements). We compared CNV regions and control regions.

Somatic variant definition Somatic variants were defined as variant in a tumor samples with
low overlap with variant in the paired normal sample. In CageKid data, overlapping tumor variant
with the ones from the paired normal showed almost only two peaks, at 0 and 100% overlap. A
tumor variant was defined as somatic if it overlapped less than 10% of any variant in the paired
normal.
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