Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Establishing evidenced-based best practice for the de novo assembly and evaluation of transcriptomes from non-model organisms

View ORCID ProfileMatthew D. MacManes
doi: https://doi.org/10.1101/035642
Matthew D. MacManes
1Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matthew D. MacManes
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Characterizing transcriptomes in both model and non-model organisms has resulted in a massive increase in our understanding of biological phenomena. This boon, largely made possible via high-throughput sequencing, means that studies of functional, evolutionary and population genomics are now being done by hundreds or even thousands of labs around the world. For many, these studies begin with a de novo transcriptome assembly, which is a technically complicated process involving several discrete steps. Each step may be accomplished in one of several different ways, using different software packages, each producing different results. This analytical complexity begs the question – Which method(s) are optimal? Using reference and non-reference based evaluative methods, I propose a set of guidelines that aim to standardize and facilitate the process of transcriptome assembly. These recommendations include the generation of between 20 million and 40 million sequencing reads from single individual where possible, error correction of reads, gentle quality trimming, assembly filtering using Transrate and/or gene expression, annotation using dammit, and appropriate reporting. These recommendations have been extensively benchmarked and applied to publicly available transcriptomes, resulting in improvements in both content and contiguity. To facilitate the implementation of the proposed standardized methods, I have released a set of version controlled open-sourced code, The Oyster River Protocol for Transcriptome Assembly, available at http://oyster-river-protocol.rtfd.org/.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted February 18, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Establishing evidenced-based best practice for the de novo assembly and evaluation of transcriptomes from non-model organisms
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Establishing evidenced-based best practice for the de novo assembly and evaluation of transcriptomes from non-model organisms
Matthew D. MacManes
bioRxiv 035642; doi: https://doi.org/10.1101/035642
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Establishing evidenced-based best practice for the de novo assembly and evaluation of transcriptomes from non-model organisms
Matthew D. MacManes
bioRxiv 035642; doi: https://doi.org/10.1101/035642

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4380)
  • Biochemistry (9581)
  • Bioengineering (7086)
  • Bioinformatics (24844)
  • Biophysics (12597)
  • Cancer Biology (9951)
  • Cell Biology (14345)
  • Clinical Trials (138)
  • Developmental Biology (7944)
  • Ecology (12101)
  • Epidemiology (2067)
  • Evolutionary Biology (15983)
  • Genetics (10920)
  • Genomics (14732)
  • Immunology (9868)
  • Microbiology (23645)
  • Molecular Biology (9477)
  • Neuroscience (50836)
  • Paleontology (369)
  • Pathology (1539)
  • Pharmacology and Toxicology (2681)
  • Physiology (4013)
  • Plant Biology (8655)
  • Scientific Communication and Education (1508)
  • Synthetic Biology (2391)
  • Systems Biology (6427)
  • Zoology (1346)