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The vertebrate adaptive immune system provides a flexible and diverse set of molecules to neu-
tralize pathogens. Yet, viruses that cause chronic infections, such as HIV, can survive by evolving
as quickly as the adaptive immune system, forming an evolutionary arms race within a host. Here
we introduce a mathematical framework to study the co-evolutionary dynamics of antibodies with
antigens within a patient. We focus on changes in the binding interactions between the antibody and
antigen populations, which result from the underlying stochastic evolution of genotype frequencies
driven by mutation, selection, and drift. We identify the critical viral and immune parameters that
determine the distribution of antibody-antigen binding affinities. We also identify definitive signa-
tures of co-evolution that measure the reciprocal response between the antibody and viruses, and
we introduce experimentally measurable quantities that quantify the extent of adaptation during
continual co-evolution of the two opposing populations. Finally, we analyze competition between
clonal lineages of antibodies and characterize the fate of a given lineage dependent on the state of
the antibody and viral populations. In particular, we derive the conditions that favor the emergence
of broadly neutralizing antibodies, which may be used in designing a vaccine against HIV.

Introduction

It takes decades for humans to reproduce, but our
pathogens can reproduce in less than a day. How can
we coexist with pathogens whose potential to evolve is
104-times faster than our own? The answer no doubt lies
in the vertebrate adaptive immune system, which uses
recombination, mutation, and selection to evolve a re-
sponse on the same time-scale at which pathogens them-
selves evolve.

One of the central actors in the adaptive immune sys-
tem are B-cells, which recognize pathogens using highly
diverse membrane-bound receptors. Naive B-cells are
created by processes which generate extensive genetic di-
versity in their receptors via recombination, insertions
and deletions, and hypermutations [1] which can poten-
tially produce ∼ 1018 variants in a human repertoire [2].
This estimate of potential lymphocyte diversity outnum-
bers the total population size of B-cells in humans, i.e.,
∼ 1010 [3, 4]. During an infection, B-cells aggregate to
form germinal centers, where they hypermutate at a rate
of about ∼ 10−3 per base pair per cell division over a
region of 1-2 kilo base pairs [5]. The B-cell hypermu-
tation rate is approximately 4 − 5 orders of magnitude
larger than an average germline mutation rate per cell
division in humans [6]. Mutated B-cells compete for sur-
vival and proliferation signals from helper T-cells, based
on the B-cell receptor’s binding to antigens. This form
of natural selection is known as affinity maturation, and
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it can increase binding affinities up to 10-100 fold [7–9],
see Fig. 1. B-cells with high binding affinity may leave
germinal centers to become antibody secreting plasma
cells, or dormant memory cells that can be reactivated
quickly upon future infections [1]. Secreted antibodies,
which are the soluble form of B-cell receptors, can bind
directly to pathogens to mark them for neutralization by
other parts of the immune system. Plasma B-cells may
recirculate to other germinal centers and undergo further
hypermutation [8].

Some viruses, such as seasonal influenza viruses, evolve
quickly at the population level, but the adaptive immune
system can nonetheless remove them from any given host
within a week or two. By contrast, chronic infections can
last for decades within an individual, either by pathogen
dormancy or by pathogens avoiding neutralization by
evolving as rapidly as B-cell populations. HIV mutation
rates, for example, can be as high as 0.1− 0.2 per gener-
ation per genome [10]. Neutralizing assays and phyloge-
netic analyses suggest an evolutionary arms race between
B-cells and HIV populations during infection in a single
patient [11–14]. Viruses such as HIV have evolved to
keep the sensitive regions of their structure inaccessible
by the immune system e.g., through glycan restriction or
immuno-dominant variable loops [15, 16]. As a result,
the majority of selected antibodies bind to the most eas-
ily accessible regions of the virus, where viruses can tol-
erate mutations and thereby escape immune challenge.
Nonetheless, a remarkably large proportion of HIV pa-
tients (∼ 20%) eventually produce antibodies that neu-
tralize a broad panel of virions [17, 18] by attacking struc-
turally conserved regions, such as the CD4 binding site
of HIV env protein [13, 19–22]. These broadly neutraliz-
ing antibodies (BnAbs), can even neutralize HIV viruses
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from other clades, suggesting it may be possible to de-
sign an effective HIV vaccine if we can understand the
conditions under which BnAbs arise [13, 19, 22–26].

Recent studies have focused on mechanistic modeling
of germinal centers in response to one or several antigens
[7, 27], and elicitation of BnAbs [26, 28]. However, these
studies did not model the co-evolution of the virus and
B-cell repertoire, which is important to understand how
BnAbs arise in vivo. Modeling of such co-evolution is
difficult because the mechanistic details of germinal cen-
ter activity are largely unknown [14], and the multitude
of parameters make it difficult to identify generalizable
aspects of a model. While evidence of viral escape mu-
tations and B-cell adaptation has been observed exper-
imentally [11–14] and modeled mechanistically [26, 28],
it is not clear what are the generic features and relevant
parameters in an evolutionary arms race that permit the
development, or, especially, the early development of Bn-
Abs. Phenomenological models ignore many details of
affinity maturation and heterogeneity in the structure of
germinal centers and yet produce useful qualitative pre-
dictions [14, 29]. Past models typically described only
a few viral types [26, 27, 30], and did not account for
the vast genetic diversity and turnover seen in infecting
populations.

In this paper, we take a phenomenological approach to
model the within-host co-evolution of diverse populations
of B-cells and chronic viruses. We focus on the latency
phase of an infection, during which the population sizes
of viruses and lymphocytes are relatively constant but
their genetic compositions undergo rapid turnover [31].
We characterize the interacting sites of B-cell receptors
and viruses as mutable binary strings, with binding affin-
ity, and therefore selection, defined by matching bits. We
keep track of both variable regions in the viral genome
and conserved regions, asking specifically when B-cell re-
ceptors will evolve to bind to the conserved region, i.e.,
to develop broad neutralization capacity. The main sim-
plification that makes our analysis tractable is that we
focus on the evolution of a shared interaction phenotype,
namely the distribution of binding affinities between vi-
ral and receptor populations. Specifically, we model the
effects of mutations, selection and reproductive stochas-
ticity on the distribution of binding affinities between the
two populations. Projecting from the high-dimensional
space of genotypes to lower dimension of binding pheno-
types allows for a predictive and analytical description
of the co-evolutionary process [32], whilst retaining the
salient information about the quantities of greatest bio-
logical and therapeutic interest.

Using this modeling approach we show that the evolu-
tion of the binding affinity does not depend on details of
any single-locus contribution, but is an emerging prop-
erty of all constitutive loci. Even though the co-evolution
of antibodies and viruses is perpetually out of equilib-
rium, we develop a framework to quantify the amount

of adaptation in each of the two populations by defin-
ing fitness and transfer flux, which partition changes in
mean fitness. We discuss how to measure the fitness and
transfer flux from time-shifted experiments, where anti-
bodies are competed against past and future viruses; and
we show how such measurements provide a signature of
co-evolution. We discuss the consequences of competi-
tion between clonal B-cell lineages within and between
germinal centers. In particular, we derive analytic ex-
pressions for the fixation probability of a newly arisen,
broadly neutralizing antibody lineage. We find that Bn-
Abs have an elevated chance of fixation in the presence of
a diverse viral population, whereas specific neutralizing
antibody lineages do not. We discuss the implications of
these results for the design of preventive vaccines that
elicit BnAbs against HIV.

Model

Interaction phenotype between antibodies and

viruses. B-cell receptors undergo mutation and selec-
tion in germinal centers, whereas viruses are primarily
affected by the receptors secreted into the blood, known
as antibodies. Our model does not distinguish between
antibodies and B-cells, so we will use the terms inter-
changeably. To represent genetically diverse populations
we define genotypes for antibodies and viruses as binary
sequences of ±1, where mutations change the sign of indi-
vidual loci. Mutations in some regions of a viral genome
are highly deleterious, e.g. at sites that allow the virus
to bind target cell receptors, including CD4-binding sites
for HIV. To capture this property we explicitly model a
conserved region of the viral genome that does not tol-
erate mutations, so that its bits are always set to +1.
We let viruses have variable bits at positions i = 1 . . . `,
and conserved bits at positions i = `+ 1, . . . , `+ ˆ̀; while
antibodies have variable bits at positions i = 1 . . . `+ ˆ̀;
see Fig. 1B.

Naive B-cells generate diversity by recombination
events (VDJ recombination), which differentiates their
ability to bind to different epitopes of the virus; and then
B-cells diversify further by somatic hypermutation and
selection during affinity maturation. We call the set of
B-cells that originate from a common germline sequence
a clonal lineage. A lineage with access to conserved re-
gions of the virus can effectively neutralize more viral
genotypes, since no escape mutation can counteract this
kind of neutralization.

The binding affinity between antibody and virus deter-
mines the likelihood of a given antigen neutralization by
an antibody, and therefore it is the key molecular pheno-
type that determines selection on both immune and viral
populations. We model the binding affinity as a weighted
dot product over all loci, which for antibody Aα chosen

from the genotype space α ∈ 1 . . . 2`+
ˆ̀

and virus V γ with
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FIG. 1: Co-evolution of antibodies and viruses. (A)
Schematic of affinity maturation in a germinal center. A
naive, germline B-cell receptor (black) with marginal binding
affinity for the circulating antigen (red pentagon) enters the
process of affinity maturation in a germinal center. Hypermu-
tations produce a diverse set of B-cell receptors (colors), the
majority of which do not increase the neutralization efficacy
of B-cells, except for some beneficial mutations that increase
binding affinity (dark blue and green) to the presented anti-
gen. The selected B-cells may enter the blood and secrete
antibodies, or enter further rounds of hypermutations to en-
hance their neutralization ability. Antigens mutate and are
selected (yellow pentagon) based on their ability to escape
the current immune challenge. (B) We model the interaction
between the genotype of a B-cell receptor and its secreted an-
tibody (blue) with a viral genotype (red) in both variable and
conserved regions of the viral genome. The black and white
circles indicate the state of the interacting loci with values ±1.
Loci in the conserved region of the virus are fixed at +1. The
length of the arrows indicate the contribution of each locus to
the binding affinity, κi, which is a measure of the accessibility
of an antibody lineage to viral epitopes. The blue arrows in-
dicate the interactions that increase binding affinity (i.e., loci
with same signs in antibody and viral genotype), whereas red
arrows indicate interaction that decrease the affinity (i.e., loci
with opposite signs in antibody and viral genotype.)

γ ∈ 1 . . . 2` has binding affinity
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α
i︸ ︷︷ ︸

conserved viral region

≡ ECαγ + ÊCα (1)

where, Aαi = ±1 denotes the ith locus of the α antibody
genotype, and V γi the ith locus of the γ viral genotype.
Matching bits at interacting positions enhance binding
affinity between an antibody and a virus; see Fig. 1B.

Similar models have been used to describe B-cell matu-
ration in germinal centers [26], and T-cell selection based
on the capability to bind external antigens and avoid self
proteins [33, 34]. The conserved region of the virus with

Vi = 1 is located at positions i = ` + 1, . . . , ` + ˆ̀ for all
viral sequences. Consequently, the total binding affinity
is decomposed into the interaction with the variable re-
gion of the virus, ECαγ and with the conserved region of

the virus, ÊCα. We call the lineage-specific binding con-
stants {κCi ≥ 0} and {κ̂Ci ≥ 0} the accessibilities, because
they characterize the intrinsic sensitivity of an antibody
lineage to individual sites in viral epitopes. We begin by
analyzing the evolution of a single antibody lineage, and
suppress the C notation for brevity. Co-evolution with
multiple antibody lineages is discussed in a later section.

Both antibody and viral populations are highly poly-
morphic, and therefore contain many genotypes simul-
taneously. While the binding affinity between a virus
V γ and an antibody Aα is constant, given by eq. (1),
the frequencies of the antibody and viral genotypes, xα

and yγ , and all quantities derived from them, change
over time as the two populations co-evolve. To char-
acterize the distribution of binding affinities we define
the genotype-specific binding affinities in each popula-
tion, which are marginalized quantities over the opposing
population: Eα · =

∑
γ Eαγy

γ for the antibody Aα, and
E. γ =

∑
αEαγx

α for the virus V γ . We will describe the

time evolution of the joint distribution of Eα ·, Êα, and
E· γ , by considering three of its moments: (i) the mean
binding affinity, which is the same for both populations
E =

∑
αEα ·x

α =
∑
γ E· γy

γ , (ii) the diversity of bind-

ing affinity in the antibodies, MA,2 =
∑
α (Eα · − E)

2
xα

and (iii) the diversity of binding affinities in the viruses,

MV,2 =
∑
γ (E· γ − E)

2
yγ . Analogous statistics of bind-

ing affinities can be defined for the conserved region of
the virus, which we denote by Ê for the mean interaction,
and M̂A,2 for the diversity across antibodies. The diver-
sity of viral interactions in the conserved region must
always equal zero, M̂V,2 = 0.

The model outlined above is similar to models for the
evolution of other molecular traits developed in the con-
text of quantitative genetics [35–37]. Our analysis ne-
glects the correlation between the variable and the con-
served regions of the virus, which is due to physical link-
age of the segments. In Methods and in Fig. S3 we show
that there is a difference in evolutionary time-scales of
these two regions, which reduces the magnitude of this
correlation.

Co-evolution of a single antibody lineage and viral

population. We first characterize the affinity matura-
tion process of a single clonal antibody lineage coevolving
with a viral population, which includes hypermutation,
selection, and stochasticity due to population size in ger-
minal centers, i.e., genetic drift.

In the bi-allelic model outlined in Fig. 1B, a hypermu-
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tation changes the sign of an antibody site, i.e., Aαi →
−Aαi , affecting binding affinity in proportion to the lin-
eage’s intrinsic accessibility at that site, κi. Therefore, a
mutation in an antibody at position i changes Eα . by
δiEα . = −2κiA

α
i

∑
γ V

γ
i y

γ . Likewise, a mutation at

position j of a virus V γj → −V γj affects binding affin-
ity in proportion to κj . We assume constant mutation
rates in the variable regions of the viruses and antibod-
ies: µv and µa per site per generation. Summing the
effects of mutations in both antibody and viral popula-
tions yields the per-generation change in mean binding
affinity, ∆E = −2(µa + µv)E in the variable region and
∆Ê = −2µaÊ in the conserved region of the virus. In the
absence of selection, E and Ê approach zero over time,
which is the state of highest sequence entropy. In Meth-
ods and in SI we discuss the evolution of the higher cen-
tral moments in detail.

Frequencies of genotypes change according to their rel-
ative growth rate, or fitness. The change in the frequency
of antibody Aα with fitness fAα is ∆xα = (fAα −FA)xα

per generation, where FA =
∑
α fAαx

α denotes the mean
fitness of the antibody population. Likewise, the change
in frequency of virus V γ due to selection per generation
is, ∆ yγ = (fV γ − FV )yγ , where FV denotes the mean
fitness in the viral population.

The most important choice in formulating an evolu-
tionary model is to specify the form of fitness for each
genotype. During affinity maturation in a germinal cen-
ter B-cell growth rate depends on their ability to bind
to the limited amounts of antigen, and to solicit survival
signals from helper T-cells [8]. The simplest functional
form that approximates this process, and for which we
can provide analytical insight, is linear with respect to
the binding affinity,

fAα = Sa(Eα · + Êα) (2)

fV γ = −Sv(E· γ + Ê) (3)

for antibody Aα and virus V γ . The selection coefficient
Sa > 0 quantifies the strength of selection on the binding
affinity of antibodies. The value of Sa may in fact de-
crease in late stages of a long-term HIV infection, as the
host’s T-cell count decays [29], but we do not model this
behavior. The viral selection coefficient Sv > 0 repre-
sents immune pressure impeding the growth of the virus.

Changes of the genotype frequencies ∆xα and ∆yγ in
the antibody and viral populations due to selection af-
fect the mean binding affinity between the two popu-
lations. In the linear fitness formulation in eqs. (2,3),
the change in the mean binding affinity per generation is
∆E = SaMA,2 − SvMV,2 and ∆Ê = SaM̂A,2, in the vari-
able and conserved regions respectively. As these equa-
tions reflect, mean binding affinity increases in propor-
tion to the diversity of antibody binding affinities, and it
decreases in proportion to the diversity of viral binding

affinities, in accordance with the Price equation [38].

Many aspects of affinity maturation are not well
known, and so it is worth considering other forms of selec-
tion. Therefore, in the Methods and in Section 2.5 of SI
we describe fitness as a non-linear function of the binding
affinity. In particular, we consider fitness that depends
on the antibody activation probability, which is a sigmoid
function of the strongest binding affinity among a finite
number of interactions with antigens. The linear fitness
function in eq. (2) is a limiting case of this more gen-
eral fitness model. While most of our analytical results
are based on the assumption of linear fitness function,
we also discuss how to quantify adaptation for arbitrary
fitness models, and we numerically study the effect of
nonlinearity on the rate of antibody adaptation during
affinity maturation.

Although the population of B-cells can reach large
numbers within an individual host, significant bottle-
necks occur in germinal centers, where there may be on
the order of ∼ 103 − 104 B-cells [7]. While our model
does not describe heterogeneity between germinal cen-
ters, we do model the effects of finite population size as
stochasticity in reproductive success, known as genetic
drift. Similarly, for HIV, estimates for intra-patient viral
divergence suggests an effective population size of about
∼ 102 − 103, which is much smaller than the number of
infected cells within a patient ∼ 107 − 109 [39]. We use
diffusion equations in which the strength of genetic drift
is described by the effective population sizes Na and Nv
of antibodies and viruses (see Section 2 of SI for details).

Without loss of generality, we assume that generation
times in antibodies and viruses are equal, but we de-
fine distinct characteristic time-scales for the two pop-
ulations. The relevant time-scale for evolution of poly-
morphic populations is the neutral coalescence time, N
generations – namely, the characteristic time that two
randomly chosen neutral alleles in the population coa-
lesce to their most recent common ancestor. The neutral
coalescence time is estimated by reconstructing phyloge-
netic trees from sequences and is often interpreted as an
effective population size, which may be different from the
census population size. Coalescence time can be mapped
onto real units of time (e.g., days) if data are collected
with sufficient time resolution. To distinguish between
the neutral coalescence time of antibodies and viruses,
we use distinct values for their population sizes, i.e., Na
in antibodies and Nv in viruses.

Combining genetic drift with mutation and selec-
tion, and assuming a continuous-time and continuous-
frequency process, results in a stochastic dynamical equa-
tion for the evolution of mean binding affinity in the vari-
able region,

d

dt
E = −2(µa+µv)E+SaMA,2−SvMV,2+

√
MA,2

Na
+
MV,2

Nv
χE

(4)
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and in the conserved region,

d

dt
Ê = −2µaÊ + SaM̂A,2 +

√
M̂A,2

Na
χÊ (5)

where χE and χÊ are standard Gaussian noise terms.

The number of sites and their accessibilities, which
are implicit in eqs. (4, 5), affect the overall strength
of selection on binding affinity. Therefore, it is use-
ful to absorb the intrinsic effects of the trait magnitude
into the selection strength, and keep the binding affini-
ties comparable across lineages of antibodies, and across
experiments. We therefore rescale quantities related to
the binding affinity by the total scale of the phenotypes
E2

0 =
∑
i κ

2
i and Ê2

0 =
∑
i κ̂

2
i , such that ε = E/E0,

ε̂ = Ê/Ê0, mA,2 = MA,2/E
2
0 and mV,2 = MV,2/E

2
0 ,

and m̂A,2 = M̂A,2/Ê
2
0 . Accordingly, we define rescaled

selection coefficients sa = NaSaE0, ŝa = NaSaÊ0 and
sv = NvSvE0, which describe the total strength of selec-
tion on binding affinity.

Empirical estimates of per-generation mutation rates
for viruses µv or hypermutation rates of BCR sequences
µa are extremely imprecise, and so we rescale mutation
rates by neutral coalescence times. To do this, we use
measurements of standing neutral sequence diversity, es-
timated from genetic variation in, e.g., the four-fold syn-
onymous sites of the protein sequences at each position.
Neutral sequence diversity for the antibody variable re-
gion, which spans a couple of hundred base pairs, is about
θa = Naµa = 0.05− 0.1 [2]. Nucleotide diversity of HIV
increases over time within a patient, and ranges between
θv = Nvµv = 10−3−10−2 in the env protein of HIV-1 pa-
tients, with a length of about a thousand base pairs [40].
Interestingly, the total diversity of the variable region
in BCRs is comparable to the diversity of its main tar-
get, the env protein, in HIV. Therefore, both populations
have on the order of 1-10 mutations per genotype per gen-
eration, which we use as a guideline for parameterizing
simulations of our model.

Results

Dynamics of the mean binding affinity. The model
defined above is analytically tractable, which allows us
to study the dynamics of antibody-viral co-evolution in
terms of their basic underlying parameters. We focus
initially on understanding the (rescaled) mean binding
affinity ε, ε̂ between a clonal antibody lineage and the
viral population, since this is a proxy for the overall neu-
tralization ability that is commonly monitored during an
infection. Appropriate rescaling of eqns. [4,5] shows that
the efficacy of selection on binding affinity from the an-
tibody or the viral populations depends on the rescaled
diversity mA,2, mV,2 in each of the populations, as shown
in eqns. [4,5].

If a population harbors a large diversity of binding
affinities then it has more potential for adaptation from
the favorable tail of the distribution, which contains the
most fit individuals in each generation [38, 41]. It follows
that selection on viruses does not affect the evolution of
their conserved region, where the viral diversity of bind-
ing is always zero, m̂V,2 = 0. In the following we describe
the stochastic dynamics of the mean binding affinity and
diversities, as well as their ensemble-averaged stationary
solutions.

The dynamics described by eqns. [4,5] present a com-
mon difficulty: the change in mean binding affinity de-
pends on the binding diversities, and the diversities in
turn depend on higher moments, forming an infinite hi-
erarchy (see Methods and Section 2.3 of SI). However,
this moment hierarchy can be simplified to produce ac-
curate analytical approximations in the regime where se-
lection on individual loci is weak but the additive effects
of selection on the total binding affinity are strong, i.e.,
NaSaκi < 1 and sa ? 1 for antibodies, and likewise for
viruses and the conserved region. This parameter regime,
which has been observed in chronic HIV infections [40],
makes it possible to truncate the moment hierarchy and
produce reliable predictions for the mean and the diver-
sity of binding affinities, when the rescaled coefficients
satisfy saθa < 1 and svθv < 1. As shown in detail in
Section 2 of SI, truncation at the 4th central moment is
a suitable choice for our model.

As shown in Fig. S3 and discussed in Methods, the
binding diversities are fast variables compared to the
mean affinity, and therefore, we can describe the dynam-
ics of the mean in terms of the stationary binding diver-
sities. The ensemble-averaged binding diversities depend
only weakly on the strength of selection and can be ap-
proximated by 〈mA,2〉 ' 4θa and 〈mV,2〉 ' 4θv, even for
substantial selection s ∼ 1. Here 〈·〉 indicates ensem-
ble averaging. Higher-order corrections to the diversity
of the binding affinity are given in Section 2 of SI and
shown in Fig. S2. In this regime, the ensemble-averaged
mean binding affinities relax exponentially towards their
stationary values,

〈ε〉 ' 2(saθa − svθv(Na/Nv))
θa + θv(Na/Nv)

≡ 2 ∆sav (6)

〈ε̂〉 ' 2 ŝa (7)

where ∆sav is an effective selection coefficient for bind-
ing affinity in the variable region, combining the effect of
selection from both populations and accounting for their
distinct genetic diversities. The stationary mean binding
affinity quantifies the balance of mutation and selection
acting on both populations. Mutations drive the mean
affinity towards the neutral value, zero, whereas selection
pushes it towards positive or negative values. Positive
values indicate that binding is more strongly influenced
by the antibodies, whereas negative values indicate more
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influence from the viruses. Strong selection difference
between two populations ∆sav ? 1, results in selective
sweeps for genotypes with extreme values of binding affin-
ity in each population, and hence, reduces the diversity
of interactions as shown in Fig. S2. In Section 2.3 of SI
we discuss in detail the effect of selection on the diversity
of binding affinities. We validate our analytical solutions
for stationary mean binding and diversities by compari-
son with Wright-Fisher simulations across a broad range
of selection strengths.

In the Methods and in Section 2.5 of SI we numerically
study the non-linear fitness landscapes described in the
Model section, and their effect on the stationary mean
binding and rate of adaptation (Fig. S4A). While the
results differ quantitatively, we can qualitatively under-
stand how the stationary mean binding affinity depends
on the form of non-linearity.

The rescaled binding affinities ε ≡ E/E0, ε̂ ≡ Ê/Ê0 are
independent of the total scale of the phenotype, and can
therefore be used for comparisons across experiments.
Measuring the total scale of the phenotype E0, Ê0 di-
rectly would require a library of all single point mutations
and measurements of their presumably very small fitness
differences, κi, κ̂i. Nonetheless the rescaled mean binding
affinities can be approximated simply by measurements
of the binding affinity distribution and neutral sequence
diversities, which are experimentally accessible. The ra-
tio of the binding diversityMA,2 and the neutral sequence
diversity θa provides a reasonable approximation for the
overall scale of the phenotype: ε ≈ 〈E〉/

√
〈MA,2〉/4θa

and ε̂ ≈ 〈Ê〉/
√
〈M̂A,2〉/4θa. Fig. S1 demonstrates the

utility of this approximation and shows, moreover, that
heterogeneous binding accessibilities in an antibody lin-
eage, κi, drawn from several different distributions, do
not affect predictions for stationary mean binding. Even
though we have formulated a high-dimensional stochastic
model of antibody-antigen co-evolution in polymorphic
populations, Fig. S1 demonstrates that we can nonethe-
less understand the long-term binding affinities, which
are commonly measured in patients, in terms of only a
few key parameters.

Fitness and transfer flux. The antagonistic co-evolution
of antibodies and viruses is a non-equilibrium process,
with each population constantly adapting to a dynamic
environment, namely, the state of the opposing popula-
tion. As a result, any time-independent quantity, such
as the stationary mean binding affinity studied above, is
itself not informative for the extent of co-evolution that
is occurring. For example, a stationary mean binding
affinity of zero (equivalently ∆sav = 0 in eq. (6)) can in-
dicate either neutral evolution or rapid co-evolution in-
duced by equally strong selection in antibody and viral
populations.

To quantify the amount of adaptation and extent of
interaction in two co-evolving populations we will parti-
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FIG. 2: Effect of selection on immune-virus binding
affinity. Our mathematical model predicts the stationary
mean binding affinity between viruses and antibodies in terms
of small number of key parameters. The figure plots the
stationary mean binding affinity, rescaled by the diversity of
binding in the antibody population (E/

√
MA,2/4θa), as pre-

dicted by our analysis (line) compared with Wright-Fisher
simulations (dots). Remarkably, the stationary mean bind-
ing is a simple function of the selection difference between
antibody and viral populations, ∆sav (eq. (6)), which is in-
sensitive to the details of the heterogeneous binding accessi-
bilities, κi, associated with an antibody lineage (drawn from
several different distributions, shown in legend). Small devia-
tions from this collapse onto a universal predicted mean bind-
ing are due to higher moments of binding affinity, which can
also be understood analytically (Fig. S1). Stationary mean
binding affinities are averaged from simulations with selec-
tion coefficients, sa, ŝa, sv ranging from 0 to 6, and with
Na = Nv = 1000, ` = ˆ̀= 25, θa = θv = 1/50.

tion the change in mean fitness of each population into
two components. We measure adaptation by the fit-
ness flux [42, 43], which quantifies the change in mean
fitness of a population in response to the state of the
environment (that is, in this case, the opposing popu-
lation). More specifically, the fitness flux of the anti-
body population quantifies the effect of changing geno-
type frequencies on mean fitness, and it is defined as
φA(t) =

∑
α ∂xαFA(t) dxα(t)/dt, where FA denotes the

mean fitness of antibodies, and the derivative dxα(t)/dt
measures the change in frequency of the antibody Aα.
The forces of mutation, drift, and selection all contribute
to fitness flux, however the portion of fitness flux due
to selection always equals the population variance of fit-
ness, in accordance with Fisher’s theorem [41]. The
second quantity we study, which we term the transfer
flux, measures the amount of interaction between the
two populations by quantifying the change in mean fit-
ness due to the response of the opposing population.
The transfer flux from viruses to antibodies is defined
as TV→A(t) =

∑
γ ∂yγFA(t) dyγ(t)/dt. Analogous mea-

sures of adaptation and interaction can be defined for the
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viral population (see Section 3 of SI).

The fitness flux and transfer flux represent rates
of adaptation and interaction, and they are typically
time dependent, except in stationary state. The to-
tal amount of adaptation and interaction during non-
stationary evolution, where the fluxes change over time,
can be measured by the cumulative fluxes over a period
of time: ΦA(τa) = Na

∫ t
t′=0

φA(t′) dt′ and TV→A(τa) =

Na
∫ t
t′=0
TV→A(t′) dt′, where time τa = t/Na is measured

in units of neutral coalescence time of antibodies Na. In
the stationary state, the ensemble-averaged cumulative
fluxes grow linearly with time. For co-evolution on the
fitness landscapes given by equations [2,3], the ensemble-
averaged, stationary cumulative fitness flux and transfer
flux in antibodies are

〈ΦA(τa)〉 =
[
− 2θasa〈ε〉+ s2

a〈mA,2〉
]
τa (8)

〈TV→A(τa)〉 =
[
− 2θvsa〈ε〉 − sasv〈mV,2〉

]
(Na/Nv)τa

(9)

Note that the factor (Na/Nv)τa in eq. (9), which is a
rescaling of time in units of viral neutral coalescence time
τv = t/Nv, emphasizes the distinction between the evo-
lutionary time scales of antibodies and viruses. The first
terms on the right hand side of eqs. (8,9) represent the
fitness changes due to mutation, second terms are due to
selection, and the effects of genetic drift are zero in the
ensemble average for our linear fitness landscape. No-
tably, the flux due to the conserved region of the virus is
zero in stationarity, as is the case for evolution in a static
fitness landscape (i.e., under equilibrium conditions). In
the stationary state, the cumulative fitness and transfer
fluxes sum up to zero, 〈ΦA(τa)〉+ 〈TV→A(τa)〉 = 0.

Fitness flux and transfer flux are generic quantities
that are independent of the details of our model, and so
they provide a natural way to compare the rate of adap-
tation in different evolutionary models or in different ex-
periments. In the regime of strong selection sa, sv & 1,
non-linearity of the fitness function results in a more nar-
row distribution of fitness values in the antibody popu-
lation, and hence, reduces the rate of adaptation and
fitness flux; see Fig. S4. In the following section we show
how to use fitness and transfer flux to detect signatures
of significant antibody-antigen co-evolution.

Signature of co-evolution. Measuring interactions be-
tween antibody and viral populations sampled from dif-
ferent time points provides a powerful way to identify sig-
natures of immune-pathogen co-evolution. These types
of “time-shifted” experiments are informative both in
theoretical models and in empirical assays. In general,
antibodies sampled at the present perform best against
viruses sampled from the past, to which they have been
selected to bind, whereas they perform worst against
viruses from the future, due to viral escape (Fig. 3).
Under our model, and neglecting the conserved region
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FIG. 3: Time-shifted binding assays between anti-
bodies and antigens provide a definitive signature
of viral-immune co-evolution. (A) Stationary binding
affinity between the antibody population sampled at time t,
and the viral population at time t + τ , averaged over all t:
ετ = 〈

∑
α,γ Eαγx

α(t)yγ(t+τ)〉t/E0, and (B) the time-shifted
mean fitness of the antibody population NaFA;τ = saετ are
shown for three distinct regimes of co-evolutionary dynamics:
(i) strong and comparable selection strengths on both anti-
bodies and antigens sa = sv = 2 (blue), (ii) strong selection in
antibodies sa = 2 and no selection on viruses sv = 0 (green),
and (iii) strong selection on viruses and sv = 2 and no selec-
tion on antibodies sa = 0 (red). The “S” shape curve in blue
is a signature of co-evolution between the two populations,
sa ∼ sv: Antibodies perform best against viruses in the past,
which they have been selected to bind, and perform worst
against viruses in the future due to viral escape by selection.
For large time-shifts the binding strength relaxes to its neu-
tral value, zero, as mutations randomize the populations with
respect to each other. In the absence of selection in one of the
populations, the time-shifted binding affinity shows the selec-
tive response of one population against stochastic variation in
the other population due to mutation and genetic drift. The
slope of time-shifted fitness at time-lag τ = 0 is a measure
of the antibody population’s fitness flux (towards the past)
and the transfer flux from the opposing population (towards
the future), which are equal in stationary state as depicted in
(B). The dashed lines indicated the predicted fitness flux and
transfer flux given by eqs. (8,9). Other simulation parameters

are: Na = Nv = 1000, ` = 50, ˆ̀ = 0, θa = θv = 1/25, and
κi = 1 for all loci.

of the virus, the rescaled time-shifted binding affinity be-
tween antibodies at time t and viruses at time t + τ is
ετ (t) =

∑
α,γ Eαγx

α(t) yγ(t+τ)/E0, and the correspond-
ing antibody and viral mean fitnesses are NaFA;τ (t) =
saετ (t) and NvFV ;τ (t) = −svε−τ (t). The slope of the
time-shifted fitness at the time where the two popula-
tions co-occur (i.e., τ = 0), approaching from the nega-
tive τ , i.e., the past, measures the amount of adaptation
of the focal population in response to the state of the vi-
ral population, and is precisely equal to the fitness flux:
∂τFA;τ (t−τ)|τ=0− = φA(t). The slope approaching from
positive time-shifts, i.e., the future, measures the change
in the mean fitness of the focal population due to adapta-
tion of the viral population, and is precisely equal to the
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transfer flux ∂τFA;τ (t)|τ=0+ = TV→A(t). In stationarity,
the sum of fitness flux and transfer flux is zero on average,
and so the slopes from either side of τ = 0 are equal, as in
Fig. 3. Note that the relationships between time-shifted
fitness and the flux variables hold beyond the specific case
of linear landscape. In a non-stationary state, the fitness
flux and transfer flux are not balanced, and so 〈FA;τ (t)〉
has a discontinuous derivative at τ = 0 (Fig. S5). There-
fore, such a discontinuity provides a mechanism to iden-
tify stationarity versus transient dynamics.

Whether in stationarity or not, the signature of out-of-
equilibrium evolution is a positive fitness flux and neg-
ative transfer flux. For time-shifted fitness, this means
that for short time shifts, where dynamics are dominated
by selection, antibodies have a higher fitness against
viruses from the past, and worse binding to viruses from
the future. This is true even when one population is
evolving neutrally and the other has substantial selection,
as shown in Fig. 3. For long time shifts, the sequences
are randomized by mutations and the fitness decays ex-
ponentially to the neutral value. When selection and
mutation are substantial on both sides the time-shifted
fitness curve has a characteristic “S” shape – a signature
of co-evolution, whose inflection form can be understood
in terms of the fitness and transfer fluxes.

Time-shifted measurements have already been stud-
ied empirically. Measurements of neutralization in HIV
patients have found that antibodies perform better at
neutralizing viruses from the past, and worse at neu-
tralizing viruses from the future [11, 12]. The signa-
ture of co-evolution can be obscured in in clinical studies
because fitnesses of antibodies and viruses also depend
on intrinsic and environmental factors, such as a time-
dependent environment from drug treatments. However,
linear regression of time-shifted antibody-HIV neutral-
ization measurements was able to decompose antibody
fitnesses into components due to interaction with the
viruses and other factors, resulting in a characteristic S
shape in the time-shifted fitness due to interaction [44].

Competition between multiple antibody lineages. B-
cells in the adaptive immune system are associated with
clonal lineages that originate from distinct ancestral
naive cells, generated by germline (VDJ) recombination
and junctional diversification [1]. Multiple lineages may
be stimulated within a germinal center, and also circulate
to other germinal centers [8]. Lineages compete for acti-
vation agents (e.g., helper T-cells) and interaction with
a finite number of presented antigens [8]. We extend
our theoretical framework to study how multiple lineages
compete with each other and co-evolve with viruses. This
generalization allows us to show that lineages with higher
overall binding ability, higher fitness flux, and lower (ab-
solute) transfer flux have a better chance of surviving. In
particular, we show that an antibody repertoire fighting
against a highly diversified viral population, e.g., during

late stages of HIV infection, favors elicitation of broadly
neutralizing antibodies compared to normal antibodies.

We define an antibody lineage C based on its site-
specific accessibilities to the viral sequence {κCi , κ̂Cj }, de-
fined in Fig. 1A. The distribution of site-specific acces-
sibilities over different antibody lineages PC

(
{κCi , κ̂Ci }

)
characterizes the ability of an antibody repertoire to re-
spond to a specific virus. Without continual introduction
of new lineages, one lineage will ultimately dominate and
the rest will go extinct within the coalescence time-scale
of antibodies, Na (Fig. 4A). In reality, constant turn-over
of lineages results in a highly diverse B-cell response, with
multiple lineages acting simultaneously against an infec-
tion [45].

Stochastic effects are significant when the size of a lin-
eage is small, so an important question is to find the
probability that a low-frequency antibody lineage reaches
an appreciable size and fixes in the population. We de-
note the frequency of an antibody lineage with size NCa
by ρC = NCa /Na. The growth rate of a given lineage C
depends on its relative fitness F

AC
compared to the rest

of the population,

d

dt
ρC = (F

AC
− FA)ρC +

√
ρC(1− ρC)

Na
χC (10)

where F
A

=
∑
C FAC ρ

C is the average fitness of the en-
tire antibody population. For the linear fitness land-
scape from eq. (2), the mean fitness of lineage C is
F
AC

= Sa(EC + ÊC). The probability of fixation of
lineage C equals the asymptotic (i.e., long time) value
of the ensemble-averaged lineage frequency, Pfix(C) =
limt→∞〈ρC(t)〉.

Similar to evolution of a single lineage, the dynamics of
a focal lineage are defined by an infinite hierarchy of mo-
ment equations for the fitness distribution. In the regime
of sa ∼ 1, where terms due to mutation can be neglected,
a suitable truncation of the moment hierarchy allows us
to estimate the long-time limit of the lineage frequency,
and hence, its fixation probability (see Section 4 of SI).
The result can be expressed in terms of the ensemble-
averaged relative mean fitness, fitness flux and transfer
flux at the time of introduction of the focal lineage,

P
fix

(C)/P0fix
' 1 +

〈
Na(F

AC
(0)− F

A(0))
〉

+
N2
a

3

〈
φ
AC

(0)− φ
A

(0)
〉
−NaNv

〈∣∣T
V→AC

(0)
∣∣− ∣∣T

V→A(0)
∣∣]〉

(11)

where P0fix
is the fixation probability of the lineage in

neutrality, which equals its initial frequency at the time
of introduction, P0fix

= ρC(0). The first order term that
determines the excess probability for fixation of a lineage
is the difference between its mean fitness and the aver-
age fitness of the whole population. Thus, a lineage with
higher relative mean fitness at the time of introduction,
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e.g., due to its better accessibility to either the variable
or conserved region, will have a higher chance of fixa-
tion. Moreover, lineages with higher rate of adaptation,
i.e., fitness flux φ

AC
(t = 0), and lower (absolute) transfer

flux from viruses
∣∣T
V→AC

(t = 0)
∣∣ tend to dominate the

population.

For evolution in the linear fitness landscape, we can
calculate a more explicit expansion of the fixation prob-
ability that includes mutation effects. In this case, the
fixation probability of a focal lineage can be expressed
in terms of the experimentally observable lineage-specific
moments of the binding affinity distribution, instead of
the moments of the fitness distribution (see Methods).

Emergence of broadly neutralizing antibodies. With
our multi-lineage model, we can understand the condi-
tions for emergence of broadly neutralizing antibodies
(BnAbs) in an antibody repertoire. Similar to any other
lineage, the progenitor of a BnAb faces competition with
other resident antibody lineages that may be dominat-
ing the population. The dominant term in the fixation
probability is the relative fitness difference of the focal
lineage to the total population at the time of introduc-
tion. Lineages may reach different fitnesses because they
differ in their scale of interaction with the viruses, EC0 in
the variable region and ÊC0 in the conserved region. Lin-
eages which bind primarily to the conserved region, i.e.,
ÊC0 � EC0 , do not have an opposing viral population that
reduce their binding affinity. Such BnAbs may be able
to reach higher fitnesses compared to normal antibod-
ies which bind to the variable region with a comparable
scale of interaction. The difference in the mean fitness of
the two lineages becomes even stronger, when viruses are
more diverse (i.e., high MV,2), so that they can strongly
compromise the affinity of the lineage that binds to the
variable region; see eq. (11).

If the invading lineage has the same fitness as the resi-
dent lineage, then the second order terms in eq. (11) pro-
portional to the fitness and transfer flux may be relevant.
A BnAb lineage that binds to the conserved region has
a reduced transfer flux than a normal antibody lineage,
all else being equal. The difference in transfer flux of the
two lineages depends on the viral diversity MV,2, and be-
comes more favorable for BnAbs when the viral diversity
is high. Overall, a BnAb generating lineage has a higher
advantage for fixation compared to normal antibodies,
when the repertoire is co-evolving against a highly diver-
sified viral population, e.g., during late stages of HIV in-
fection. As previously suggested by Luo & Perelson [30],
this effect might be the reason for BnAbs to be detected
late in infection, and to contain a relatively large amount
of mutations compared to the germline sequence (∼ 30%
of residues).

In Fig. 4B we compare the fixation probability of a
BnAb lineage, that binds only to the conserved region,
with a normal antibody lineage that binds only to the
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FIG. 4: Competition between antibody lineages, and
fixation of broadly neutralizing antibodies. (A) Sim-
ulation of competition between 20 clonal antibody lineages
introduced at time 0 against a common viral population. Lin-
eages with higher mean fitness, higher fitness flux, and lower
transfer flux tend to dominate the antibody repertoire. Each
color represents a distinct antibody lineage, however there
is also diversity within each lineage from somatic mutations.
The reduction in the number of circulating lineages resembles
the reduction in the number of active B-cell clones within the
life-time of a germinal center [8]. (B) Analytical estimates
(lines, eq. S2) of the fixation probability of a new antibody
lineage, based on the state of the populations at the time of its
introduction, compared to Wright-Fisher simulations (points)
with two competing antibody lineages. A non-BnAb resident
population is invaded by a BnAb (blue) or non-BnAb (red),
(simulation procedures are detailed in Methods). Emergence
of a broadly neutralizing antibody lineage is facilitated when
the viral population is diverse. Normal antibody lineages have
` = 15, ˆ̀ = 0, whereas broadly neutralizing lineages have
` = 0, ˆ̀ = 15. Panels show results for different values of
antibody selection sa = 0.5, 0.75, 1 against a common viral
selection strength sv = 0.75. Viral diversity is influenced
mostly by the viral mutation rate θv, which ranges from 0.05
to 0.2. Other simulation parameters are: Na = Nv = 1000,
θa = 1/10, and κi = κ̂i = 1 for all loci.

variable region. In both cases we assume that the emerg-
ing lineage competes against a resident population of
normal antibodies. We compare our analytical predic-
tions for fixation probability as a function of the initial
state of the antibody and viral populations in eq. (11),
with Wright-Fisher simulations of co-evolving popula-
tions (numerical procedures are detailed in Methods).
Increasing viral diversity M2,V increases the fixation of
BnAbs, but does not influence fixation of normal lineages.
For low viral diversity, fixation of BnAbs is closer to nor-
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mal Abs and therefore, they might arise and be outcom-
peted by other antibody lineages.

Discussion

We have presented an analytical framework to de-
scribe the co-evolutionary dynamics between two antag-
onistic populations, based on molecular interactions be-
tween them. We have focused our analysis on antibody-
secreting B-cells and chronic infections, such as HIV.
We identified effective parameters for selection on B-
cells during hypermutation that enhance their binding
and neutralization efficacy, and conversely parameters
for selection on viruses to escape the antibody binding.
The resulting “red-queen” dynamic between antibodies
and viruses produces an optimum response of antibodies
against viral genotypes sampled from the past (to which
they are adapted) and a deficient response to viruses sam-
pled from the future, which are the successful escape mu-
tants. Finally, we have shown that emergence and fixa-
tion of a given clonal antibody lineage is determined by
competition between circulating antibody lineages [30],
and that broadly neutralizing antibody lineages, in par-
ticular, are more likely to dominate in the context of a
diverse viral population.

Our model is simple enough to clarify some funda-
mental concepts of antibody-antigen dynamics. How-
ever, understanding more refined aspects of B-cell-virus
co-evolution will require adding details specific to affin-
ity maturation and viral reproduction, such as non-
neutralizing binding between antibodies and antigens [14,
46], epitope masking by antibodies [47] and spatial struc-
ture of germinal centers [8]. Importantly, viral recom-
bination [39, 40, 48] and latent viral reservoirs [49] are
also known to influence the evolution of HIV within a
patient. Similarly, the repertoire of the memory B-cells
and T-cells, which effectively keep a record of prior vi-
ral interactions, influence the response of the adaptive
immune system against viruses with antigenic similarity.

While our analysis has focused on co-evolution of
chronic viruses with the immune system, our framework
is general enough to apply to other systems, such as
bacteria-phage co-evolution. Likewise, the notions of fit-
ness and transfer flux as measures of adaptation during
non-stationary evolution are independent of the underly-
ing model. Bacteria-phage interactions have been studied
by evolution experiments [50, 51], and by time-shifted
assays of fitness [52, 53], but established models of co-
evolution describe only a small number of alleles with
large selection effects [54]. In contrast, our model offers
a formalism for bacteria-phage co-evolution where new
genotypes are constantly produced by mutation, consis-
tent with experimental observations [52]. Similarly, our
formalism may be applied to study the evolution of sea-
sonal influenza virus in response to the “global” immune

challenge, imposed by a collective immune landscape of
all recently infected or vaccinated individuals [55]. Time-
shifted binding assays of antibodies to influenza surface
proteins are already used to gauge the virulence and
cross-reactivity of viruses. Quantifying the fitness flux
and transfer flux, based on these assays, is therefore a
principled way to measure rates of immunologically im-
portant adaptation in these systems.

One central challenge in HIV vaccine research is to de-
vise a means to stimulate a lineage producing broadly
neutralizing antibodies. Common characteristics of Bn-
Abs, such as high levels of somatic mutation or large in-
sertions, often lead to their depletion by mechanisms of
immune tolerance control [56]. Therefore, one strategy
to elicit these antibodies is to stimulate the progenitors
of their clonal lineage, which may be inferred by phylo-
genetic methods [57], and to guide their affinity matu-
ration process towards a broadly neutralizing state. Un-
derstanding the underlying evolutionary process is neces-
sary to make principled progress towards such strategies,
and this study represents a step in that direction. For
example, our results suggest that a vaccine based on a
genetically diverse set of viral antigens is more likely to
stimulate BnAbs. Similar preference for stimulation of
BnAbs was shown by a numerical study of co-evolution
between B-cell receptors and HIV within a patient [30].
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Materials and Methods

Method summary

Alternative fitness models. We assume that the malthusian (log-) fitness of an antibody is proportional to the
logarithm of the activation probability, fA(Aα; {V }) ∝ ca log[ρ(Aα; {V })]. The activation probability ρ(Aα; {V })
is a nonlinear sigmoid function of the binding affinity with a binding threshold E∗ and a nonlinearity β0. We
assume that the affinity of an antibody is determined by its strongest binding among R interactions, which we
estimate by means of extreme value statistics, Eαmax = Eα . + Êα . +

√
2Iα . lnR. Here, Iα . is the variance of binding

affinities of a given antibody Aα across the viral population. The linear-averaged fitness function in eq. (2) is an
approximation to this sigmoidal function, when the nonlinearity and the logarithm of the number of interactions
are small. The selection coefficient of antibodies in eq. (2) relates to the biophysical conditions for the binding
interactions, Sa = caβ0/(1 + exp[−β0E

∗]). Similarly, we relate viral fitness to the probability that it avoids binding
to the circulating antibodies. The effect of nonlinearities of the fitness function on the stationary binding statistics
and the rate of adaptation are shown in Fig. S4.

Evolution of the binding affinity diversity. Similar to the mean binding affinity in eqs. (4,5), we can derive evolution
equations for the diversity of binding in the antibody and viral populations, with mutations, selection and genetic
drift. The diffusion equation for the binding diversity in the variable regions of antibodies follows,

d

dt
MA,2 = −4µa(MA,2 − `K2)− 4µvMA,2 −

MA,2

Na
+ SaMA,3 + χ

MA,2
(S1)

where, χ
MA,2

is a Gaussian correlated noise with mean 0 and variance, (MA,4 − (MA,2)2)/Na. Similar equations

can be derived for antibody diversity in the conserved interaction regions, M̂A,2, and diversity in viruses MV,2. The
stationary solutions for the binding diversity and the higher central moments of the binding affinity distributions are
given by eqs. (S78-S81).

Separation of time-scales. The binding diversities fluctuate with an auto-correlation time of the order of the neutral
coalescence times: τMA,2

∼ Na, and τMV,2
∼ Nv in generations, respectively for antibodies and viruses (see SI and

Fig. S3). By contrast, the mean binding affinity in the variable region exhibits a slower dynamics, with an auto-
correlation time proportional to the inverse of the neutral sequence diversities, τE ∼ Na/(θa + θv(Na/Nv)). The
separation of time scales between mean and diversity of binding affinity allows us to describe the dynamics of the
mean in eqs. (4,5) in terms of the stationary binding diversities. Moreover, the mean binding affinity in the conserved
region has an autocorrelation time longer than in the variable region, τÊ ∼ Na/θa. This difference in time-scales
allows us to neglect the correlations between the means and diversities, as well as between the conserved and variable
regions.

Competition between multiple lineages. In the linear fitness landscape of eq. (2), the relative mean fitness and
fitness flux of a lineage, and hence, its fixation probability in eq. (11), can be expressed in terms of the binding affinity
deviations of the lineage’s constituent genotypes from the population mean. For example, the rth lineage-specific

moment in the variable region is defined as L
C

Ar
=
〈∑

α(ECα . − E)rxα
C

〉
, where xα

C
is the frequency of genotype Aα

from lineage C in the population, and ECα . is its mean binding affinity. The transfer flux from viruses to the lineage C
can be expressed in terms of the cross-statistics between the binding affinity of the lineage and the viral population:

L
C

A1,V1
= 〈∑αγ(E. γ −E) (Eαγ −E) yγxα

C
〉. Analogous lineage-specific moments can be defined for the conserved viral

region.

The hierarchy of evolution equations for the lineage-specific moments are given by eqs. (S115-S122). The fixation

probability is the asymptotic value of the ensemble-averaged lineage frequency Pfix(C) = limt→∞ L
C

0(t), which we
compute by using the Laplace transform of the lineage-specific moments, LAr (z) =

∑
t LAr (t) exp[−zt]. It can be

separated up to orders of O((NS)2, NSθ) to contributions from (i) the relative mean fitness of the lineage which is
proportional to NaSa, (ii) the relative fitness flux of the lineage which is proportional to (NaSa)2 and (iii) the relative
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transfer flux from viruses to the lineage which is proportional to (NaSa)× (NvSv),

P
fix

(C)− P0fix
(C) = Na Sa

(
L
C

A1
(0) + L̂

C

A1
(0)
)

+ (Na Sa)2
[
L
C

A2
(0) + L̂

C

A2
(0)− LCA(0;2)

(0)− L̂CA(0;2)
(0)
]

− (Nv Sv)× (NaSa)
[
L
C

A1,V1
(0)− LCA0,V2

(0)
]

(S2)

where, P0fix
(C) = L

C

A0
(0) is the expected fixation probability in neutrality. L

C

A(0;2)
and LA0,V2

= 〈ρCMV,2〉 are

respectively the total diversity of binding in the antibody and in the viral population, scaled by the frequency of
the lineage C; see Section 4 of SI for detailed derivation of eq. (S2). The diversity of binding affinity in viruses is a
population observable which affects the lineage fixation probability, as shown in Fig. 4.

Simulations. Simulations specified two populations with genotypes, selection, and mutation processes as defined in
Model section. For each generation, the populations were replaced by their offspring, which inherit genotypes from
their parents, and the number of individuals of each genotype is drawn from a multinomial distribution, with probabil-
ities proportional to the exponential of the fitnesses. The number of mutations was determined by a poisson random
number with mean equal to the expected total number of mutations. Populations were initialized as monomorphic,
i.e., a uniformly random genotype. Programs were written in luajit, utilizing the gnu scientific library and gnu paral-
lel [58]. To measure quantities in the stationary state (Figs. S1, 3) simulations were run for 104Na generations, and
quantities were averaged from samples every 2Na generations, omitting the first 2µ−1

a generations.
To produce the simulations shown in Fig. 4, the newly emerging antibody lineages compete with the resident

population as follows. First, the resident lineage is evolved with the virus for 20Na generations. Then the resident
and invading lineage are evolved with the virus for 10Na generations, with fixed sizes 103, and viral fitness determined
only by the resident lineage. This ensures that competing lineages can marginally bind to the viral population, and
are functional lineage progenitors; a process that happens prior to affinity maturation in germinal centers. The pre-
adaptation of the invading lineage can also be interpreted as initial rounds of affinity maturation in germinal centers
isolated from competition with adapted antibody lineages. Then the two lineages are combined with resident at 95%
and invader at 5%, with a total size of 103, and the state of the system is recorded. The two lineages are evolved
until one is extinct, repeated over 100 replicates to estimate the fixation probability. The whole procedure is repeated
3 × 103 times for ensemble averaging. The invader, is either a normal lineage or a BnAb that binds only to the
conserved region.

1. Antibody-viral co-evolution in the genotype space

We represent the antibody population as a set of k genotypes consisting of vectors, Aα (α = 1 . . . k), and corre-

sponding genotype frequencies x, with elements xα satisfying
∑k
α=1 x

α = 1. Similarly, we consider a viral population

with k′ possible genotypes Va, and frequencies y with elements yγ (γ = 1, . . . , k′) with
∑k′

γ=1 y
γ = 1. Note that

superscripts are indices, not exponentiation, unless next to parentheses, e.g. (a)b. The frequencies change over time,
although we omit explicit notation for brevity, and hence every quantity that depends on the frequencies is itself
time-dependent.

In the following, we describe the co-evolution of an antibody and a viral population in terms of three evolutionary
forces: mutation, selection and genetic drift. We assume that population sizes are large enough, and changes in
frequencies are small enough to accommodate a continuous time and continuous frequency stochastic process [59, 60].

Mutations. The change of the genotype frequencies due to mutations follow the Master equation,

dxα

dt
= mα

A
(x) ≡

k∑
β=1

µβ→αx
β −

 k∑
β=1

µ
Aα→Aβ

xα

dyγ

dt
= mγ

V
(y) ≡

k′∑
λ=1

µ
V λ→V γ

yλ −

 k′∑
λ=1

µ
V γ→V λ

 yγ

(S3)

where we define m
A

and m
V

as mutational fields in the antibodies and viruses, and µ
Aβ→Aα

is the antibody mutation

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2015. ; https://doi.org/10.1101/034959doi: bioRxiv preprint 

https://doi.org/10.1101/034959


13

rate from genotype Aβ to Aα, and similarly, µ
V λ→V γ

is the viral mutation rate from the genotype Vλ to Vγ . We
assume constant mutation rates µa, µv, per generation per site for antibodies and viruses, with the exception of µv = 0
for the viral constant region, which implies that mutations in that region are lethal for the virus.

Selection and interacting fitness functions. The fitness of a genotype determines its growth rate at each point
in time. We define fitness of genotypes in one population as a function of the genotypes in the other population. The
general form of change in genotype frequencies due to selection follows,

1

xα
dxα

dt
= f

Aα
(x; y)−

∑
α

xαf
Aα

(x; y) (S4)

1

yγ
dyγ

dt
= f

V γ
(y; x)−

∑
γ

yγf
V γ

(y; x) (S5)

The subscript for the antibody and viral fitness functions, f
Aα

(x; y) and f
V γ

(y; x), refer to the genotypes in the
corresponding population. The explicit dependence of the antibody fitness function on the viruses {V}, denoted
by the conditional dependence of the fitness function f

Aα
(x; y) on the frequency vector y, emphasizes that fitness

of an antibody depends on the interacting viral population. Similar notation is used for the fitness function of the
viruses. The subtraction of the population’s mean fitness, F

A
=
∑
α x

αf
Aα

(x; y) and F
V

=
∑
γ y

γf
V γ

(y; x), ensures
that the genotype frequencies remain normalized in each population. In terms of linearly independent frequencies
x = (x1, . . . , xk−1) and y = (y1, . . . , yk

′−1), these evolution equations take the forms,

dxα

dt
= σ

A

α(x; y) ≡
∑
β

gαβ σ
Aβ

(x; y) (S6)

dyγ

dt
= σ

V

γ(y; x) ≡
∑
λ

hγλ σ
V λ

(y; x) (S7)

with selection coefficients,

σ
Aα

(x,y) = f
Aα

(x; y)− fAk(x; y) (S8)

σ
V γ

(x,y) = f
V γ

(y; x)− fV k′ (y; x) (S9)

σ
Aα

(x; y) and σ
V γ

(y; x) are the respective time dependent selection coefficients of the antibody Aα and the viral
strain V γ , which depend on the state of the both populations at that moment in time. The inverse of the response
matrices, gαβ = (gαβ)−1 and hγλ = (hγλ)−1, play the role of metric in the genotype space (see below and e.g., [61]).
The change in the mean fitness due to selection after an infinitesimal amount of time follows,

F
A

(x + δx; y + δy) =
∑
α

σ
Aα

(x; y)δxα +
∑
γ,α

xα σ
V γ→Aα (x; y) δyγ (S10)

F
V

(y + δy; x + δx) =
∑
γ

σ
V γ

(y; x)δyγ +
∑
γ,α

yγ σ
Aα→V γ (y; x) δxα (S11)

where δxα and δyγ are the infinitesimal changes in the genotype frequencies, and σ
V γ→Aα = ∂σ

Aα
/∂yγ and, σ

Aα→V γ =
∂σ

V γ
/∂xα are respectively transfer selection from the viral population to antibodies and vice versa. The transfer of

fitness is a useful concept for interacting populations. Intuitively, it can be understood as the change of fitness in one
population only due to the changes of allele or genotype frequencies in the opposing population.

Genetic drift and stochasticity. The stochasticity of reproduction and survival, commonly known as genetic drift,
is represented as binomial sampling of genotypes in the next generation, with the constraint of a total population
size, in discrete processes such as the Wright-Fisher process. The magnitude of this sampling noise is proportional
to inverse population size. In the continuous time, continuous frequency limit, genetic drift is represented as noise
terms with magnitude proportional to inverse population size [60]. Na and Nv are the effective population sizes of
the antibody and the viral populations, which represent the number of interacting partners in a germinal center. The
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diffusion coefficients are characteristics of the Fisher metric [61, 62],

gαβ =

{
−xαxβ if α 6= β

xα(1− xα) if α = β
, hγλ =

{
−yγyλ if γ 6= λ

yγ(1− yγ) if γ = λ

(S12)

The generalized Kimura diffusion equation [63] for the joint distribution of genotype frequencies P (x,y, t) in both
populations reads,

∂

∂t
P (x,y, t) =

∑
α,β,a,b

[ 1

2Na

∂2

∂xαxβ
gαβ(x) +

1

2Nv

∂2

∂yγ∂yλ
hγλ(y)

+
∂

∂xα
(
m
A

α + σ
A

α(x; y)
)

+
∂

∂yγ
(
m
V

γ + σ
V

γ(y; x)
)]
P (x,y, t)

(S13)

This Fokker-Planck equation acts on the high dimensional genotype space of antibodies and viruses, which are likely
to be under sampled in any biological setting. In the following, we introduce a projection from genotype space onto
a lower dimensional space of molecular traits (phenotypes) to make the problem more tractable.

2. Antibody-viral co-evolution in the phenotype space

2.1 Molecular traits for antibody-viral interaction

We define the interaction between an antibody and viral genotype, the binding affinity, which serves a molecular
traits for which we will describe the evolutionary dynamics. Binding affinity is related to the neutralization efficacy
of antibodies and the immune pressure on the virus. Therefore, we will define selection on antibodies and viruses as
a function of binding affinity. Antibody and viral genotypes are represented by binary sequences of ±1. Antibody
sequences are of length ` + ˆ̀, while viral sequences consist of a mutable region of length `, and a conserved (i.e.

sensitive) region of length ˆ̀, where each site is always +1, as was similarly done in [26]. We model the binding affinity
between antibody Aα and virus Vγ as a weighted dot product over all sites,

Etot(A
α,Vγ) =

∑̀
i=1

εiA
α
i V

γ
i +

`+ˆ̀∑
i=`+1

ε̂iA
α
i

≡ Eαγ + Êα (S14)

where Aαi , and V γi denote the ith site for antibodies and viruses. The set of coupling constants for the mutable and
conserved region, {εi, ε̂i ≥ 0} represent the accessibility of a clonal antibody lineage to regions of the viral sequence.
Matching sites between an antibody and a viral string has been used as a model for binding affinity in the context of
T-cell selection in the adaptive immune system, which is based on the capability to bind well to the external antigens
and to avoid the self proteins [33, 34]. In Section 4, we extend our model to multiple lineages, where each lineage has
its own set of accessibilities. Antibody lineages with access to the conserved regions of the virus can potentially fix as
broadly neutralizing antibodies. In the following, quantities related to the conserved sites of the virus are note with
a hat: ·̂.

We project the evolutionary forces from the genotype level onto the binding phenotype (trait) E, and quantify the
changes of the binding phenotype distribution in each population over time. For a single antibody genotype Aα we
characterize its interactions with the viral population by the genotype-specific moments,
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Statistics of the binding affinity distribution for antibody Aα:

(i) average in the variable region:

Eα . =
∑

γ∈ viruses

Eαγy
γ (S15)

(ii) average in the conserved region:

Êα . = Êα (S16)

(iii) rth central moment in the variable region:

I(r)
α . =

∑
γ∈ viruses

(Eαγ − Eα .)ryγ (S17)

Since the viral population is monomorphic in the conserved region, the average mean binding affinity of an
antibody is independent of the state of the viral population, Êα . = Êα, and the higher central moments are zero,

Î
(r)
α . = 0. Similarly, for a viral genotype Vγ , we characterize its interactions with the antibody population by the

genotype specific moments,

Statistics of the binding affinity distribution for virus Vγ:

(i) average in the variable region:

E. γ =
∑

α∈antibodies

Eαγx
α (S18)

(ii) average in the conserved region:

Ê. γ =
∑

α∈antibodies

Êαx
α ≡ Ê. (S19)

(iii) rth central moment in the variable region:

I(r)
. γ =

∑
α∈antibodies

(Eαγ − E. γ)rxα (S20)

(iii) rth central moment in the conserved region:

Î(r)
. γ =

∑
α∈antibodies

(Êα − Ê)rxα (S21)

One of the most informative statistics that we characterize is the distribution of averaged antibody and viral
interactions, respectively denoted by PA(Eα ., Êα) and PV (E. γ , Ê.). The mean of these distributions are equal to each
other, but the higher moments differ. We denote the population-specific moments of the average interaction affinity
by,

Average binding affinity in,

(i) the variable region: E =
∑
α,γ

Eαγ x
αyγ (S22)

(ii) the conserved region: Ê =
∑
α

Êα x
α (S23)
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rth central moment of distributions of mean affinities in,

(i) the variable region of antibody population:

MA,r =
∑
α

(Eα . − E)rxα (S24)

(ii) the conserved region of antibody population:

M̂A,r =
∑
α

(Êα . − Ê)rxα (S25)

(iii) the variable region of viral population:

MV,r =
∑
γ

(E. γ − E)ryγ (S26)

Note that the population central moments MA,r and MV,r are distinct from the genotype-specific moments, I
(r)
α .

and I
(r)
. γ . The central moments of the viral population in the conserved region of the virus are equal to zero, M̂V,r = 0.

Trait scale and dimensionless quantities. It is useful to measure traits in natural units, which avoids the
arbitrariness of the physical units of εi, and the total number of sites. As previously shown in [32, 36], there exist
summary statistics of the site specific effects, (here εi), which define a natural scale of the molecular trait. We define
the moments of εi along the genome,

Kr =
1

`

∑̀
i=1

(εi)
r, K̂r =

1

ˆ̀

`+ˆ̀∑
i=`+1

(ε̂i)
r (S27)

We express the trait statistics in units of the squared sum of site specific effects, E2
0 = K2` for the variable region,

and Ê2
0 = K̂2

ˆ̀, for the conserved region.

ε ≡ E
E0

, ε̂ ≡ E
Ê0

and, mZ,r ≡
MZ,r

Er0
, m̂Z,r ≡

M̂Z,r

Êr0
(for Z = A, V ) (S28)

These scaled values are pure numbers (we distinguish them by use of lower case letters from the raw data). E2
0 and

Ê2
0 are a natural way to standardize the relevant quantities because they are the stationary ensemble variances of

the population mean binding affinity in an ensemble of genotypes undergoing neutral evolution in the weak-mutation
regime (see Section 2.3 for derivation of the stationary statistics),

E2
0 = lim

µv,µa→0
〈(E − 〈E〉)2〉, Ê2

0 = lim
µa→0

〈(Ê − 〈Ê〉)2〉 (S29)

where 〈·〉 indicates averages over an ensemble of independent populations.

Binding probability. The probability that an antibody is bound by an antigen determines its chance of proliferation
and survival during the process of affinity maturation, which will help us define the fitness of genotypes. We describe
two distinct models for antibody activation. The simplest model assumes that the binding probability of a given
antibody Aα is a sigmoid function of its mean binding affinity against the viral population,

ρ
A

(Aα) =
1

1 + exp[−β0(Eα . + Êα . − E∗)]
(S30)

where E∗ is the threshold for the binding affinity and β0 determines the amount of nonlinearity, and is related to the
inverse of temperature in thermodynamics. Following the rescaling introduced in eq. (S28), the binding threshold

and the nonlinearity in eq. (S30) rescale as e∗ ≡ E∗/
√
Ê2

0 + E2
0 and β = β0

√
Ê2

0 + E2
0 . In the following, we will use

eq. (S30) to characterize a biophysically grounded fitness function for an antibody strain.

For the virus, binding to an antibody reduces the chances of its survival. Therefore, we use the averaged binding
affinity approach to characterize its binding probability to the antibodies. Similar to eq. (S30), the binding probability
of a given virus Vγ is,
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ρ
V

(Vγ) =
1

1 + exp[−β0(E. γ + Ê. γ − E∗)]
, (S31)

where E∗ and β0 are similar to eq. (S30).

In Section 2.5, we will discuss an alternative model for activation of an antibody which is based on its strongest
binding affinity with a subset of viruses.

2.2 Co-evolutionary forces on the binding affinity

Similar to genotype evolution, stochastic evolution of a quantitative trait generates a probability distribution,
Q(E ,MA,r,MV,r), which describes an ensemble of independently evolving populations, each having a trait distribution

with mean of average affinity E and central moments of the averaged affinity in the antibody population, MA,r, M̂A,r,

and in the viral population, MV,r (see also [36]). The probability Q(E ,MA,r, M̂A,r,MV,r) is a sum of probabilities of
genotype frequencies,

Q(E ,MA,r, M̂A,r,MV,r) =∫
δ(E(x,y)− E)

∏
r

δ(MA,r(x,y)−MA,r)δ(M̂A,r(x)− M̂A,r)δ(MV,r(x,y)−MV,r)P (x,y, t)dxdy

(S32)

where δ(·) is the Dirac delta function. Furthermore, we assume that fitnesses of genotypes (defined below) only depend
on the trait distribution. Below, we characterize the effect of mutations, selection and genetic drift on the evolution
of the trait moments E , MA,r, M̂A,r and MV,r.

Mutation. A mutation at site i changes the sign of the site, and its effect on the binding affinity is proportional to
κi. To compute the effect of mutations on the traits moments, we classify pairs of genotypes (Aα,Vγ), in mutational
classes, defined by the number of +1 positions, of their product vector, (Aα1 · V γ1 , . . . , Aα`+ˆ̀ · V γ`+ˆ̀) in the variable n+

and in the conserved interaction region n̂+

n+(Aα,Vγ) =
∑̀
i=1

δ(1−Aαi · V γi ), n̂+(Aα,Vγ) =

`+ˆ̀∑
i=`+1

δ(1−Aαi · V γi ) (S33)

The frequency of a each mutational class ρ(n+) is estimated from interactions between all pairs of antibody and viral
genotypes in the population for both variable and conserved regions,

ρ(1)(n+) =
1

NaNV

∑
α,γ

δ(n+(Aα,Vγ)− n+), ρ(2)(n+) =
1

NaNV

∑
α,γ

δ(n̂+(Aα,Vγ)− n+) (S34)

We find the change in frequency ρ(λ)(n+) (with λ = 1, 2) by mutations occurring in both populations in one generation.
The superscript λ = 1, 2 indicates the interacting region of the virus, i.e. λ = 1 refers to the variable region of the

virus with µ
(1)
v = µv and the length `(1) = `, and λ = 2 refers to the conserved region of the viral genome with

µ
(2)
v = 0 and the sequence length `(2) = ˆ̀. As shown in [36, 64, 65], for a large number of sites in a trait, the Kr

sufficiently determines the effect of mutations on the trait moments MA,r, M̂A,r and MV,r. If the mutational effects of
all sites were equal to ε, we have: E = (2[n+]

A,V
− `)ε, where [·]

A,V
indicates averaging of a quantity in the subscript

populations, which in this case are both the viral and the antibody populations. If the interaction contributions κi
differ between sites, the mean and central moments of the binding affinity can be approximated with an annealed
average of site contributions. For the mean affinity E it results in E = (2[n+]

A,V
− `)K1, and similarly for the higher

central moments, MV,r = 2rKr
[(

[n+]
A
− [n+]

A,V

)r]
V

and MA,r = 2rKr
[(

[n+]
V
− [n+]

A,V

)r]
A

. The Master equation

for the evolution of the mutational classes under neutrality (mutation and genetic drift) follows,
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d ρ(λ)(n+) =
[
(µa + µ(λ)

v )(`(λ) − (n+ − 1))ρ(λ)(n+ − 1) + µ(λ)(n+ + 1)ρ(λ)(n+ + 1)− µ(λ)`(λ) ρ(λ)(n+)
]
dt

+
(
δn′+,n+

− ρ(λ)(n+)
)√ρ(λ)(n+)

Na
dW

A
(t) +

√
ρ(λ)(n+)

Nv
dW

V
(t)

 (S35)

W
A

(t) and W
V

(t) are delta-correlated Gaussian noise (Wiener process) with an ensemble mean 〈Wi〉 = 0 and
variance, 〈Wi(t)Wj(t

′)〉 = δi,j δ(t− t′) where i, j ∈ {A, V } indicate antibodies and viruses. The stochasticity (genetic
drift) is due to finite population size of the interacting genotypes Na and Nv.

In neutrality, the ensemble mean for the averaged number of upwards spins
〈
[n+

(λ)]
A,V

〉
and the central moments

of the upward spins,
〈
Y

(λ)
A,r

〉
≡
〈[(

[n
(λ)
+ ]

V
− [n

(λ)
+ ]

A,V

)r]
A

〉
and 〈Y (λ)

V,r 〉 ≡
〈[(

[n
(λ)
+ ]

A
− [n

(λ)
+ ]

A,V

)r]
V

〉
in both variable

(λ = 1) and conserved (λ = 2) interaction regions follow [64, 65],

∂〈[n+
(λ)]

A,V
〉

∂t
=

〈
(µa + µ(λ)

v )
∑
n+

n+

[
(`(λ) − n+ + 1)ρ(λ)(n+ − 1) + (n+ + 1)ρ(λ)(n+ + 1)− `(λ)ρ(λ)(n+)

]〉

=


−2(µa + µv)

[
(
〈
[n+]

A,V

〉
− `/2

)
variable region, λ = 1

−2µa

( 〈
[n+]

A,V

〉
− ˆ̀/2

)
constant region, λ = 2

(S36)

∂

∂t

〈
Y

(λ)
A,r

〉
= µa`

(λ)
r−2∑
i=0

(
r

i

)〈
Y

(λ)
A,i

〉
+

(
r
2

) 〈
Y

(λ)
A,2Y

(λ)
A,r−2

〉
− r

〈
Y

(λ)
A,r

〉
Na

− 2r(µa + µ(λ)
v )

〈
Y

(λ)
A,r

〉
−µa

r−2∑
i=0

(
r

i

)(〈
Y

(λ)
A,i+1

〉
+
〈

[n+]
A,V

Y
(λ)
A,i

〉)
[1 + (−1)r−i+1] (S37)

∂

∂t

〈
Y

(λ)
V,r

〉
= µ(λ)

v `(λ)
r−2∑
i=0

(
r

i

)〈
Y

(λ)
V,i

〉
+

(
r
2

) 〈
Y

(λ)
V,2 Y

(λ)
V,r−2

〉
− r

〈
Y

(λ)
V,r

〉
Nv

− 2r(µa + µ(λ)
v )〈Y (λ)

V,r 〉

−µ(λ)
v

r−2∑
i=0

(
r

i

)(〈
Y

(λ)
V,i+1

〉
+
〈

[n+]
A,V

Y
(λ)
V,i

〉)
[1 + (−1)r−i+1] (S38)

where 〈·〉 denotes averages over independent ensembles of populations. The second term in the right hand side of
equations (S37) and (S38) is a consequence of the Itô calculus in stochastic processes [59]. The transformations from

[n
(1)
+ ]

A,V
to E in the variable region, and from [n

(2)
+ ]

A,V
to Ê in the conserved region result in

∂〈E〉
∂t

= −2(µa + µv)〈E〉 (S39)

∂〈Ê〉
∂t

= −2µa〈Ê〉 (S40)

The transformations from Y
(1)
A,r to MA,r, from Y

(2)
A,r to M̂A,r and from Y

(1)
V,r to MV,r result in,
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∂〈MA,r〉
∂t

= µa`
r−2∑
i=0

2r−iKr−i
(
r

i

)
〈MA,i〉+

(
r
2

)
K2Kr−2〈MA,2MA,r−2〉 − r〈MA,r〉

Na
− 2r(µa + µv)〈MA,r〉

−µa
r−2∑
i=0

2r−i−1

(
r

i

)[
Kr−i−1〈MA,i+1〉+

Kr−i
K1

〈
EMA,i

〉]
[1 + (−1)r−i+1]

(S41)

∂〈M̂A,r〉
∂t

= µa ˆ̀
r−2∑
i=0

2r−iKr−i
(
r

i

)
〈M̂A,i〉+

(
r
2

)
K2Kr−2〈M̂A,2M̂A,r−2〉 − r〈M̂A,r〉

Na
− 2rµa〈M̂A,r〉

−µa
r−2∑
i=0

2r−i−1

(
r

i

)[
Kr−i−1〈M̂A,i+1〉+

Kr−i
K1

〈
ÊM̂A,i

〉]
[1 + (−1)r−i+1]

(S42)

∂〈MV,r〉
∂t

= µv`
r−2∑
i=0

2r−iKr−i
(
r

i

)
〈MV,i〉+

(
r
2

)
K2Kr−2〈MV,2MV,r−2〉 − r〈MV,r〉

Nv
− 2r(µv + µa)〈MV,r〉

−µv
r−2∑
i=0

2r−i−1

(
r

i

)[
Kr−i−1〈MV,i+1〉+

Kr−i
K1

〈
EMV,i

〉]
[1 + (−1)r−i+1]

(S43)

Selection. We assume that fitness of an antibody is proportional to the logarithm of its activation probability given
by equation (S30) based on its average interaction strength,

f
Aα
≡ f

A
(Aα; {V }) = ca log[ρ

A
(Aα)] = −ca log(1 + exp[−β0(Eα . + Êα . − E∗)]) (S44)

' f∗
A

+ Sa(Eα . + Êα .) (S45)

with f∗
A

= −ca log
(
1 + exp[β0E

∗]
)

and the selection coefficient Sa = caβ0/(1 + exp[−β0E
∗]). The approximation

in (S45) is by expansion of the nonlinear fitness function around the neutral binding affinity, E = 0. The antibody
selection coefficient Sa can be thought as the amount of stimulation that a bound antibody experiences, e.g. due
to helper T-cells. If the chronic infection is HIV, where the virus attacks the helper T-cells, Sa may decrease as
HIV progresses and the T-cell count decays. Furthermore, f∗

A
affects the absolute growth rate, but does not affect

the relative growth rate between genotypes. We call the fitness models based on the averaged binding affinity in
eq. (S44) as “nonlinear-averaged” and in eq. (S45) as “linear-averaged”. In Section 2.5 we introduce an alternative
model of antibody activation, which assumes that proliferation of an antibody is related to its best binding affinity
against R ≤ Nv antigens, that are presented to the antibody during its life time. We should note that the analytical
results in this paper are all based on the antibody evolution in “linear-averaged” fitness landscapes (S45), and the
other fitness models are only studied numerically.

The viral fitness is related to the probability that it escapes the binding interactions with antibodies. We define
the fitness of an antigen (virus) as the negative logarithm of its binding probability to the average antibodies that it
interacts with in eq. (S31),

f
V γ
≡ f

V
(Vγ ; {A}) = −cv log[ρ

V
(Vγ)] = cv log(1 + exp[−β0(E. γ + Ê. γ − E∗)]) (S46)

' f∗
V
− Sv(E. γ + Ê. γ) (S47)

with f∗
V

= cv log
(
1 + exp[β0E

∗]
)

and the selection coefficient Sv = cvβ0/(1 + exp[−β0E
∗]).

As shown in equations (S6, S7) the change in the frequency of an antibody or a virus is proportional to its fitness,
which is related to its average binding affinity. Therefore, the change of a given phenotype statistic U(x,y) due to
selection follows,
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d

dt
U(x,y) =

∑
α,γ

[
∂U

∂xα
(f
Aα
− F

A
)xα +

∂U

∂yγ
(f
V γ
− F

V
) yγ

]
(S48)

where F
A

and F
V

are respectively the mean fitness in the antibody and in the viral population. With this formulation
we can compute the effect of selection on the statistics of the binding affinity distribution, i.e., the mean affinity E ,
Ê , and the central moments, MA,r, M̂A,r and MV,r, which we present in the following section.

Similar to the rescaling procedure in eq. (S28), we use the total scale of the traits to define the rescaled strength of
selection,

sa = NaSaE0, ŝa = NaSaÊ0, sv = NaSvE0, ŝv = 0 (S49)

Genetic drift. We can project the stochasticity of the genotype space onto the phenotype space. The projected
diffusion coefficients show correlation between the noise levels of the phenotypic statistics A and B.

GAB =
1

Na

∑
α,β

∂A

∂xα
∂B

∂xβ
gαβ +

1

Nv

∑
γ,λ

∂A

∂yγ
∂B

∂yλ
hγλ (S50)

and the genotypic diffusion constants gαβ and hγλ are given by eq. (S12). As an example, we compute the diffusion
term for E ,

GEE =
1

Na

∑
α,β

∂E
∂xα

∂E
∂xβ

gαβ +
1

Nv

∑
γ,λ

∂E
∂yγ

∂E
∂yλ

hγλ

=
1

Na

∑
α,β

Eα .Eβ .

[
− xαxβ(1− δβα) + xα(1− xα)δβα

]
+

1

Nv

∑
γ,λ

E. γE. λ

[
− yγyλ(1− δλγ ) + yγ(1− yγ)δλγ

]
=

1

Na

[∑
α

(Eα . − E)2xα
]

+
1

Nv

[∑
γ

(E. γ − E)2yγ
]

=
1

Na
MA,2 +

1

Nv
MV,2 (S51)

A similar approach finds the diffusion term for the second moments and the cross-correlation terms between the
first and the second moments (see e.g., [36] for further details),

GMA,2,MA,2 =
1

Na
(MA,4 −M2

A,2), GMV,2,MV,2 =
1

Nv
(MV,4 −M2

V,2) (S52)

GE,MA,2 =
1

Na
MA,3, GE,MV,2 =

1

Nv
〈MV,3〉 (S53)

2.3 Stochastic evolution of molecular traits (linear-averaged fitness)

Putting all the evolutionary forces together, we can write down evolution equations for the statistics of binding
affinities in a linear fitness landscape introduced in equations (S45, S47),

d

dt
E = −2(µv + µa)E + SaMA,2 − SvMV,2 + χE (S54)

d

dt
Ê = Sa M̂A,2 − 2µa Ê + χÊ (S55)
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with the Gaussian correlated noise statistics due to the genetic drift,

〈χE〉 = 0, 〈χE(t)χE(t′)〉 =
[MA,2

Na
+
MV,2

Nv

]
δ(t− t′) (S56)

〈χÊ〉 = 0, 〈χÊ(t)χÊ(t′)〉 =
[M̂A,2

Na

]
δ(t− t′) (S57)

It should be noted that we ignore the linkage correlations between the binding affinity of the variable region E and
conserved region Ê of the virus. From the numerical analysis we see that the covariance between the linked variable
and conserved regions, 〈[(Eα . − E) (Êα . − Ê)]

A
〉 is small compared to the diversity of the binding affinity 〈MA,2〉 and

〈M̂A,2〉 in each part; Fig. S2D. Lineages with access to the conserved region of the virus adapt by aligning their sites
to the conserved sequence, and hence remain relatively conserved with variations arising only from the stochastic
forces of mutation and genetic drift. In Section 2.4 we explicitly show that the auto-correlation time for the binding
affinity in the conserved region is longer than in the variable interaction region; see equations (S89, S88). Therefore,
the correlation between the binding affinity of the variable and the conserved regions remains small, throughout the
evolutionary process.

We can write down the stochastic evolution equations for the second moments MA,2, M̂A,2 and MV,2,

d

dt
MA,2 = −4µa(MA,2 − `K2)− 4µvMA,2 −

MA,2

Na
+ SaMA,3 + χ

MA,2
(S58)

d

dt
M̂A,2 = −4µa(M̂A,2 − ˆ̀K̂2)− M̂A,2

Na
+ SaM̂A,3 + χM̂A,2

(S59)

d

dt
MV,2 = −4µv(MV,2 − `K2)− 4µaMV,2 −

MV,2

Nv
− SvMV,3 + χ

MV,2
(S60)

with Gaussian correlated noise statistics,

〈χ
MA,2
〉 = 0, 〈χ

MA,2
(t)χ

MA,2
(t′)〉 =

[
MA,4 − (MA,2)2

Na

]
δ(t− t′) (S61)

〈χ
M̂A,2
〉 = 0, 〈χ

M̂A,2
(t)χ

M̂A,2
(t′)〉 =

[
M̂A,4 − (M̂A,2)2

Na

]
δ(t− t′) (S62)

〈χ
MV,2
〉0, 〈χ

MV,2
(t)χ

MV,2
(t′)〉 =

[
MV,4 − (MV,2)2

Nv

]
δ(t− t′) (S63)

〈χ
MA,2

(t)χE(t
′)〉 =

MA,3

Na
δ(t− t′), 〈χ

M̂A,2
(t)χÊ(t

′)〉 =
M̂A,3

Na
δ(t− t′) (S64)

〈χ
MV,2

(t)χE(t
′)〉 =

〈MV,3〉
Nv

δ(t− t′) (S65)

Stationary solutions for trait mean and diversity. From equations above we can solve for the stationary
moments of the mean binding affinity and its diversity in both populations, and the cross-correlations between them
as a function of the higher moments,

〈E〉 =
1

2θ̃a
NaSa〈MA,2〉 −

1

2θ̃v
NvSv〈MV,2〉 (S66)

〈E , E〉 =
1

4θ̃a

[
〈MA,2〉+ 2NaSa〈E ,MA,2〉

]
+

1

4θ̃v

[
〈MV,2〉 − 2NvSv〈E ,MV,2〉

]
(S67)

〈Ê〉 = NaSa〈M̂A,2〉/2θa (S68)

〈Ê , Ê〉 =
1

4θa

[
〈M̂A,2〉+ 2NaSa〈Ê , M̂A,2〉

]
(S69)
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FIG. S1: Effect of selection on the mean binding affinity. The mean binding affinity for (A) the variable interaction

region ε = E/E0, and (B) the conserved region ε̂ = Ê/E0, as a function of selection coefficients. Stationary mean binding
affinity is sensitive to selection on antibodies in both variable and conserved regions. The conserved region is not sensitive to
viral selection strength. Points indicate simulation results, and solid lines indicate the stationary solution in eqs. (S66, S68).

Parameters are: κi = κ̂i = 1 for all sites, ` = 50, ˆ̀ = 40, Na = Nv = 1000, θa = θv = 1/90. Points are time averaged values
from simulations run for 107 generations, with values sampled every Na generations, and data from first 100Na generations
discarded, and then ensemble-averaged over 100 replicate simulations.

〈
MA,2

〉
=

1

1 + 4θ̃a

[
4`K2θa + (NaSa) 〈MA,3〉

]
(S70)

〈
MV,2

〉
=

1

1 + 4θ̃v

[
4`K2θv − (NvSv) 〈MV,3〉

]
(S71)

〈E ,MA,2〉 =
1

1 + 6θ̃a

[
〈MA,3〉+NaSa

[
〈E ,MA,3〉+ 〈(MA,2)2〉

])
(S72)

〈E ,MV,2〉 =
1

1 + 6θ̃v

(
〈MV,3〉 −NvSv

[
〈E ,MV,3〉+ 〈(MV,2)2〉

])
(S73)

〈E ,MA,3〉 =
〈MA,4〉/3− 〈(MA,2)2〉

1 + 8/3θ̃a
, 〈E ,MV,3〉 =

〈MV,4〉/3− 〈(MV,2)2〉
1 + 8/3θ̃v

(S74)

where θ̃a = θa + (Na/Nv) θv and θ̃v = θv + (Nv/Na) θa. We denote the ensemble covariance of two stochastic
observables x and y by, 〈

x, y
〉
≡
〈
(x− 〈x〉) (y − 〈y〉)

〉
(S75)

and hence, 〈x, x〉 indicates the ensemble variance of the variable x. Similar forms of the stationary solutions apply for
the statistics of the binding affinity in the conserved interaction region, M̂A,2, 〈Ê , M̂A,2〉, and can be found by setting
the viral mutation µv rate and selection coefficient Sv equal to zero. For brevity we do not present the solutions of
the central moments in the conserved region.

In equations (S54-S65), the evolution of each moment depends on the higher moments in the presence of selection,
which leads to an infinite moment hierarchy. However, in the regime where rescaled coefficients satisfy saθa < 1 and
svθv < 1, we can truncate the moment hierarchy. From the comparisons of the Wright-Fisher simulations with our
theoretical results we choose to truncate the hierarchy after the 4th moment. Furthermore, higher central moments
are fast stochastic variables (see e.g., [36] and the discussion in Section 2.4 and Fig. S3), and their ensemble averages
can sufficiently characterize the evolution of the trait mean E and the trait diversity MA,2, M̂A,2 and MV,2. Therefore,
we will only present ensemble-averaged equations for the 3rd and 4th moments of the trait distributions. In order to
clarify the truncation of the moment hierarchy, we explicitly show the evolution equations and stationary solutions of
the rescaled moments, which are defined in eq. (S28).
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d

dτa
〈mA,3〉 = −6θa〈mA,3〉 − 8θa

( K3

E2
0K1

〈ε〉
)
− 6θv(Na/Nv) 〈mA,3〉 − 3〈mA,3〉+ sa

[
〈mA,4〉 − 3〈(mA,2)2〉

]
(S76)

d

dτv
〈mV,3〉 = −6θv〈mV,3〉 − 8θv

( K3

E2
0K1

〈ε〉
)
− 6θa(Na/Nv) 〈mV,3〉 − 3〈mV,3〉 − sv

[
〈mV,4〉 − 3〈(mV,2)2〉

]
(S77)

d

dτa
〈(mA,2)2〉 = −8θa

[
〈(mA,2)2〉 − 〈mA,2〉

]
− 8θv (Nv/Na)〈(mA,2)2〉+ 〈mA,4〉 − 3〈(mA,2)2〉 (S78)

d

dτv
〈(mV,2)2〉 = −8θv

[
〈(mV,2)2〉 − 〈mV,2〉

]
− 8θa(Nv/Na) 〈(mV,2)2〉+ 〈mV,4〉 − 3〈(mV,2)2〉 (S79)

d

dτa
〈mA,4〉 = −8θa

[
〈mA,4〉 − 2

K4

`K2
2

− (3− 4/`) 〈mA,2〉
]
− 8θv(Na/Nv) 〈mA,4〉+ 6〈(mA,2)2〉 − 4〈mA,4〉 (S80)

d

dτv
〈mV,4〉 = −8θv

[
〈mV,4〉 − 2

K4

`K2
2

− (3− 4/`) 〈mV,2〉
]
− 8θa(Nv/Na) 〈mV,4〉+ 6〈(mV,2)2〉 − 4〈mV,4〉 (S81)

where τa and τv are respectively time measured in units of the neutral coalescence in the antibodies, Na and in
the viral population, Nv. The term 〈ε〉 = 4(saθa − svθv (Na/Nv))

/
(θa + θv (Na/Nv)) in equations (S76, S77) is the

stationary solution for the rescaled mean binding affinity up to orders of O(θ2
a, θ

2
v). The stationary solutions for the

rescaled central moments of the antibody population follow,〈
mA,2

〉
=

4θa

1 + 4θ̃a
− 8θa

3 + 18θ̃a
sa

[ K3

E2
0K1

〈ε〉 − 4saθ
2
a +O

(
θ3
a

)]
+O(s2

aθ
2) (S82)

〈
mA,3

〉
= −8

3

θa

1 + 2θ̃

( K3

E2
0K1

〈ε〉
)

+
32

3
sa
[
θ2
a +O(θ3

a)
]

+O(s2
aθ

3) (S83)

〈
(mA,2)2

〉
=

8θa

3 + 28 θ̃a

[1

`

K4

K2
2

+ 2θa(7− 4/`)
]

+O(saθ
3
a) (S84)

〈mA,4〉 =
24θa

3 + 28 θ̃a

[1

`

K4

K2
2

+ 2θa(5− 4/`)
]

+O(saθ
3
a) (S85)

with θ̃a = θa + θv(Na/Nv). Similar solutions can be found for the moments of the variable sequence region in the
viral population mV,r by replacing the subscripts a and v in the equations above. The stationary solutions for the
central moments of the antibody population in the conserved interaction region, m̂A,r can be found by setting the
viral mutation rate and selection coefficient equal to zero, i.e., θv = 0 and sv = 0, and by using the characteristics
of the conserved region i.e., genetic length ˆ̀ and sites contributions K̂r in the equation above. Fig. S1 shows a good
agreement between the numerical results for the rescaled stationary mean binding affinity 〈ε〉 = 〈E〉/E0, 〈ε̂〉 = 〈Ê〉/Ê0

from the Wright-Fisher simulations and the analytical solutions (S66, S68), by using the stationary ensemble averages
for the diversity of the binding affinity 〈mA,2〉, 〈m̂A,2〉 and 〈mV,2〉 in eq. (S82). Fig. S2 compares the analytical
solution for the second central moments mA,2 and mV,2 with numerical results from the Wright-Fisher simulations, by
inserting the empirical estimates of the higher moments from the simulations in equations (S70) and (S71), (dashed
lines), and by using the analytical solutions for the higher moments to estimate the stationary value for the trait
diversity given by eq. (S82), (solid lines).

2.4 Time-dependent statistics

Statistics of the trait mean. As we show below, the higher central moments MV,r and MA,r for (r > 1) are fast
stochastic variables. Therefore, it is sufficient to use their stationary ensemble averages to compute the finite time
correlation of the mean interaction variables, E(τ) and Ê(τ).

The time dependent solution of the trait mean E(τ) and Ê(τ) and the covariance between two time points τ2 ≥
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FIG. S2: Effect of selection on the diversity of binding affinity in antibodies and viruses. Stationary diversity of the
binding affinity for (A) the variable interaction region mA,2 = MA,2/E

2
0 , (B) the conserved interaction region m̂A,2 = M̂A,2/Ê

2
0

in the antibody population, and (C) the variable region in the viral population mV,2 = MV,2/E
2
0 plotted as a function of viral

and antibody selection coefficients. The diversity of binding across the antibodies in the conserved region, (B) m̂A,2 is not
sensitive to viral selection strength. (D) The magnitude of the rescaled covariance due to genetic linkage between binding of

the antibody to the conserved and the variable regions, 〈[(Eα . − E)(Êα . − Ê)]A〉/E0Ê0, is much smaller than the diversity of
binding in each region shown in (A) and (B), supporting our decision to neglect the effects of genetic linkage on the evolution
of binding affinity. Points indicate simulation results, described in Fig. S1, dashed lines indicate the stationary solution which
depends on measured higher moments (eq. (S70), (S71)), and solid lines indicate the stationary solution (eq. (S82), and similarly
for viruses). Theory lines begin to deviate from simulation results for large selection strengths sa, sv > 1. The deviations are
larger in antibodies due to neglecting the linkage correlation between the variable and the conserved regions.

τ1, starting from initial conditions at τ0 = 0 with the ensemble averages 〈E(0)〉, 〈Ê(0)〉 and variance 〈E(0), E(0)〉,
〈Ê(0), Ê(0)〉 follows,

〈E(τ)〉 = (1− e−2θ̃aτ ) 〈E〉+ e−2θ̃aτ 〈E(0)〉 (S86)

〈Ê(τ)〉 = (1− e−2θaτ ) 〈Ê〉+ e−2θaτ 〈Ê(0)〉 (S87)

〈E(τ1), E(τ2)〉 = e−2θ̃aτ2〈E(0), E(0)〉+

[ 〈MA,2〉
Na

+
〈MV,2〉
Nv

] ∫ τ1

0

e−2θ̃a(τ1−τ ′)e−2θ̃a(τ2−τ ′)dτ ′

= e−2θ̃aτ2 〈E(0), E(0)〉+

[ 〈MA,2〉
4θ̃a

+
〈MV,2〉

4θ̃v

] [
e−2θ̃a(τ2−τ1) − e−2θ̃a(τ1+τ2)

]
(S88)

〈Ê(τ1), Ê(τ2)〉 = e−2θaτ2 〈Ê(0), Ê(0)〉+
〈M̂A,2〉

4θa

[
e−2θa(τ2−τ1) − e−2θa(τ1+τ2)

]
(S89)

where 〈E〉 and 〈Ê〉 are the stationary values of the trait mean in the variable and the conserved interaction regions,
given by equations (S66, S68). Time τ is measured in units of the neutral coalescence time for antibodies, Na. The
characteristic time-scale for the decay of the mean binding affinity in the variable interaction region of the virus is
1/2θ̃a = 1/(2(θa + (Na/Nv)θv)) in units of Na, which is shorter than the time-scale for the conserved region, 1/2θa.
Therefore, binding affinity in the conserved region is correlated over a longer period of time compared to the variable
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FIG. S3: Time-dependent statistics. Auto-correlation of the stationary mean binding affinity in the variable region (red),
eq. (S88), has a shorter decay time than the conserved interaction region (orange), eq. (S89). The decay time for the auto-
correlation of the trait mean in both variable and conserved regions, which is of order of the inverse mutation rate, is much longer
than the second moments (green, blue, purple), which decay on a timescale of N generations. Solid lines are from stationary
simulations, and dashed lines are eq. (S88) (orange), eq. S89 (red) and eq. S90 (black), normalized to be correlations. Parameters

are: all κi = κ̂i = 1, ` = 50, ˆ̀ = 40, Na = Nv = 1000, θa = θv = 1/90, sa = sv = 0.7, ŝa = 0.6. Simulation results were
time-averaged over 104Na generations, with values sampled every 100 generations, and first Na/θa generations omitted.

region (i.e., about twice as long if θa ∼ θv). The difference in time-scale explains the small covariance due to the
genetic linkage between the conserved and the variable region of the virus shown in Fig. S3.

Statistics of the trait diversity. As shown in [36], the fluctuations in the trait diversity are scale invariant, which
is a consequence of coherent, genome-wide linkage disequilibrium fluctuations in the absence of recombination. It is
generated by sampling from a set of genotypes with binding affinities Eα . in antibodies and E. γ in viruses from the
underlying distributions with variance MA,2 and MV,2, which scale like the genome length `. These large fluctuations
result in a relatively short correlation time for the trait diversity, shown in Fig. S3. Similar to the mean binding
affinity, we can estimate the typical lifetime of these fluctuations from the stationary auto-correlation function,

〈MA,2(τa),MA,2(τ ′a)〉 ∼ e−(τa−τ ′a), 〈MV,2(τv),MV,2(τ ′v)〉 ∼ e−(τv−τ ′v) (S90)

where τa, τ ′a are measured in units of the antibody neutral coalescence time Na, and τv, τ
′
v are measured in units of

the viral neutral coalescence time Nv. Fig. S3 shows the decay of the stationary auto-correlation for the diversity of
the binding affinity in antibodies MA,2 as a function of the evolutionary time τ . It is evident that the characteristic
decay time for the trait diversity (S90) is much shorter than that of the trait mean, given by the auto-correlation
function in equations (S88), (S89).

2.5 Alternative fitness models

Nonlinear activation probability based on average binding (nonlinear-averaged). We assume that the
growth rate (fitness) of an antibody is proportional to the logarithm of its activation probability (eq. (S44)), which
may be approximated by a linear function if the non-linearity is small (S45). Here, we numerically study the effect of
nonlinear fitness by comparing the evolutionary dynamics of populations in fitness landscapes with different values of
nonlinearity β = β0E0 and binding threshold e∗ = E∗/E0, while keeping the overall strength of (rescaled) selection,
sa = caβ/(1 + exp[−βe∗]) constant. The strength of selection corresponds to the slope of the approximate linear-
averaged fitness function in eq. (S45).

As the rescaled nonlinearity β = β0E0 of the fitness landscape (S44) increases, the mean binding affinity E becomes
closer to the neutral value; see Fig. S4A. This is a result of the sigmoid form of the fitness function, which reduces
fitness differences between genotypes at extreme values of binding affinity. Since mutations push the mean binding
affinity towards zero, the reduced advantage of binding at the extremes moves the stationary binding affinity towards
zero.

Similar arguments suggest that the rate of adaptation in the antibody population should decrease as the fitness
landscapes become more non-linear. The rate of adaptation is determined by fitness flux [42, 43], and is approximately
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FIG. S4: Alternative fitness models. (A) Stationary mean binding affinity and (B) rate of antibody adaptation (fitness
flux) due to selection, estimated by population fitness variance, for nonlinear- averaged fitness model (black) and the nonlinear-
EVD fitness model with the number of interactions, R = 10 (red), R = 100 (green), and R = 1000 (blue). The mean binding
affinity is sensitive to the degree of non-linearity β, and binding threshold e∗, but it is not very sensitive to the number of
interactions R. The selection coefficient sa is defined as in eq. S45. Dashed line in (B) indicates the expected fitness variance for
a linear-averaged fitness model, 〈φA〉 ' s

2
a〈mA,2〉, which is the selection component of the fitness flux in eq. (S94). Parameters

are: κi = κ̂i = 1 for all sites, ` = 75, ˆ̀ = 0, Na = Nv = 1000, θa = θv = 1/75. The unscaled selection coefficients are,
NvSv = sv/E0 = 0.2, and NaSa = sa/E0 from 0 to 0.4 on the x−axis, with β0 = .01, .1, 1 from top to bottom panels, and
E∗ = 0, 25 in the left and in the right panels. Points are time averaged values from simulations run for 104Na generations, with
values sampled every 2Na generations, and data from first 100Na generations discarded.

equal to the variance of fitness in the population [41]; see Section 3 for detailed discussion. Due to the sigmoidal
shape of the fitness function, fitness differences become small at large values of binding affinity (i.e., the functional
antibodies), which reduces the population fitness variance, and hence, the rate of adaptation. However, this effect is
less pronounced when the threshold for specific interaction is very large, e∗ � 1/β. In this case, the fitness function
is nearly linear for most antibodies, since their binding affinity fall below the binding threshold e∗. Therefore, fitness
variance and the rate of adaptation are only sensitive to the selection strength sa (i.e., slope of fitness at e = 0),
but not the nonlinearity of the fitness landscape. Evidently, the fitness variance (Fig. S4B) is less sensitive to the
non-linearity, than the mean binding affinity (Fig. S4A).

Nonlinear activation probability based on the strongest binding (nonlinear-EVD). We also study a model
for activation of antibodies which is based on their strongest binding affinity with a subset of viruses. The basic
assumption is that an antibody attempts to bind to a set of viruses (which may be smaller than the viral population
size), and once binding occurs due to a high affinity, it begins to proliferate. Similar treatments have been introduced
in the context of T-cell activation [66, 67]. The probability distribution function, Π(E∗α .) of the strongest of R
independent binding interactions between the antibody Aα and the viral population {V} can be obtained by extreme
value statistics. According to extreme value theory, if the distribution of binding affinities for a given antibody
has an exponential tail, then the corresponding distribution for its strongest binding affinity belongs to the class of
Gumbel distributions [68]. In the evolutionary regime that we study here, the amount of genetic polymorphism in
the population of antibodies results in a Gaussian-like distribution for the binding affinities, with mean Eα . + Êα .,

and variance I
(2)
α . given by eq. (S17). Therefore, the corresponding probability distribution for the strongest binding

affinity out of R independent trials, is a Gumbel distribution [68] with a peak at,

Eαmax = Eα . + Êα . +

√
2I

(2)
α . lnR (S91)
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and a width Σα =

√
πI

(2)
α . /(12 lnR). If we assume that lnR � 1, the distribution is sharply peaked, and Eαmax is

sufficient to describe it. In addition, we assume the activation probability is a sigmoid function of Eαmax,

ρ
A,max

(Aα) =
1

1 + exp[−β0(Eαmax − E∗)]
. (S92)

The fitness function fA,max(Aα; {V }) for the nonlinear-EVD model is related to the logarithm of the activation
probability,

fA,max(Aα; {V }) = ca log[ρmax(Aα)] = −ca log(1 + exp[−β0(Eαmax − E∗)]) (S93)

where the coefficients are similarly defined as in eq. (S44). Fig. S4A shows the stationary binding affinity for the
nonlinear-EVD fitness model. While the mean binding affinity is sensitive to the nonlinearity parameter β, it is
relatively insensitive to the number of interactions R, and is similar to the nonlinear-averaged model. This is not
surprising given the logarithmic dependence of binding affinity on the number of interactions R. As in the nonlinear-
averaged model, the fitness variance may be reduced due to the smaller fitness differences at high binding. In the
non-linear-EVD model (Fig. S4B, colors), the fitness variance is further reduced as the number of interactions increases,
because there is a higher chance of binding with a large affinity when there are more interactions. However, when
the threshold for specific interaction is very large, e∗ � 1/β, the binding affinity of most antibodies fall below the
threshold, where the fitness function is nearly linear.

3. Fitness flux and the co-evolutionary transfer flux.

The fitness flux φ(t) characterizes the adaptive response of a population by genotypic or phenotypic changes in

a population [37, 42, 43, 69, 70]. The cumulative fitness flux, Φ(τ) =
∫ t+τ
t

φ(t′)dt′, measures the total amount of
adaptation over an evolutionary period τ [43, 69]. The evolutionary statistics of this quantity is specified by the
fitness flux theorem [43]. The fitness flux for the antibodies φ

A
(t) and the viruses φ

V
(t) follow,

φ
A

(t) =
∑

α∈antibodies

∂F
A

(t)

∂xα
× dxα(t)

dt
(S94)

φ
V

(t) =
∑

γ∈viruses

∂F
V

(t)

∂yγ
× dyγ(t)

dt
(S95)

where, F
A

and F
V

are the stationary mean fitness of the antibody and the viral populations, and t is measured in
units of generations.

We introduce a new measure of interaction between co-evolving populations “transfer flux”, which is the change in
the mean fitness of a population due to the evolution of the opposing population. The transfer flux from antibodies
to viruses TA→V and from viruses to antibodies TV→A follow,

TA→V (t) =
∑

α∈antibodies

∂F
A

(t)

∂xα
× dxα(t)

dt
(S96)

TV→A(t) =
∑

γ∈viruses

∂F
A

(t)

∂yγ
× dyγ(t)

dt
(S97)

In the regime of substantial selection sa, sv & 1, the transfer flux in antagonistically interacting populations of
antibodies and viruses is always negative, implying that adaptation of one population reduces the fitness of the
opposing population.

The fitness flux and transfer flux are rates of adaptation and interaction that are time-independent only in the
stationary state. The total amount of adaptation for non-stationary evolution, where the fluxes change in time, can
be generally measured by the cumulative fitness and transfer flux. In the stationary state, the cumulative flux values
grow linearly with the evolutionary time. For co-evolution in the linear-averaged fitness landscape of equations (S45,
S47) the stationary cumulative fitness flux over an evolutionary time for antibodies and viruses follow from a simple
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genotype-to-phenotype projection,

〈Φa(τa)〉 = Na

∫ t

t′=0

φ
A

(t′)dt′ =

[〈
∂F

A

∂E
∂E
∂t

∣∣∣
{V}

〉
+

〈
∂F

A

∂Ê
∂Ê
∂t

∣∣∣
{V}

〉]
τa

=
[
− 2θasa

(
〈ε〉+ 〈ε̂〉

)
+ s2

a

(
〈mA,2〉+ 〈m̂A,2〉

)]
τa =

[
− 2θasa〈ε〉+ s2

a〈mA,2〉
]
τa (S98)

〈Φv(τv)〉 = Nv

∫ t

t′=0

φ
V

(t′)dt′ =

〈
∂F

V

∂E
∂E
∂t

∣∣∣
{A}

〉
τv

=
[
2θvsv〈ε〉+ s2

v 〈mV,2〉
]
τv (S99)

where ε is the rescaled mean binding affinity, and mA,2 (mV,2) and sa (sv) are the rescaled diversity of the binding
affinity and the selection coefficient in the antibody (viral) population, according to the rescaling procedures in
equations (S28) and (S49). τa = t/Na and τv = t/Nv are respectively the evolutionary time in natural units of the
neutral coalescence time in the antibody population Na and in the viral population Nv. The first terms in eqs. (S98,
S99) are the fitness changes due to mutation, the second terms are due to selection, and the changes due to genetic
drift are zero in the ensemble average for our linear model. In the regime of substantial selection sa, sv & 1, the fitness
flux in a polymorphic population asymptotically converges to the variance of the stationary fitness distribution in the
population [43], which is in accordance with the rate of adaptation given by Fisher’s fundamental theorem and Price’s
equation [38, 41]. In this regime, fitness flux is the change in the mean fitness of the population due to selection.

Similarly, the cumulative stationary transfer fluxes for co-evolution in the linear-averaged fitness landscape eqs. (S45,
S47) follow,

〈TV→A(τa)〉 = Na

∫ t

t′=0

TV→A(t′)dt′ =

〈
∂F

A

∂E
∂E
∂t

∣∣∣
{A}

〉
τa(Na/Nv)

=
[
− 2θvsa〈ε〉 − sasv 〈mV,2〉

]
τa(Na/Nv) (S100)

〈TA→V (τv)〉 = Nv

∫ t

t′=0

TA→V (t′)dt′ =

〈
∂F

V

∂E
∂E
∂t

∣∣∣
{V}

〉
τv(Nv/Na)

=
[
2θasv〈ε〉 − svsa 〈mA,2〉

]
τv(Nv/Na) (S101)

The first terms in equations (S100, S101) are the fitness changes due to mutation, the second terms are due to selection.
Note that the rescaling of the time (Na/Nv)τa and (Nv/Na)τv in eqs. (S100, S101) are respectively equivalent to
measurements in units of neutral coalescence time in antibodies τv = t/Nv and in viruses τa = t/Na, which are the
natural characteristic times for adaptation in each of these populations. In the stationary state, the fitness flux in
each population and the transfer flux from the opposing population sum up to 0, e.g., 〈ΦA + TV→A〉 = 0, keeping the
mean fitness of both populations constant. Non-stationary states occur during transient evolutionary dynamics of the
whole population, or when considering a subset of the population, such as a clonal lineage, whose size fluctuates to
fixation or extinction. In particular, the imbalance between the fitness flux and the transfer flux may determine the
evolutionary fate of a clonal lineage which we discuss in Section 4. A convenient way to measure fitness and transfer
flux is from time-shifted fitness measurements, from stationary (Fig. 3) and non-stationary (Fig. S5) co-evolving
populations.

4. Evolution of multiple antibody lineages

Fixation probability in a general fitness landscape. We extend our results to multiple clonal antibody lineages
evolving with a viral population. The lineages are distinguished by their coupling constants {εCi , ε̂Ci ≥ 0} for lineage
C, which characterizes the lineages’ accessibility to regions of the viral sequence. The fraction of all antibodies in
lineage C, ρC (t), and its long time behavior determines whether a lineage goes extinct or expands to an appreciable
size. Assuming that mutations cannot change one lineage to another, the growth of a given lineage C depends on the
relative mean fitness of the lineage F

AC
compared to the mean fitness of the whole population F

A
(t) =

∑
C FAC (t)ρC (t),
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FIG. S5: Non-stationary signature of co-evolution from time-shifted interactions. Transient (non-stationary) co-
evolutionary dynamics are quantified by the ensemble-averaged time-shifted mean fitness of the antibody population 〈FA;τ (t)〉 =
sa〈ετ 〉 = sa〈

∑
α,γ Eαγx

α(t)yγ(t+ τ)〉/E0 for τ > 0 and 〈FA;τ (t)〉 = sa〈
∑
α,γ Eαγx

α(t− τ)yγ(t)〉/E0 for τ < 0, estimated at a
reference time point that is Na generations after the initial state. The fitness function is shown for two evolutionary regimes,
(i) stronger antibody selection, sa = 2, sv = 1 in blue and (ii) weaker antibody selection, sa = 1, sv = 2 in red. The slope of
time-shifted fitness at τ = 0 measures the population’s fitness flux (towards the past) shown by dashed lines, and the transfer
flux from the opposing population (towards the future) shown by dotted lines . Fitness flux and transfer flux do not have equal
values in a non-stationary state, leading to the discontinuity in the slope of the time-shifted fitness function at τ = 0. The
dashed and dotted lines show the estimated fitness flux and transfer flux which are the slopes of the cumulative flux values in
eqs. (S98, S100). The non-stationary Fitness flux in antibodies is larger than the transfer flux from the viruses to the antibody

population, when selection on antibodies is stronger (blue). Parameters ` = 50, ˆ̀ = 0, Na = Nv = 1000, θa = θv = 1/25, and
results were ensemble-averaged over 103 simulations.

and on the strength of stochasticity due to genetic drift,

d

dt
ρC (t) =

∑
α

(
fCα (t)− F

A
(t)
)
xα
C

(t) +

√
ρC (1− ρC )

Na
(S102)

where fCα (t) is the fitness of the genotype Aα in the lineage C. Similar to the evolution of single lineage, the growth of
multiple lineages also follows an infinite hierarchy of moment equations for the fitness distribution. Here, we truncate
these equations at the second central moment of fitness, i.e., the lineage-specific fitness flux φ

AC
and the transfer flux

TV→AC . The changes of the ensemble-averaged mean fitness of a lineage F
AC

(t) and the mean fitness of the whole
population F

A
(t), weighted by the frequency ρC (t) follow,〈

d

dt

∑
α

fCα (t)xα
C

(t)

〉
=

〈
ρC (t)

∑
α∈C

∂F
AC

∂xα
C

× dxα
C

dt

〉
+

〈
ρC (t)

∑
γ

∂F
AC

∂yγ
× dyγ

dt

〉
− 1

Na

〈
F
AC

(t) ρC (t)
〉

≡
〈
ρC (t)φAC (t)

〉
+
〈
ρC (t) TV→AC (t)

〉
− 1

Na

〈
F
AC

(t) ρC (t)
〉

(S103)

Similarly, 〈
d

dt

∑
α

F
A

(t)xα
C

(t)

〉
=
〈
ρC (t)φA(t)

〉
+
〈
ρC (t) TV→A(t)

〉
− 1

Na

〈
F
A

(t) ρC (t)
〉

(S104)

where xα
C
≡ xC(Aα) is the frequency of the antibody genotype Aα from lineage C in the total population. Here, we

assume that the mean fitness of a lineage only depends on the genotypes within the lineage, as is the case for the
fitness functions given in eqs. (S45, S47). The ensemble-averaged changes of the fitness flux and the transfer flux
due to selection depend on higher central moments of the fitness distribution, which we neglect in our analysis. The
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effects of mutation and genetic drift (using Itô calculus) on the flux quantities follow,

d

dt

〈
ρC (t)φAC (t)

〉
'
〈
ρC (t)m

α
A

∂

∂xα
φ
AC

(t)
〉

+
1

Na

[〈
ρC (t)φA(t)

〉
− 2
〈
ρC (t)φAC (t)

〉]
(S105)

d

dt

〈
ρC (t)φA(t)

〉
'
〈
ρC (t)m

α
A

∂

∂xα
φ
A

(t)
〉

+
1

Na

[〈
ρC (t)φAC (t)

〉
− 2
〈
ρC (t)φA(t)

〉]
(S106)

d

dt

〈
ρC (t) TV→AC (t)

〉
'
〈
ρC (t)

[
mα
A

∂

∂xα
TV→AC (t) +mγ

V

∂

∂yγ
TV→AC (t)

]〉
− 1

Nv

〈
ρC (t) TV→AC (t)

〉
(S107)

d

dt

〈
ρC (t) TV→A(t)

〉
'
〈
ρC (t)

[
mα
A

∂

∂xα
TV→(t) +mγ

V

∂

∂yγ
TV→A(t)

]〉
− 1

Nv

〈
ρC (t) TV→A(t)

〉
(S108)

where mα
A

and mγ
V

are the mutational fields associated with frequency changes due to mutations in the antibody Aα

and in the virus Vγ , as defined by eq. (S3).

In order to compute the fixation probability Pfix = limt→∞〈ρC (t)〉, it is convenient to use the Laplace trans-
form of the lineage frequency, and compute its asymptotic behavior at large time (see e.g., [71]). The Laplace
transform of a given function A(t) can be computed as, A(z) =

∑
tA(t) exp[−zt] with the inverse transform:

A(t) = lim
T→∞

1
2πi

∫ γ+iT

γ−iT exp[zt]A(z). Following this procedure for the hierarchy of equations (S102-S108) entails a

general form for the fixation probability of a lineage, depending on the initial states of the antibody and the viral
populations,

Pfix(C) = lim
t→∞
〈ρC (t)〉

=
〈
ρC (0)

〉
+
〈
Na
(
F
AC

(0)− F (0)
)
ρC (0)

〉
+

1

3

〈
N2
a

(
φ
AC

(0)− φ
A

(0)
)
ρC (0)

〉
−
〈
NaNv

(∣∣TV→AC (0)
∣∣− ∣∣TV→A(0)

∣∣) ρC (0)
〉

+O(θ〈(Nδf)2〉, 〈(Nδf)3)〉 (S109)

where 〈(δf)r〉 denotes the rth central moment of the fitness distribution. Here, we have neglected the change in
fitness and transfer flux due to mutations, which is of order O(θ〈(Nδf)2〉). Below, we will explicitly study the
mutational terms for the specific case of the linear fitness model in eqs. (S45, S47). The first term in eq. (S109) is
the ensemble-averaged initial frequency of the lineage at time t = 0, and equals its fixation probability in neutrality.
In the presence of selection, lineages of antibodies with higher relative mean fitness, F

AC
(0) − F (0), higher rate of

adaptation, φ
AC

(0)−φ
A

(0), and lower (absolute) transfer flux from viruses,
∣∣TV→AC (0)

∣∣−∣∣TV→A(0)
∣∣, tend to dominate

the population. In the following, we will derive in detail the exact form of the fixation probability for evolution in
linear fitness landscapes given by eqs. (S45, S47).

Fixation probability in the linear fitness landscape. For evolution in a linear fitness landscape, the growth
of a lineage depends on its relative binding affinity compared to the rest of the population. In order to quantify the
competition between the lineages, we define the lineage-specific moments,

L
C

Am =
〈∑

α

(Eα . − E)m xα
C

〉
, L̂

C

Am =
〈∑

α

(Êα . − Ê)m xα
C

〉
(S110)

L
C

Am;n
=
〈∑

α

(Eα . − E)m xα
C

∑
β,C′

(Eβ . − E)n xβ
C′

〉
(S111)

L̂
C

Am;n
=
〈∑

α

(Êα . − Ê)m xα
C

∑
β,C′

(Êβ . − Ê)n xβ
C′

〉
(S112)

L
C

Am,Vk
=
〈∑

γ

(E. γ − E)kyγ
∑
α

(Eαγ − E)m xα
C

〉
(S113)

In this notation, L
C

A0
≡ 〈ρC 〉. As given by eq. (S105), the change in the frequency of the lineage C, follows from the

evolution equation,

d

dt
L
C

A0
= Sa(L

C

A1
+ L̂

C

A1
) (S114)
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As discussed above, the dynamics of multiple lineages follows from an infinite hierarchy of moment equations, which
we truncate at the second moment to estimate the fixation probability of an antibody lineage up to the order of O(s2).

The hierarchy of evolution equations for the lineage specific moments L
C

Am
and the cross-statistics L

C

Am,Vk
follow,

variable region:

d

dt
L
C

A1
= Sa(L

C

A2
− LCA(0;2)

)− Sv(L
C

A1,V1
− LCA0,V2

)− 2(µa + µv)L
C

A1
− L

C

A1

Na
(S115)

d

dt
L
C

A2
= −4µa(L

C

A2
− `K2,CL

C

A0
)− 4µvL

C

A2
+
L
C

A(0;2)
− 2L

C

A2

Na
+O(Sa, Sv) (S116)

d

dt
L
C

A(0;2)
= −4µa(L

C

A(0;2)
− ` [K2,C ]CL

C

A0
)− 4µvL

C

A(0;2)
+
L
C

A2
− 2L

C

A(0;2)

Na
+O(Sa) (S117)

d

dt
L
C

A1,V1
= −4µaL

C

A1,V1
− 4µv(L

C

A1,V1
− `
√
K2,C [K2,C ]C L

C

A0
)−

L
C

A1,V1

Nv
+O(Sa) (S118)

d

dt
L
C

A0,V2
= −4µaL

C

A0,V2
− 4µv(L

C

A0,V2
− ` [K2,C ]CL

C

A0
)−

L
C

A0,V2

Nv
+O(Sa) (S119)

conserved region:

d

dt
L̂
C

A1
= Sa(L

C

A2
− LCA(0;2)

)− 2µaL̂
C

A1
− L̂

C

A1

Na
(S120)

d

dt
L̂
C

A2
= −4µa(L̂

C

A2
− ˆ̀K̂2,CL

C

A0
) +

L̂
C

A(0;2)
− 2L̂

C

A2

Na
+O(Sa) (S121)

d

dt
L̂
C

A(0;2)
= −4µa(L̂

C

A(0;2)
− ˆ̀[K̂2,C ]CL

C

A0
) +

L̂
C

A2
− 2L̂

C

A(0;2)

Na
+O(Sa) (S122)

with the lineage averaged statistics,

[K
2,C ]C =

∑
lineages C

K
2,CρC , [K̂C2 ]C =

∑
lineages C

K̂
2,CρC (S123)

In order to compute the fixation probability, we use the Laplace transform of the lineage specific moments LAm,Vk and

compute the asymptotic behavior of the 0th moment, L
C

0 after the inverse transform (see e.g., [65, 71]). The Laplace

transform for the hierarchy of moment equations (S115-S122) up to order of O(S2) in LCA0
entails,

zLCA0
(z)− LCA,0(0) = Sa(LCA1

(z) + L̂C1(z)) (S124)

variable region:

zLCA1
(z)− LCA1

(0) = Sa(LCA2
(z)− LCA(0;2)

(z))− Sv(L
C

A1,V1
− LCA0,V2

)− 2(µa + µv)L
C

A1
(z)− L

C

A1
(z)

Na
(S125)

zLCA2
(z)− LCA2

(0) = −4µa(LCA2
(z)− `KC2L

C

A0
(z))− 4µvL

C

A2
(z) +

LCA(0;2)(z)− 2LCA2
(z)

Na
(S126)

zLCA(0;2) − L
C

A(0;2)(0) = −4µa(LCA(0;2) − ` [KC2 ]C L
C

A0
)− 4µvL

C

A(0;2) +
LCA2
− 2LCA(0;2)

Na
(S127)

zLCA1,V1
− LCA1,V1

(0) = −4µaL
C

A1,V1
− 4µv(L

C

A1,V1
− `
√
K2,C [K2,C ]C L

C

A0
)−
LCA1,V1

Nv
(S128)
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zLCA0,V2
− LCA0,V2

(0) = −4µaL
C

A0,V2
− 4µv(L

C

A0,V2
− ` [K2,C ]CL

C

A0
)−
LCA0,V2

Nv
(S129)

conserved region:

zL̂CA1
(z)− L̂CA1

(0) = Sa(L̂CA2
(z)− L̂CA(0;2)(z))− 2µaL̂

C

A1
(z)− L̂

C

A1
(z)

Na
(S130)

zL̂CA2
(z)− L̂CA2

(0) =
L̂CA(0;2)(z)− 2L̂CA2

(z)

Na
− 4µa(L̂CA2

(z)− ˆ̀K̂C2 L̂
C

A0
(z)) (S131)

zL̂CA(0;2) − L̂
C

A(0;2)(0) = −4µa(L̂CA(0;2) − ˆ̀[K̂C2 ]C L̂
C

0) +
L̂CA2
− 2L̂CA(0;2)

Na
(S132)

The inverse transform of LCA0
(z) in the limit of z → 0 results in the asymptotic behavior of the ensemble-averaged

frequency of the lineage C, lim
t→∞

L
C

A0
, which corresponds to the fixation probability P

fix
of the lineage,

P
fix

(C) = lim
t→∞

L
C

A0
(t)

= L
C

A0
(0) +

Na Sa

1 + 2θ̃a
L
C

A1
(0) +

Na Sa

(1 + 2θ̃a)

NaSa(L
C

A2
(0)− LCA(0;2)

(0))

3 + 4θ̃a
−
Nv Sv

(
L
C

A1,V1
(0)− LCA0,V2

(0)
)

1 + 4θ̃v


+

Na Sa
1 + 2θa

L̂
C

A1
(0) +

Na Sa
(1 + 2θa)

NaSa(L̂
C

A2
(0)− L̂CA(0;2)

(0))

3 + 4θa

 (S133)

The fixation probability of a lineage can be characterized by the state of the antibody population and viral population
upon its introduction. The first term in eq. (S133) is the frequency of the antibody lineage at the time of introduction,
and is equal to the neutral fixation probability. The second term, which is favored by the antibody selection coefficient,
measures the relative fitness of the lineage C to the mean fitness of the population. The terms proportional to the
(NaSa)2 measure the relative fitness flux of the lineage C to the fitness flux of the whole population. The terms
proportional to (NaSa) × (NvSv) measure the transfer flux from the viral population to the antibody lineage C
relative to the total transfer flux from viruses to the antibody population.

As mentioned in the main text, the higher viral diversity favors the fixation of broadly neutralizing antibodies
for two reasons. First, the larger viral diversity compromises the mean fitness of the resident non-broad antibody
population, and makes it easier for the potential BnAb lineage to take over the existing antibody lineages. This
effect is captured by terms proportional to NaSa in eq. (S133). Second, the transfer flux from the viral population
to the lineage with access to the conserved interaction regions (i.e, a lineage with Ê2

0/E
2
0 � 1) is small. Therefore,

the viral escape from binding to a potential BnAb lineage is less efficient than from the resident non-broad antibody
population, which increases the chances of fixation for a potential BnAb lineage. This effect is captured by terms
proportional to (NaSa) × (NvSv) in eq. (S133). Similar conclusions regarding the elicitation of BnAbs have been
drawn from numerical analysis by Luo & Pelerson [30].
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[43] V. Mustonen and M. Lässig, Proc. Natl. Acad. Sci. U.S.A. 107, 4248 (2010).
[44] F. Blanquart and S. Gandon, Ecol. Lett. 16, 31 (2013).
[45] K. B. Hoehn and et al., Phil. Trans. R. Soc. B 370 (2015).
[46] R. Wyatt and J. Sodroski, Science 280, 1884 (1998).
[47] Y. Zhang and et al., The Journal of experimental medicine 210, 457 (2013).
[48] R. A. Neher and T. Leitner, PLoS Comput. Biol. 6, e1000660 (2010).
[49] T. W. Chun and et al., Nature 387, 183 (1997).
[50] M. A. Brockhurst and B. Koskella, Trends Ecol. Evol. 28, 367 (2013).
[51] B. Koskella and M. A. Brockhurst, FEMS Microbiol. Rev. 38, 916 (2014).
[52] A. R. Hall, P. D. Scanlan, A. D. Morgan, and A. Buckling, Ecol. Lett. 14, 635 (2011).
[53] A. Betts, O. Kaltz, and M. E. Hochberg, Proc. Natl. Acad. Sci. U.S.A. 111, 11109 (2014).
[54] A. Agrawal and C. M. Lively, Evol. Ecol. Res. 4, 91 (2002).
[55] J. M. Fonville and et al., Science 346, 996 (2014).
[56] L. Verkoczy, G. Kelsoe, M. Moody, and B. Haynes, Curr. Opin. Immunol. 23, 383 (2011).
[57] T. Kepler and et. al., Front. Immunol. 5, 170 (2014).
[58] O. Tange, ;login: The USENIX Magazine 36, 42 (2011).
[59] C. Gardiner, Handbook of Stochastic methods: for physics, chemistry and the natural sciences (Springer, 2004), 3rd ed.
[60] M. Kimura, J. Appl. Probab. 1, 177 (1964).
[61] P. L. Antonelli and C. Strobeck, Adv. Appl. Probab. 9, 238 (1977).
[62] R. A. Fisher, Proc. R. Soc. Edinb. 50, 205 (1930).
[63] M. Kimura, The neutral allele theory of molecular evolution (Cambridge University Press, Cambridge, UK, 1983).
[64] P. G. Higgs and G. Woodcock, J. Math. Biol. 33, 677 (1995).
[65] B. H. Good and M. M. Desai, Theor. Popul. Biol. 85, 86 (2013).
[66] A. Kosmrlj, A. K. Jha, E. S. Huseby, M. Kardar, and A. K. Chakraborty, Proc. Natl. Acad. Sci. U.S.A. 105, 16671 (2008).
[67] A. Kosmrlj, A. K. Chakraborty, M. Kardar, and E. I. Shakhnovich, Phys. Rev. Lett. 103, 068103 (2009).
[68] L. de Haan and A. Ferreira, Extreme value theory: an introduction (Springer US, New York, 2006).
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