Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Automatic genome segmentation with HMM-ANN hybrid models

View ORCID ProfileLi Shen
doi: https://doi.org/10.1101/034579
Li Shen
Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Li Shen
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

We consider the problem of automatic genome segmentation (AGS) that aims to assign discrete labels to all genomic regions based on multiple ChIP-seq samples. We propose to use a hybrid model that combines a hidden Markov model (HMM) with an artificial neural network (ANN) to overcome the weaknesses of a standard HMM. Our contributions are threefold: first, we benchmark two approaches to generate targets for ANN training on an example dataset; second, we investigate many different ANN models to identify the ones with best predictions on chromatin states; third, we test different hyper-parameters and discuss how they affect the machine learning algorithms’ performance. We find our best performing models to beat two pervious state-of-the-art methods for AGS by large margins.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 29, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Automatic genome segmentation with HMM-ANN hybrid models
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Automatic genome segmentation with HMM-ANN hybrid models
Li Shen
bioRxiv 034579; doi: https://doi.org/10.1101/034579
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Automatic genome segmentation with HMM-ANN hybrid models
Li Shen
bioRxiv 034579; doi: https://doi.org/10.1101/034579

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4230)
  • Biochemistry (9123)
  • Bioengineering (6766)
  • Bioinformatics (23968)
  • Biophysics (12109)
  • Cancer Biology (9510)
  • Cell Biology (13753)
  • Clinical Trials (138)
  • Developmental Biology (7623)
  • Ecology (11674)
  • Epidemiology (2066)
  • Evolutionary Biology (15492)
  • Genetics (10631)
  • Genomics (14310)
  • Immunology (9473)
  • Microbiology (22821)
  • Molecular Biology (9086)
  • Neuroscience (48919)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2566)
  • Physiology (3840)
  • Plant Biology (8322)
  • Scientific Communication and Education (1468)
  • Synthetic Biology (2295)
  • Systems Biology (6180)
  • Zoology (1299)