Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Mutation rates and the evolution of germline structure

Aylwyn Scally
doi: https://doi.org/10.1101/034298
Aylwyn Scally
Department of Genetics, University of Cambridge, CB2 3EH, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Summary

Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities with our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our longstanding model of spermatogenesis. I consider possible explanations for these differences, including evolutionary changes in life history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and variation in cellular mutation rates at different stages of the germline. I suggest a revised model of stem cell state transitions during spermatogenesis, in which ‘dark’ gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted December 13, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Mutation rates and the evolution of germline structure
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Mutation rates and the evolution of germline structure
Aylwyn Scally
bioRxiv 034298; doi: https://doi.org/10.1101/034298
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Mutation rates and the evolution of germline structure
Aylwyn Scally
bioRxiv 034298; doi: https://doi.org/10.1101/034298

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4685)
  • Biochemistry (10362)
  • Bioengineering (7683)
  • Bioinformatics (26343)
  • Biophysics (13534)
  • Cancer Biology (10694)
  • Cell Biology (15446)
  • Clinical Trials (138)
  • Developmental Biology (8501)
  • Ecology (12824)
  • Epidemiology (2067)
  • Evolutionary Biology (16868)
  • Genetics (11402)
  • Genomics (15484)
  • Immunology (10622)
  • Microbiology (25226)
  • Molecular Biology (10225)
  • Neuroscience (54483)
  • Paleontology (402)
  • Pathology (1669)
  • Pharmacology and Toxicology (2897)
  • Physiology (4345)
  • Plant Biology (9254)
  • Scientific Communication and Education (1587)
  • Synthetic Biology (2558)
  • Systems Biology (6781)
  • Zoology (1466)