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Abstract
The ability to quantify cellular heterogeneity is a major advantage of single-cell technologies. Although under-

standing such heterogeneity is of primary interest in a number of studies, for convenience, statistical methods

often treat cellular heterogeneity as a nuisance factor. We present a novel method to characterize differences in

expression in the presence of distinct expression states within and among biological conditions. Using simulated

and case study data, we demonstrate that the modeling framework is able to detect differential expression pat-

terns of interest under a wide range of settings. Compared to existing approaches, scDD has higher power to

detect subtle differences in gene expression distributions that are more complex than a mean shift, and is able

to characterize those differences. The freely available R package scDD implements the approach.

Background
Coordinated gene expression is fundamental to an organism’s development and maintenance, and aberrations are

common in disease. Consequently, experiments to measure expression on a genome-wide scale are pervasive. The

most common experiment involves the quantification of mRNA transcript abundance averaged over a population

of thousands or millions of cells. These so-called traditional, or bulk, RNA-seq experiments have proven useful

in a multitude of studies. However, because bulk RNA-seq does not provide a measure of cell specific expression,

many important signals go unobserved. A gene that appears to be expressed at a relatively constant level in

a bulk RNA-seq experiment, for example, may actually be expressed in sub-groups of cells at levels that vary

substantially (see Figure 1).

Single-cell RNA-seq (scRNA-seq) facilitates the measurement of genome-wide mRNA abundance in individual

cells, and as a result, provides the opportunity to study the extent of gene-specific expression heterogeneity

within a biological condition, and the impact of changes across conditions. Doing so is required for discovering

novel cell types [1, 2], for elucidating how gene expression changes contribute to development [3, 4, 5], for

understanding the role of cell heterogeneity on the immune response [6, 7] and cancer progression [6, 8, 9, 10], and

for predicting response to chemotherapeutic agents [11, 12, 13]. Unfortunately, the statistical methods available

for characterizing gene-specific expression within a condition and for identifying differences across conditions in

scRNA-seq are greatly limited, largely because they do not fully accommodate the cellular heterogeneity that

is prevalent in single-cell data.

To identify genes with expression that varies across biological conditions in an scRNA-seq experiment, a

number of early studies used methods from bulk RNA-seq [12, 10, 4, 14, 15]. In general, the methods assume

that each gene has a latent level of expression within a biological condition, and that measurements fluctuate

around that level due to biological and technical sources of variability. In other words, they assume that gene-

specific expression is well characterized by a unimodal distribution within condition. Further, tests for differences

in expression to identify so-called differentially expressed (DE) genes amount to tests for shifts in the unimodal

distributions across conditions. A major drawback of these approaches in the single-cell setting is that, due to

both biological and technical cell-to-cell variability, there is often an abundance of cells for which a given gene’s

expression is unobserved [16, 7, 17] and, consequently, unimodal distributions are insufficient.

To address this, a number of statistical methods have been developed recently to accommodate bimodality

in scRNA-seq data [17, 18]. In these mixture-model based approaches, one component distribution accommo-

dates unobserved, or dropout, measurements (which include zero and, optionally, thresholded low-magnitude
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observations) and a second unimodal component describes gene expression in cells where expression is observed.

Although these approaches provide an advance over unimodal models used in bulk, they are insufficient for

characterizing multi-modal expression data, which is common in scRNA-seq experiments (see Figure 2).

Specifically, a number of studies have shown that many types of heterogeneity can give rise to multiple

expression modes within a given gene [19, 20, 21, 22, 23]. For example, there are often multiple states among

expressed genes [19, 20, 22](a schematic is shown in Figure 1). The transition between cell states may be

primarily stochastic in nature and result from expression bursts [24, 25], or result from positive feedback signals

[26, 19, 23]. Beyond the existence of multiple stable states, multiple modes in the distribution of expression levels

in a population of cells may also arise when the gene is either oscillatory and unsynchronized, or oscillatory

with cellular heterogeneity in frequency, phase, and amplitude [21, 23].

Figure 3 illustrates common multi-modal distributions within and across biological conditions. When the

overall mean expression level for a given gene is shifted across conditions, bulk methods, or recent methods for

scRNA-seq [18, 17, 27, 28], may be able to identify the gene as showing some change. However, as we show here,

they would be relatively underpowered to do so, and they would be unable to characterize the change, which is

often of interest in an scRNA-seq experiment. For example, the gene in Figure 3 (C) shows a differential number

of modes (DM), while the gene in Figure 3 (B) shows a differential proportion (DP) of cells at each expression

level across conditions. Differentiating between DM and DP is important since the former suggests the presence

of a distinct cell type in one condition, but not the other, while the latter suggests a change in splicing patterns

among individual cells [7] or cell-specific responses to signaling [29].

Here we develop a Bayesian modeling framework, scDD, to facilitate the characterization of expression within

a biological condition, and to identify genes with differential distributions (DD) across conditions in an scRNA-

seq experiment. A DD gene may be classified as DE, DM, DP, or both DM and DE (abbreviated DB; Figure 3

provides an overview of each pattern). Simulation studies suggest that the approach provides improved power

and precision for identifying differentially distributed genes. Additional advantages are demonstrated in a case

study of human embryonic stem cells.

Results and discussion
Human embryonic stem cell data

Single-cell RNA-seq data was generated in the James Thomson Lab at the Morgridge Institute for Research (see

methods for details). Here we analyze data from two undifferentiated human embryonic stem cell (hESC) lines:

the male H1 line (78 cells) and the female H9 line (87 cells). In addition, we include data from two differentiated

cell types that are both derived from H1: definitive endoderm cell (DEC, 64 cells) and neuronal progenitor

cell (NPC, 86 cells). The relationship between these four cell types is summarized by the diagram in Figure 4.

As discussed in the case study results, it is of interest to characterize the differences in distributions of gene

expression among these four cell types to gain insight into the genes that regulate the differentiation process.

Publicly available human myoblast and mouse embryonic stem cell data

We also apply our method to two publicly available scRNA-seq datasets to determine which genes are differ-

entially distributed following stimulation or inhibition of differentiation via specialized growth medium. Using

data from [30], we compare gene expression of human myoblast cells cultured in standard growth medium (T0,

96 cells) with those treated with differentiation-inducing medium for 72 hours (T72, 84 cells). Additionally, we

use data from [31] to compare gene expression of mouse embryonic stem cells (mESC) cultured in standard

medium (Serum+LIF, 93 cells) with those cultured on differentiation-inhibiting medium (2i+LIF, 94 cells).

Simulated data

We evaluate model performance using log-transformed count data simulated from mixtures of negative binomial

distributions. The analysis of log-transformed counts from bulk RNA-seq has been shown to perform as well as
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utilizing count-based modeling assumptions [32, 33]. Recent scRNA-seq analyses have also assumed normality of

log-transformed nonzero measurements [7, 18]. For each simulated dataset, 10,000 genes were simulated for two

conditions with four different sample size settings (50, 75, 100, and 500 cells in each condition). The majority

of the genes (8,000) were simulated out of the same model in each condition, and the other 2,000 represent

genes with the four types of differential distributions (DD) outlined in Figure 3. The 2,000 DD genes were split

equally into the following four categories:

• DE: single component with different mean in each condition

• DP: two components in each condition with equal component means across conditions; the proportion in

the low mode is 0.33 for condition 1 and 0.66 for condition 2

• DM: single component in condition 1; two components in condition 2 with one overlapping component.

Half of the condition 2 cells belong to each mode

• DB: single component in condition 1; two components in condition 2 with no overlapping components.

The mean of condition 1 is half-way between the means in condition 2. Half of the cells in condition 2

belong to each mode.

where different clusters (with different generating distributions) are referred to as components, and different

biological groups of interest are referred to as conditions.

Of the 8,000 null genes, 4,000 were generated from a single negative binomial component (EE) and the

other 4,000 from a two-component binomial mixture (EP). Parameters of the negative binomial distributions

for the unimodal genes were chosen to be representative of the observed means and variances in the H1 dataset.

Fold-changes for DE genes were chosen to be representative of those observed in the H1 and DEC compari-

son. Distances between (log-scale) component means ∆µσ̂ in the multi-modal genes were varied for the two-

component cases, with equal proportion of genes at each setting of ∆µ ∈ {2, 3, 4, 5, 6}, where σ̂ is the estimated

cluster-specific standard deviation. More details are provided in the Methods section.

The scDD modeling framework
Let Yg = (yg1, ..., ygJ) be the log-transformed nonzero expression measurements of gene g in a collection of J

cells from two biological conditions. We assume that measurements have been normalized to adjust for technical

sources of variation including amplification bias and sequencing depth. Under the null hypothesis of equivalent

distributions (i.e. no dependence on condition), we let Yg be modeled by a conjugate Dirichlet process mixture

(DPM) of normals (see Methods section for more details). Gene g may also have expression measurements of

zero in some cells; these are modeled as a separate distributional component (see section ‘Differential proportion

of zeroes’ for more details).

Ultimately, we would like to calculate a Bayes Factor for the evidence that the data arises from two indepen-

dent condition-specific models (differential distributions (DD)) versus one overall model that ignores condition

(equivalent distributions (ED)). Let MDD denote the differential distributions hypothesis, and MED denote

the equivalent distributions hypothesis. A Bayes Factor in this context for gene g would be:

BFg =
f(Yg|MDD)

f(Yg|MED)

where f(Yg|M) denotes the predictive distribution of the observations from gene g under the given hypothesis. In

general, there is no analytical solution for this distribution under the Dirichlet process mixture model framework.

However, under the Product Partition Model (PPM) formulation (see Methods section for more details), we can

get a closed form solution for f(Yg, Zg|M), where Zg represents a partition of samples to mixture components.

As the partition Zg cannot be integrated out, we introduce an approximate Bayes Factor score:

Scoreg = log

(
f(Yg, Zg|MDD)

f(Yg, Zg|MED)

)
= log

(
fC1(Y C1

g , ZC1
g )fC1(Y C2

g , ZC2
g )

fC1,C2(Yg, Zg)

)
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where C1 and C2 denote condition 1 and 2, respectively, and the score is evaluated at the partition estimate

Ẑg. A high value of this score presents evidence that a given gene is differentially distributed. Significance of

the score is assessed via a permutation test. Specifically, condition labels are permuted and partition estimates

are obtained within the new ‘conditions’. For each permuted data set, the Bayes Factor score is calculated; the

default in scDD is 1,000 permutations. For each gene, an empirical p-value is calculated, and FDR is controlled

for a given target value using the method of [34].

If covariates are available, instead of permuting the observed values, the relationship between the clustering

and covariates can be preserved by permuting the residuals of a linear model that includes the covariate and

using the fitted values [35]. As pointed out by [18], the cellular detection rate is a potential confounder variable,

so the permutation procedure in the case studies is adjusted in this manner. If other known confounders exist

and are measured, these can also be incorporated in the same manner.

Classification of significant DD genes

For genes that are identified as DD by the Bayes Factor score, of interest is classifying them into four categories

that represent the distinct DD patterns shown in Figure 3. To classify the DD genes into these patterns (DE,

DM, DP, and DB), scDD utilizes the conditional posterior distribution of the cluster-specific mean parameters

given in Equation 6 (see Methods section). Posterior sampling is carried out to investigate the overlap of clusters

across conditions. Let c1 be the number of components in condition 1, c2 the number of components in condition

2, and cOA the number of components overall (when pooling condition 1 and 2). Only components containing at

least 3 cells are considered in order to minimize the impact of outlier cells. Note that for interpretability, a DD

gene must satisfy: c1 + c2 ≥ cOA ≥ min(c1, c2). These bounds on the number of components overall represent

the two extreme cases: condition 1 does not overlap with condition 2 at all, versus one condition completely

overlaps with the other. Any cases outside of these boundaries are not readily interpretable in this context. The

actions to take for all other possible combinations of c1, c2, and cOA are detailed in the Methods section.

Differential proportion of zeroes

For those genes that do not show differential distributions in the nonzero values, scDD allows a user to evaluate

whether the proportion of zeroes differs significantly between the two conditions. This evaluation is carried out

using logistic regression adjusted for the proportion of genes detected in each cell as in [18]. Genes with a χ2 test

p-value of less than 0.025 (after adjustment for multiple comparisons using the method of [34]) are considered

to have a differential proportion of zeroes (DZ).

Simulation study

A simulation study was conducted to assess the performance of scDD to identify DD genes, and to classify them

as DE, DP, DM, or DB. Model performance on the simulated data was assessed based on (1) the ability to

estimate the correct number of components, (2) the ability to detect significantly DD genes, and (3) the ability

to classify DD genes into their correct categories. These three criteria are explored in the next three sections,

respectively. Existing methods for differential expression analysis are also evaluated for the second criteria.

Estimation of the number of components

We first examine the ability of scDD to detect the correct number of components. Table 1 displays the proportion

of bimodal and unimodal simulated genes where the correct number of components was identified. For bimodal

genes, results are stratified by cluster mean distance. It is clear that the ability of the algorithm to correctly

identify the correct number of components in bimodal genes improves as the component mean distance or sample

size increases. The results for unimodal genes are not as sensitive to sample size, however the proportion of genes

identified as bimodal increases slightly with more samples. We conclude that the partition estimate is able to

reliably detect the true number of components for reasonable sample and effect sizes.
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Detection of DD genes

Next, we examine the ability of scDD to identify the non-null genes as significantly DD, and compare to the

existing methods SCDE [17] and MAST [18]. For each method, target FDR was set at 5% (see Methods for

details). The power to detect each gene pattern as DD for all three methods is shown in Table 2. Note that the

calculations here are taken before the classification step for scDD, so power is defined as the proportion of genes

from each simulated category that are detected as DD. In general, the power to detect DD genes improves with

increased sample size for all three methods. Our approach has comparable power to SCDE and MAST for DE

and DM genes, but higher overall power to detect DP and DM genes. Interestingly, SCDE has very low power

to detect DP genes, whereas MAST shows very low power to detect DB genes.

Classification of DD genes

Next, we examine the ability of scDD to classify each DD gene into its corresponding category. Table 3 shows

the Correct Classification Rate in each category for DD genes that were correctly identified during the detection

step (calculated as the proportion of true positive genes detected as DD for a given category that were classified

into the correct category). The classification rates do not depend strongly on sample size, with the exception of

DP, which decreases with increasing sample size. This decrease results from an increase in the DD detection rate

of DP genes with small cluster mean distance, which have a lower correct classification rate (as shown below).

Since the ability to correctly classify a DD gene depends on the ability to detect the correct number of

components (see classification algorithm in Methods), we also examine how the Correct Classification Rate

varies with cluster mean distance for the categories that contain bimodal genes (DP, DM, and DB). As shown

in Table 4, the classification rates improve as ∆µ increases. This pattern mirrors the trend in Table 1, and

suggests that misclassification events occur largely due to incorrect estimation of the number of components.

Performance generally increases with sample size, especially at lower values of ∆µ. In general, the ability of the

algorithm to classify detected DD genes into their true category is robust when components are well-separated

and improves with increasing sample size.

Case study: identifying DD genes between hESC types

The comprehensive characterization of transcriptional dynamics across hESC lines and derived cell types aims

to provide insight into the gene regulatory processes governing pluripotency and differentiation [36, 37, 38].

Previous work utilizing microarrays and bulk-RNA sequencing largely focused on identifying genes with changes

in average expression level across a population of cells. By examining transcriptional changes at the single cell

level, we can uncover global changes that were undetectable when averaging over the population. In addition,

we gain the ability to assess the level of heterogeneity of key differentiation regulators, which may lead to the

ability to assess variation in pluripotency [39] or differentiation potential of individual cells.

The number of significant DD genes for each cell type comparison is shown in Table 5 for scDD, SCDE, and

MAST. Note that the comparison of H1 and H9 detects the fewest number of DD genes for all three methods,

a finding that is consistent with the fact that both of these are undifferentiated hESC lines and it is expected

that they are the most similar among the comparisons. In all four comparisons, the number of genes identified

by our method is greater than SCDE and similar to MAST.

Figure 5 (A) displays top-ranked genes for each category that are not identified by MAST or SCDE for the

H1 versus DEC comparison. Among the genes identified exclusively by scDD for the H1 versus DEC comparison

are CHEK2, a cell-cycle checkpoint kinase [40], and CDK7, a cyclin-dependent kinase that plays a key role in cell

cycle regulation through the activation of other cyclin-dependent kinases [41]. It has been shown that embryonic

stem cells express cyclin genes constitutively, whereas in differentiated cells cyclin levels are oscillatory [42]. This

finding is consistent with the differential modality of the CDK7 gene shown in Figure 5 (B). Similarly, scDD

identifies several genes involved in the regulation of pluripotency that are not identified by the other two methods

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2016. ; https://doi.org/10.1101/035501doi: bioRxiv preprint 

https://doi.org/10.1101/035501
http://creativecommons.org/licenses/by-nc/4.0/


Korthauer et al. Page 6 of 20

(Figure 5 (C)). For example, FOXP1 exhibits alternative splicing activity in hESCs, stimulating expression of

several key regulators of pluripotency [43]. The PSMD12 gene encodes a subunit of the proteasome complex

which is vital to maintenance of pluripotency and has shown decreased expression in differentiating hESCs [44].

Both of these genes are also differentially distributed between H1 and the other differentiated cell type NPC.

In general, the vast majority of the genes found exclusively by scDD are categorized as something other than

DE (ranging from 98.3% to 100% in the three case studies, see Supplementary Table S3), which suggests that

they are predominantly characterized by differences that are more complex than the traditional DE pattern.

The genes identified by MAST but not scDD are overwhelmingly characterized as those with a weak signal in

both the nonzero and zero components (see Supplementary Figure S9), which can be difficult to interpret (see

Supplement Section 3 for more details).

Additional case studies

We also applied scDD and MAST to two additional case studies (the number of significant DD genes for each

comparison are displayed in Table 6). SCDE was not used to analyze these datasets since it is intended for use on

raw count data and the processed data made available by the authors of [30] and [31] were already normalized

by FPKM and TPM, respectively. Similar to the results of the hESC case study, MAST and scDD identify

similar numbers of significant genes. The genes that scDD finds exclusively are predominantly characterized by

something other than a mean shift, a result which is also consistent with the hESC case study (see Supplementary

Table S4).

Advantages and limitations of the approach

We stress that our approach is inherently different from a method that detects traditional differential expression,

such as [17] and [18] which aim to detect a shift in the mean of the expressed values. In addition to identifying

genes that have differential distributions across conditions, our modeling framework allows us to identify sub-

populations within each condition that have differing levels of expression of a given gene (i.e. which cells belong

to which component). For such genes, the clustering automatically provides an estimate of the proportion of

cells in each condition that belong to each subpopulation. We also do not require specification of the total

number of components, which can vary for each gene.

When applied to cells at different differentiation stages, this information may provide insight into which

genes are responsible for driving phenotypic changes. The gene in Figure 3(B), for example, shows a differential

proportion (DP) of cells across conditions which is important to recognize since DP suggests a change in cell-

specific responses to signaling [29, 7]. This is in contrast to the differential modes (DM) gene in Figure 3(C),

which indicates the presence of a distinct cell type in one condition, but not the other. Recent methods for

scRNA-seq [45, 18, 17, 27, 28] may be able to identify genes such as those shown in Figure 3(B-D) as differing

between conditions. However, our simulations suggest that they would be relatively underpowered to do so, and

they would be unable to characterize the change as DP, DM, or DB.

We also show through simulation that our approach can accommodate large sample sizes of several hundreds

of cells per condition. Note, however, that the real strength in the modeling framework lies in the ability to

characterize patterns of differential distributions. In the presence of extreme sparsity, this will be a challenge,

since the number of nonzero observations in a given gene will be small. If the sample size of nonzero measurements

is too small, it will be difficult to infer the presence of multiple underlying cell states. In practice, for larger

and more sparse datasets it is recommended to verify that the number of cells expressing a given gene is in the

range of the sample sizes considered in this study in order to fully utilize the available features of scDD.

The approach is limited in that adjustments for covariates are not directly incorporated into the model. In

general, when the relationship between a potential confounding variable and the quantification of expression is

well-known (e.g. increased sequencing depth is generally associated with increased expression measurements),
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this should be accounted for in a normalization procedure. For other covariates that are not as well-characterized

(e.g. cellular detection rate, batch effects), residuals can be used in the permutation procedure, though a more

unified approach would be desirable. Additionally, the approach is limited in that only pairwise comparisons

across biological conditions are feasible. While an extended Bayes Factor score to test for dependence of condition

on clustering for more than two conditions would be straightforward, the classification into meaningful patterns

would be less so, and work is underway in that direction.

Conclusions
To our knowledge, we have presented the first statistical method to detect differences in scRNA-seq experiments

that explicitly accounts for potential multi-modality of the distribution of expressed cells in each condition. Such

multi-modal expression patterns are pervasive in scRNA-seq data and are of great interest since they represent

biological heterogeneity within otherwise homogeneous cell populations; and differences across conditions imply

differential regulation or response in the two groups. We have introduced a set of five interesting patterns to

summarize the key features that can differ between two conditions. Using simulation studies, we have shown

that our method has comparable performance to existing methods when differences (mean shifts) exist between

unimodal distributions across conditions, and outperforms existing approaches when there are more complex

differences.

Methods
Software implementations and applications

All analyses were carried out using R version 3.1.1 [46]. The method MAST [18] was implemented using the

MAST R package version 0.931, obtained from Github at https://github.com/RGLab/MAST. The adjustment

for cellular detection rate as recommended in [18] was included in the case study, but not in the simulation

study (only the ‘normal’ component of the test was considered here since no difference in dropout rate was

simulated). The method SCDE [17] was implemented using the scde R package version 1.0, obtained from

http://pklab.med.harvard.edu/scde/index.html. Since SCDE requires raw integer counts as input, and

expected counts are non-integer valued, the ceiling function was applied to the unnormalized counts. For each

approach, target FDR was controlled at 5%. Specifically, both MAST and SCDE provide gene-specific p-values

and use the method of [34] to control FDR. We followed the same procedure here.

Our method is implemented using version 1.1.0 of the scDD R package, available at https://github.com/

kdkorthauer/scDD. The analysis involves a computationally intensive permutation step which is executed in

parallel on multiple cores if available. On a linux machine using 12 cores and up to 16 gigabytes of memory,

this step took approximately 60 minutes for 1000 permutations of 1000 genes in the simulation of 50 samples

per condition. Computation time scales approximately linearly with sample size, where this same task takes

approximately 90 minutes for 100 samples per condition, and 300 minutes for sample size 500 per condition.

hESC culture and differentiation

All cell culture and scRNA-seq experiments were conducted as described previously [47]. Briefly, undifferentiated

H1 and H9 human ES cells were routinely maintained at the undifferentiated state in E8 medium on Matrigel

(BD Bioscience) coated tissue culture plates with daily medium feeding [48]. Human ES cells were passaged

every 3 to 4 days with 0.5 mM EDTA in PBS at 1:10 to 1:15 ratio for maintenance. H1 were differentiated

according to previously established protocols [49, 50]. All the cell cultures performed in our laboratory have

been routinely tested as negative for mycoplasma contamination.

For DECs, H1 cells were individualized with Accutase (Life Technologies), seeded in E8 with BMP4 (5ng/ml),

Activin A (25ng/ml) and CHIR99021 (1 µM) for the first 2 days, then withdraw CHIR99021 for the remaining

period of differentiation. DECs were harvested at the end of day 5, sorting for CXCR4+ population for scRNA-

seq experiments. For NPCs, the undifferentiated H1-SOX2-mCherry reporter line was treated with 0.5mM EDTA
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in PBS for 3 to 5 min and seeded in E6 (E8 minus FGF2, minus TGFβ1), with 2.5 µg/ml insulin, SB431542

(10 µM) and 100 ng/ml Noggin. NPCs were harvested and enriched at the end of day 7, from sorting for the

Cherry+ population for scRNA-seq experiments. All differentiation media were changed daily.

Read mapping, quality control, and normalization

For each of the cell types studied, expected counts were obtained from RSEM [51]. In each condition there are

a maximum of 96 cells, but all have fewer than 96 cells due to removal by quality control standards. Some

cells were removed due to cell death or doublet cell capture, indicated by a post cell capture image analysis as

well as a very low percentage of mapped reads. For more details on read mapping and quality control, see [47].

DESeq normalization [52] was carried out using the MedianNorm function in the EBSeq R package [53] to obtain

library sizes. The library sizes were applied to scale the count data. Further, genes with very low detection rate

(detected in fewer than 25% of cells in either condition) are not considered.

Publicly available scRNA-seq datasets

Processed FPKM-normalized data from human myoblast cells [30] was obtained from GEO [54] using accession

number GSE52529. In this study, we examined the set of cells cultured on standard growth medium (samples

labeled with ‘T0’) as well as those treated with differentiation-inducing medium for 72 hours (samples labeled

with ‘T72’). Processed TPM-normalized data from mESCs [31] was also obtained from GEO under accession

number GSE60749. In this study, we examined the samples labeled as ‘mESC’ (cultured in standard medium),

along with the samples labeled as ‘TwoiLIF’ (cultured in 2i+LIF differentiation-inhibitory medium).

Publicly available bulk RNA-seq datasets

Modality of the gene expression distributions in bulk RNA-seq was explored using large, publicly available

datasets and the results are displayed in Figure 2. In this figure, the red bars depict the bulk RNA-seq results,

and datasets are labeled according to their source and sample size. Datasets GE.50, GE.75, and GE.100 are

constructed by randomly sampling 50, 75, and 100 samples from GEUVADIS [55] in order to obtain sample sizes

comparable to the single-cell sets under study (obtained from the GEUVADIS consortium data browser at www.

ebi.ac.uk/arrayexpress/files/E-GEUV-1/analysis_results/GD660.GeneQuantCount.txt). Dataset LC con-

sists of 77 normal lung tissue samples from the TCGA lung adenocarcinoma study [56] (obtained from GEO

[54] using accession number GSE40419). All datasets were normalized using DESeq normalization [52] except

for LC, for which the authors supplied values already normalized by RPKM.

Mixture model formulation

Dirichlet Process Mixture of normals

Let Y cg = (ycg1, ..., y
c
gJc

) be the log-transformed nonzero expression measurements of gene g for a collection of

Jc cells in condition c out of 2 total conditions. For simplicity of presentation, we drop the dependency on g

for now, and let the total number of cells with nonzero measurements be J . We assume that under the null

hypothesis of equivalent distributions (i.e. no dependency on condition), Y = {Y c}c=1,2 can be modeled by a

conjugate Dirichlet process mixture (DPM) of normals given by

ycj ∼ N(µj , τj)

µj , τj ∼ G

G ∼ DP (α,G0)

G0 = NG(m0, s0, a0/2, 2/b0)

(1)

where DP is the Dirichlet process with base distribution G0 and precision parameter α, N(µj , τj) is the normal

distribution parameterized with mean µj and precision τj (i.e. with variance τ−2
j ), and NG(m0, s0, a0/2, 2/b0)
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is the normal-gamma distribution with mean m0, precision s0τj , shape a0/2, and scale 2/b0. Let K denote the

number of components (unique values among (µ, τ) = {µj , τj}Jj=1). Note that two observations indexed by j

and j′ are from the same cluster if and only if (µj , τj)=(µj′ , τj′).

Product Partition Models

The posterior distribution of (µ, τ) is intractable even for moderate sample sizes. This is because the number of

possible partitions (clusterings) of the data grows extremely rapidly as the sample size increases (according to

the Bell number). However, if we let Z = (z1, ..., zJ) be the vector of component memberships of gene g for all

samples, where the number of unique Z values is K, the probability density of Y conditional on Z can be viewed

as a product partition model [57, 58]. Thus it can be written as a product over all cluster-specific component

densities:

f(Y |Z) =
K∏
k=1

f(y(k)) (2)

where y(k) is the vector of observations belonging to component k and f(y(k)) is the component-specific dis-

tribution after integrating over all other parameters. In the conjugate normal-gamma setting, this has a closed

form given by

f(y(k)) ∝ Γ(ak/2)

(bk/2)ak/2
s
−1/2
k (3)

The posterior for the parameters (µk, τk) conditional on the partition is

(µk, τk)|Y,Z ∼ NG(mk, sk, ak/2, 2/bk) (4)

The posterior parameters (mk, sk, ak, bk) also have closed form due to the conjugacy of the model given by

Equation 1. These parameters are given by

sk = s0 + n(k)

mk =
s0m0 +

∑
y(k)

sk

ak = a0 + n(k)

bk = b0 +
∑

(y(k))2 + s0m
2
0 − skm2

k

(5)

where n(k) is the number of observations in cluster k. It follows that the marginal posterior distribution of µk
conditional on the partition is

µk|Y, Z ∼ tak
(
mk,

bk
aksk

)
(6)

where ta(b, c) denotes the generalized Student’s t-distribution with a degrees of freedom, noncentrality parameter

b and scale parameter c. The product partition Dirichlet process mixture model can be simplified as follows

yj |zj = k, µk, τk ∼ N(µk, τk)

µk, τk ∼ NG(m0, s0, a0/2, 2/b0)

z ∼ αKΓ(α)

Γ(α+ J)

K∏
k=1

Γ(n(k))

(7)
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Then we can obtain the joint predictive distribution of the data Y and clustering Z by incorporating Equation

7:

f(Y,Z) = f(Z)
K∏
k=1

f(y(k))

∝ αK
K∏
k=1

Γ(n(k))Γ(ak/2)

(bk/2)ak/2
s
−1/2
k

(8)

Model-fitting

The fitting of the model given in Equation 7 involves obtaining an estimate Ẑ of the partition. The goal is to find

the partition that yields highest posterior mass in Equation 8, referred to as the maximum a posteriori (MAP)

partition estimate. Under this modeling framework, the solution for the MAP estimate is not deterministic

and several computational procedures have been developed utilizing Polya urn Gibbs sampling [59, 60, 61],

agglomerative greedy search algorithms [62, 63], or iterative stochastic search [64].

These procedures generally involve evaluation of the posterior at many different candidate partitions, and as

such tend to be computationally intensive. To avoid this challenge, we recognize the relation to the corresponding

estimation problem in the finite mixture model framework, where the partition estimate can be obtained by

optimizing the BIC of the marginal density f(Y |Z) [65]. In fact, for certain settings of the prior distribution

over partitions, the MAP estimate is identical to the estimate obtained by optimizing the BIC [58]. In practice,

even when these settings are not invoked, the performance of partition estimates obtained via BIC optimization

show comparable performance (see Supplement Section 1). We obtain the partition estimate Ẑ that optimizes

the BIC using the Mclust R package [65] and satisfies the criteria for multi-modality described in the next

section.

The hyperparameters for the cluster-specific mean and precision parameters were chosen so as to encode

a heavy-tailed distribution over the parameters. Specifically, the parameters were set to µ0 = 0, τ2
0 = 0.01,

a0 = 0.01, and b0 = 0.01. The Dirichlet concentration parameter was set to α = 0.01, a choice of which is shown

in Supplement Section 1 to be robust to many different settings in a sensitivity analysis.

Partition estimation

The partition estimate Ẑ is obtained that optimizes BIC using Mclust [65], in addition to the following filtering

criteria. Note that the only constraint imposed on the number of components K in the modeling framework

is that K ≤ J . However, under the sample sizes in this study, we only consider K ≤ 5. The first filtering

criteria is based on the notion that a two-component mixture model is not necessarily bimodal [66], and relaxes

the requirement that the MAP estimate correspond to the model with the lowest BIC. Specifically, for each

candidate model fit by the BIC criterion with K components, a split step (if K = 1, obtain a new partition

estimate Ẑ with K = 2 unique elements) or a merge step (if K ≥ 2, obtain a new partition estimate Ẑ restricted

to K−1 unique elements) is carried out to generate a new candidate partition. The candidate partition with the

larger value of K becomes the partition estimate only if the cluster separation suggests multi-modality. Cluster

separation between any pair of clusters is assessed with the Bimodality Index (BI) [67]:

BI = 2 ∗
√

n1n2

(n1 + n2)2

(
|µ1 − µ2|

σ

)
where the cluster means µ1 and µ2 are estimated via maximum likelihood, the common cluster standard deviation

σ is conservatively estimated with the maximum cluster standard deviation among all clusters, and n1 and n2

are the number of cells belonging to each cluster. BI thresholds for the split and merge step were determined
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empirically and vary by sample size, as multiple modes are more easily detected as sample size increases [67]

(for more details see Supplement Section 4).

The second filtering criteria is designed to reduce the impact of outlier cells. Specifically, clusters with fewer

than 3 cells are not considered, and the merge step is also carried out if one of the clusters present has an

extremely small variance (more than 20 times larger than any other cluster). Likewise, the split step is not

carried out if one of the proposed clusters has a variance more than 10 times larger than any other cluster.

Simulation details

Cluster means and variances

Each gene was simulated based on the characteristics of a randomly sampled unimodal gene with at least 25%

nonzero measurements in the H1 dataset. For unimodal genes, the mean and variance were chosen to match

the observed mean and variance; for bimodal genes, the cluster means and variances were selected to be near

the observed mean and variance. The proportion of zeroes is chosen to match that observed in the randomly

sampled gene, and is not varied by condition. Details are provided in the following sections.

Distances between (log-scale) component means ∆µσ̂ in the multi-modal genes were chosen such that clusters

were separated by a minimum of 2 and maximum of 6 standard deviations, where the standard deviation

σ is assumed constant (on the log-scale) across clusters and is estimated empirically assuming a lognormal

distribution on the raw scale. In this setting, the cluster distance can also be thought of as a fold-change within

condition (across clusters), where the ratio of the cluster means (untransformed-scale) is equal to e∆µσ̂. The

ratio of the cluster standard deviations (raw-scale) is also equal to this same fold change (see Supplement Section

2.1 for more details). The cluster mean distance values were chosen to represent a range of settings for which the

difficulty of detecting multi-modality is widely varied, as well as to reflect the range of observed cluster mean

distances detected empirically in the case studies.

Unimodal genes

Parameters of the negative binomial distribution for unimodal genes were estimated from the randomly sampled

observed genes using the method-of-moments. These empirical parameters were used as is to simulate both

conditions of EE genes, and condition 1 of DE and DB. Condition 1 of DM was simulated by decreasing the

mean by half the value of ∆µ. The second condition for DE genes was simulated based on condition 1 parameters

using randomly sampled fold changes that were between 2 and 3 standard deviations of the observed fold changes

between H1 and DEC.

Bimodal genes

Parameters for the mixture of negative binomial distributions in bimodal genes were also generated using

empirically estimated means and variances. The first (lower) component mean was decreased by half the value

of ∆µ and the second (higher) component mean was increased by half the value of ∆µ.

DD classification algorithm

Genes detected as significantly DD from the permutation test of the Bayes Factor score are categorized into

patterns of interest. The genes that are not classified as either DE, DP, DM, or DB are considered ‘no calls’,

abbreviated NC. These represent patterns that are not of primary interest, such as those with the same number

of components within each condition and overall, but not significantly different cluster-specific means. Genes

with this pattern that are significantly DD could arise if, for example, the cluster-specific variances differ across

conditions. We do not infer differences of these types since it is possible that they could be explained by

cell-specific differences in technical variation [17].

An additional step to improve the power to detect genes in the DP category was also implemented. This

step was motivated by the observation that the Bayes Factor score tends to be small when the clustering
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process within each condition is consistent with that overall, as in the case of DP. Thus, for genes that were not

significantly DD by permutation but had the same number of components within condition as overall, Fisher’s

exact test was used to test for independence with biological condition. If the p-value for that test is less than

0.05, then the gene was added to the DP category (this did not result in the addition of any false positives in the

simulation study). In addition, since the Bayes Factor score depends on the estimated partition, we increase the

robustness of the approach to detect DD genes under possible misspecification of the partition by also assessing

evidence of DD in the form of an overall mean shift for genes not significant by the permutation test (using a

t-statistic with FDR controlled by [34]). This resulted in the detection of between 121 and 689 additional genes

in the hESC comparisons and did not add any false positives in 94% of simulation replications (with only a

single false positive gene in the other 6% of replications).

Here we present pseudocode for the classification of DD genes into the categories DE, DP, DM, or DB. For

every pair of clusters, obtain a sample of 10,000 observations from the posterior distribution of the difference in

means. The clusters are considered to overlap if the 100% credible interval contains 0.

DD classification algorithm

if c1 = c2 = 1

if clusters c1 and c2 do not overlap ⇒ DE

else ⇒ NC

else if c1 = c2 ≥ 2

if c1 = c2 = cOA

if At least c1 of the clusters overlap ⇒ DP

else ⇒ NC

else if c1 = c2 < cOA

if at most one cluster pair overlaps ⇒ DE

else ⇒ NC

else if c1 6= c2
if no cluster pairs overlap ⇒ DB

else ⇒ DM

Availability of supporting data
The hESC data has been deposited in GEO [54] with accession number GSE75748.

Sensitivity analyses, further methodological details, and additional results are provided in a supplement.
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Figure 1 Schematic of the presence of two cell states within a cell population which can lead to bimodal expression distributions.
(A) Time series of the underlying expression state of gene X in a population of unsynchronized single cells, which switches back and
forth between a low and high state with mean µ1 and µ2, respectively. The color of cells at each time point corresponds to the
underlying expression state. (B) Population of individual cells shaded by expression state of gene X at a snapshot in time. (C)
Histogram of the observed expression level of gene X for the cell population in (B).
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Figure 2 Bar plot of the proportion of genes (or transcripts) in each dataset where the log-transformed nonzero expression
measurements are best fit by a 1, 2 or 3+ mode normal mixture model (where ‘3+’ denotes 3 or more). Modality is determined
using a BIC selection criteria with filtering (see Partition estimation section). Red shades denote bulk RNA-seq datasets, and blue
shades denote single-cell datasets. The number following each dataset label indicates the number of samples present (e.g. GE.50 is a
bulk dataset with 50 samples). Datasets GE.50, GE.75, and GE.100 are constructed by randomly sampling 50, 75, and 100 samples
from GEUVADIS [55]. Dataset LC consists of 77 normal samples from the TCGA lung adenocarcinoma study [56]. For details on the
single-cell datasets, see Methods Section.

Table 1 Rate of detection of correct number of components in simulated data

Bimodal Unimodal

Sample Cluster mean distance ∆µ

Size 2 3 4 5 6

50 0.056 0.196 0.579 0.848 0.922 0.907

75 0.052 0.252 0.719 0.917 0.957 0.908

100 0.050 0.302 0.811 0.950 0.974 0.905

500 0.073 0.417 0.959 0.995 0.991 0.884
Average proportion of simulated bimodal and unimodal genes where the correct number of components was

identified, averaged over gene category and condition. Averages are calculated over 20 replications. Standard errors

were < 0.025 (not shown).
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Figure 3 Diagram of plausible differential distribution patterns (histograms), including (A) traditional differential expression, (B)
differential proportion within each mode, (C) differential modality, and (D) both differential modality and differential expression.
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Figure 4 Relationship of cell types used in hESC case study. H1 and H9 are undifferentiated hESC lines. NPC (neuronal progenitor
cells) and DEC (definitive endoderm cells) are differentiated cell types derived from H1.
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Figure 5 Violin plots (smoothed non-parametric kernel density estimates) for DD genes identified between H1 and DEC. Individual
observations are displayed with jitter. Within a condition, points with the same shape are predicted to belong to the same cluster.
(A) scDD-exclusive genes: representative genes from each category (DZ, DP, DM, DB) that are not detected by MAST or SCDE.
Selected genes are top-ranked by permutation p-value in each category (DP, DM, DB) or had a significant χ2 test for a difference in
the proportion of zeroes (DZ). (B) Cell Cycle genes: DD genes involved in cell cycle regulation (not detected by MAST or SCDE).
(C) Pluripotency genes: DD genes involved in pluripotency regulation (not identified by MAST or SCDE).
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Table 2 Power to detect DD genes in simulated data

True Gene Category

Sample Size Method DE DP DM DB Overall (FDR)

scDD 0.893 0.418 0.898 0.572 0.695 (0.029)

50 SCDE 0.872 0.026 0.817 0.260 0.494 (0.004)

MAST 0.908 0.400 0.871 0.019 0.550 (0.026)

scDD 0.951 0.590 0.960 0.668 0.792 (0.031)

75 SCDE 0.948 0.070 0.903 0.387 0.577 (0.003)

MAST 0.956 0.633 0.943 0.036 0.642 (0.022)

scDD 0.972 0.717 0.982 0.727 0.850 (0.033)

100 SCDE 0.975 0.125 0.946 0.478 0.631 (0.003)

MAST 0.977 0.752 0.970 0.045 0.686 (0.022)

scDD 1.000 0.983 1.000 0.905 0.972 (0.035)

500 SCDE 1.000 0.855 0.998 0.787 0.910 (0.004)

MAST 1.000 0.993 1.000 0.170 0.791 (0.022)
Average power to detect simulated DD genes by true category. Averages are calculated over 20 replications.

Standard errors were < 0.025 (not shown).

Table 3 Correct Classification Rate in simulated data

Gene Category

Sample Size DE DP DM DB

50 0.719 0.801 0.557 0.665

75 0.760 0.732 0.576 0.698

100 0.782 0.678 0.599 0.706

500 0.816 0.550 0.583 0.646
Average Correct Classification Rate for detected DD genes. Averages are calculated over 20 replications. Standard

errors were < 0.025 (not shown).

Table 4 Average correct classification rates by cluster mean distance

Sample Gene Cluster mean distance ∆µ

Size Category 2 3 4 5 6

DP 0.02 0.20 0.78 0.94 0.98

50 DM 0.10 0.23 0.59 0.81 0.89

DB 0.08 0.22 0.59 0.80 0.80

DP 0.02 0.18 0.77 0.94 0.97

75 DM 0.08 0.27 0.69 0.86 0.90

DB 0.09 0.29 0.71 0.83 0.84

DP 0.03 0.16 0.74 0.93 0.95

100 DM 0.10 0.32 0.76 0.87 0.91

DB 0.08 0.32 0.80 0.85 0.84

DP 0.01 0.15 0.72 0.91 0.93

500 DM 0.12 0.33 0.72 0.85 0.89

DB 0.03 0.43 0.85 0.85 0.85
Average Correct Classification Rates stratified by ∆µ. Averages are calculated over 20 replications. Standard errors

were < 0.025 (not shown).
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Table 5 Number of DD genes identified in the hESC case study data for scDD, SCDE, and MAST. Note that the Total for scDD
includes genes detected as DD but not categorized.

scDD

Comparison DE DP DM DB DZ Total SCDE MAST

H1 vs NPC 1686 270 902 440 1603 5555 2921 5887

H1 vs DEC 913 254 890 516 911 5295 1616 3724

NPC vs DEC 1242 327 910 389 2021 5982 2147 5624

H1 vs H9 260 55 85 37 145 739 111 1119

Table 6 Number of DD genes identified in the myoblast and mESC case studies for scDD and MAST. Note that the Total for scDD
includes genes detected as DD but not categorized.

scDD

Comparison DE DP DM DB DZ Total MAST

Myoblast: T0 vs T72 312 44 200 36 1311 2134 2904

mESC: Serum vs 2i 5233 76 1259 1128 670 9130 9706
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