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Abstract

Modern scientific studies from many diverse areas of research abound with multiple hypothesis testing
concerns. The false discovery rate is one of the most commonly used error rates for measuring and
controlling rates of false discoveries when performing multiple tests. Adaptive false discovery rates
rely on an estimate of the proportion of null hypotheses among all the hypotheses being tested. This
proportion is typically estimated once for each collection of hypotheses. Here we propose a regression
framework to estimate the proportion of null hypotheses conditional on observed covariates. This
may then be used as a multiplication factor with the Benjamini-Hochberg adjusted p-values, leading
to a plug-in false discovery rate estimator. Our case study concerns a genome-wise association meta-
analysis which considers associations with body mass index. In our framework, we are able to use the
sample sizes for the individual genomic loci and the minor allele frequencies as covariates. We further
evaluate our approach via a number of simulation scenarios.

1 Introduction

Multiple testing is a ubiquitous issue in modern scientific studies. Microarrays (Brown, 1995), next-
generation sequencing (Shendure and Ji, 2008), and high-throughput metabolomics (Lindon et al.,
2011) make it possible to simultaneously test the relationship between hundreds or thousands of
biomarkers and an exposure or outcome of interest. These problems have a common structure consist-
ing of a collection of variables, or features, for which measurements are obtained on multiple samples,
with a hypothesis test being performed for each feature.

When performing thousands of hypothesis tests, the most widely used framework for controlling
for multiple testing is the false discovery rate (FDR). For a fixed unknown parameter µ, and testing
a single null hypothesis H0 : µ = µ0 versus some alternative hypothesis, for example, H1 : µ = µ1, the
null hypothesis may either truly hold or not for each feature. Additionally, the test may lead to H0

either being rejected or not being rejected. Thus, when performing m hypothesis tests for m different
unknown parameters, Table 1 shows the total number of outcomes of each type, using the notation
from Benjamini and Hochberg (1995). We note that U , T , V , and S, and as a result, also R = V +S,
are random variables, while m0, the number of null hypotheses, is fixed and unknown.

The FDR, introduced in Benjamini and Hochberg (1995), is the expected fraction of false discov-
eries among all discoveries. The false discovery rate depends on the overall fraction of null hypotheses,
namely π0 = m0

m . This proportion can also be interpreted as the a priori probability that a null
hypothesis is true, π0.

When estimating the FDR, incorporating an estimate of π0 can result in a more powerful procedure
compared to the original Benjamini and Hochberg (1995) procedure (BH); moreover, as m increases,
the estimate of π0 improves, which means that the power of the multiple-testing approach does not
necessarily decrease when more hypotheses are considered (Storey, 2002).

Most modern adaptive false discovery rate procedures rely on an estimate of π0 using the data of
all tests being performed. But additional information, in the form of meta-data, may be available to
aid the decision about whether to reject the null hypothesis for a particular feature. We focus on an
example from a genome-wide association study (GWAS) meta-analysis, in which millions of genetic
loci are tested for associations with an outcome of interest - in our case body mass index (BMI)
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(Locke et al., 2015). Different loci may not all be genotyped in the same individuals, leading to loci-
specific sample sizes. Additionally, each locus will have a different population-level frequency. Thus,
the sample sizes and the frequencies may be considered as covariates of interest. Other examples
exist in set-level inference, including gene-set analysis, where each set has a different fraction of
false discoveries. Adjusting for covariates independent of the data conditional on the truth of the
null hypothesis has also been shown to improve power in RNA-seq, eQTL, and proteomics studies
(Ignatiadis et al., 2016).

In this paper, we seek to better understand the impact of sample sizes and allele frequencies in
the BMI GWAS data analysis by building on the approaches of Benjamini and Hochberg (1995),
Efron et al. (2001), and Storey (2002) and the more recent work of Scott et al. (2015a), which frames
the concept of FDR regression and extends the concepts of FDR and π0 to incorporate covariates,
represented by additional meta-data. Our focus will be on estimating the covariate-specific π0, which
will then be used as a plug-in estimator when estimating the false discovery rate, similar to the work
of Storey (2002). We will also show how this can be seen as an extension of our work (Boca et al.,
2013) on set-level inference, where an approach which focused on estimating the fraction of non-null
variables in a set was developed, introducing the idea of “atoms” - non-overlapping sets based on the
original annotations - and the concept of the “atomic FDR.” We thus provide a more direct approach
to estimating the FDR conditional on covariates and compare our estimates to those of Scott et al.
(2015a), as well as to the BH and Storey (2002) approaches.

In Section 2 we introduce the motivating case study, a BMI GWAS meta-analysis, which will be
discussed throughout the paper. In Section 3, we review the definitions of FDR and π0 and their
extensions to consider conditioning on specific covariates. In Section 4, we discuss estimation and
inference procedures in our FDR regression framework and apply them to the GWAS case study.
In Section 5, we consider special cases within this framework, including how the no covariates case
and the case where the features are partitioned are related to the “standard” estimation procedures.
In Section 6, we explore some theoretical properties of the estimator, including showing that, under
certain conditions, it is an asymptotically conservative estimator of the covariate-level π0. In Section
7 we consider results from a variety of simulation scenarios. Finally, Section 8 provides our statement
of reproducibility and Section 9 provides the discussion.

2 Motivating case study: adjusting for sample size and allele fre-
quency in GWAS meta-analysis

As we have described, there are a variety of situations where meta-data could be valuable for improving
the decision of whether a hypothesis should be rejected in a multiple testing framework, our focus being
on an example from the meta-analysis of data from GWAS for BMI (Locke et al., 2015). Using standard
approaches such as Storey (2002) we can estimate the fraction of single nucleotide polymorphisms
(SNPs) - genomic positions (loci) which show between-individual variability - which are not truly
associated with BMI and use it in an adaptive FDR procedure. However, our proposed approach
allows further modeling of this fraction as a function of additional study-level meta-data.

In a GWAS, data are collected for a large number of SNPs in order to assess their associations
with an outcome or trait of interest (Hirschhorn and Daly, 2005). Each person usually has one copy
of the DNA at each SNP inherited from their mother and one from their father. At each locus there
are usually one of two types of DNA, called alleles, that can be inherited, which we denote A and a.
In general, A refers to the variant that is more common in the population being studied and a to the
variant that is less common, usually called the minor allele. Each person has a genotype for that SNP
of the form AA, Aa, or aa. For example, for a particular SNP, of the 4 possible DNA nucleotides,
adenine, guanine, cytosine, and thymine, an individual may have either a cytosine (C) or a thymine
(T) at a particular locus, leading to the possible genotypes CC, CT, and TT. If the C allele is less
common in the population, then C is the minor allele. The number of copies of a, which is between 0
and 2, - is often assumed to follow a binomial distribution, which generally differs between SNPs.

Typically, a GWAS involves performing an association test between each SNP and the outcome
of interest by using a regression model, including the calculation of a p-value. While GWAS studies
are often very large, having sample sizes of tens of thousands of individuals genotyped at hundreds
of thousands of SNPs, due to the small effect sizes being detected, meta-analyses combining multiple
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studies are often considered (Neale et al., 2010; Hirschhorn and Daly, 2005). In these studies, the
sample size may not be the same for each SNP, for example if different individuals are measured with
different technologies which measure different SNPs. Sample size is thus a covariate of interest, as
is the minor allele frequency (MAF) of the population being studied, which will also vary between
SNPs. The power to detect associations increases with MAF. This is related to the idea that logistic
regression is more powerful for outcomes that occur with a frequency close to 0.5. Our approach
will allow us to better quantify this dependence in order to guide the planning of future studies and
improve understanding of already-collected data.

We consider data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium,
specifically the genome-wide association study for BMI (Locke et al., 2015). The GIANT consor-
tium performed a meta-analysis of 339,224 individuals measuring 2,555,510 SNPs and tested each for
association with BMI. 322,154 of the individuals considered in Locke et al. (2015) are of European
descent and the study uses the HapMap CEU population - which consists of individuals from Utah
of Northern and Western European ancestry (Frazer et al., 2007) - as a reference. We used the set
of results from the GIANT portal at http://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files, which provides the SNP names and alleles, effect allele
frequencies (EAFs) in the HapMap CEU population and results from the regression-based association
analyses for BMI, presented as beta coefficients, standard errors, p-values, and sample size for each
SNP.

We removed the SNPs that had missing EAFs, leading to 2,500,573 SNPs. For these SNPs, the
minimum sample size considered was 50,002, the maximum sample size 339,224, and the median
sample size 235,717 - a relatively wide range. Figure 1 shows the dependence of p-values on sample
sizes within this dataset. As we considered the MAF to be a more intuitive covariate than the effect
allele frequency (EAF), we also converted EAF values > 0.5 to MAF=1−EAF and changed the sign
of the beta coefficients for those SNPs. The MAFs spanned the entire possible range from 0 to 0.5,
with a median value of 0.208.

3 Covariate-specific π0 and FDR

We will now review the main concepts behind the FDR and the a priori probability that a null
hypothesis is true, and consider the extension to the covariate-specific FDR, and the covariate-specific
a priori probability. A natural mathematical definition of the FDR would be:

FDR = E

[
V

R

]
.

However, R is a random variable that can be equal to 0, so the definition that is generally used is:

FDR = E

[
V

R

∣∣∣∣R > 0

]
Pr(R > 0), (1)

namely the expected fraction of false discoveries among all discoveries multiplied by the probability
of making at least one rejection.

We index the m null hypotheses being considered by 1 ≤ i ≤ m: H01, H02, . . . ,H0m. For each i,
the corresponding null hypothesis H0i can be considered as being about a binary parameter θi, such
that:

θi = 1(H0i true).

Thus, assuming that θi are identically distributed, the a priori probability that a feature is null is:

π0 = Pr(θi = 1). (2)

For the GWAS meta-analysis dataset, π0 represents the proportion of SNPs which are not truly
associated with BMI or, equivalently, the prior probability that any of the SNPs is not associated with
BMI.

We now extend the definitions of π0 and FDR to consider conditioning on a set of covariates
concatenated in a column vector Xi of length c, possibly with c = 1:
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Definition 1

π0(xi) = Pr(θi = 1|Xi = xi).

Definition 2

FDR(xi) = E

[
V

R

∣∣∣∣R > 0,Xi = xi

]
Pr(R > 0|Xi = xi).

4 Estimation and inference for covariate-specific π0 and FDR in a
regression framework

We will now discuss the estimation and inference procedures for π0(xi) and FDR(xi). We assume
that a hypothesis test is performed for each i, summarized by a p-value Pi. Our approach is based on
thresholding the p-values at a given λ ∈ (0, 1), resulting in binary indicators Yi = 1(Pi > λ). These
are then treated as outcomes in a regression model. In the rest of the section, we show how this
procedure allows us to estimate π0(xi) and FDR(xi).

Since Yi is a dichotomous random variable that is 1 when the null hypothesis H0i is not rejected
at a significance level of λ and 0 when it is rejected, m − R =

∑m
i=1 Yi for a fixed, given λ. The

null p-values will come from a Uniform(0,1) distribution, while the p-values for the features from the
alternative

G(λ) = Pr(Pi ≤ λ|θi = 0). (3)

The major assumption we make moving forward is that conditional on the null and the alternative,
the p-values do not depend on the covariates. This means that the probability of a feature being from
one of the two distributions depends on the covariates but the actual test statistic and p-value does
not depend on the covariates further. We note that the conditional independence on the alternative
distribution is implicit in G(λ) not depending on xi. In Theorem 3, we prove the major result we will
use to derive the estimator for π0(xi).

Theorem 3 Suppose that m hypotheses tests are performed and that conditional on the null and the
alternative, the p-values do not depend on the covariates. Then:

E[Yi|Xi = xi] = (1− λ)π0(xi) + {1−G(λ)}{1− π0(xi)}.

In Corollary 4, we show the corresponding result for the no-covariate case. This result is easy to
prove directly, but we consider it as a corollary to Theorem 3 to show that there are no identifiability
problems with the extension to covariates.

Corollary 4 Suppose that m hypotheses tests are performed and that conditional on the null and the
alternative, the p-values do not depend on the covariates. Then:

E[Yi] = (1− λ)π0 + {1−G(λ)}{1− π0}.

We first review the procedure which applies Corollary 4 to lead to the estimator of π0 for the
no-covariate case, which is used by Storey (2002), then develop a procedure based on Theorem 3 to
obtain an estimator of π0(xi). Both of them are based on assuming reasonably powered tests and a
large enough λ, so that:

G(λ) ≈ 1.

Corollary 4 then leads to:

π0 ≈ E[Yi]

1− λ
,

resulting in:

π0 ≈

∑m
i=1 E[Yi]
m

1− λ
.
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Using a method-of-moments approach, one may consider the estimator:

π̂0 =

∑m
i=1 Yi
m

1− λ
=

m−R
(1− λ)m

, (4)

which is used by Storey (2002). For the GWAS meta-analysis dataset, using this approach with λ = 0.8
leads to an π̂0 = 0.951 and λ = 0.9 to π̂0 = 0.949. Note that in practice one may smooth over a series
of thresholds, as described below; otherwise, fixed thresholds between 0.8 and 0.95 are often used.
This means that G(λ) will be very close to 1, but λ will not be large enough to lead to numerical
instability issues when dividing by 1− λ.

For the covariate case, applying the same steps with Theorem 3, we get:

π0(xi) ≈
E[Yi|Xi = xi]

1− λ
.

We can use a regression framework to estimate E[Yi|Xi = xi], then estimate π0(x) by:

π̂0(xi) =
Ê[Yi|Xi = xi]

1− λ
. (5)

In particular, our approach will be implemented via maximum likelihood estimation of E[Yi|Xi = xi],
assuming a logistic model. We denote by X the matrix of dimension m × (c + 1), which has the ith

row consisting of (1 XT
i ). The logistic regression model will consider a m× p design matrix Z matrix

with p < m and rank(Z) = d ≤ p, which can either be equal to X or include additional columns
that are functions of the covariates in X, such as polynomial or spline terms. A linear regression
approach would be a more direct generalization of Storey (2002), but a logistic model is more natural
for estimating means between 0 and 1. In particular, we note that a linear regression approach would
amplify relatively small differences between large values of π0(xi), which are likely to be common in
many scientific situations, especially when considering GWAS, where one may expect a relatively low
number of SNPs to be truly associated with the outcome of interest.

The model we considered for the GWAS meta-analysis dataset models the SNP-specific sample size
using natural cubic splines, in order to allow for sufficient flexibility. It also considers 3 discrete cate-
gories for the CEU MAFs, corresponding to cuts at the 1/3 and 2/3 quantiles, leading to the intervals
[0.000, 0.127) (838,070 SNPs), [0.127, 0.302) (850,600 SNPs), and [0.302, 0.500] (811,903 SNPs).

Note that thus far we have considered the estimate of π0(xi) at a single threshold λ, so that π̂0(xi)
is in fact π̂λ0 (xi). We can consider smoothing over a series of thresholds to obtain the final estimate,
as done by Storey and Tibshirani (2003). In particular, in the remainder of this manuscript, we used
cubic smoothing splines with 3 degrees of freedom over the series of thresholds 0.05, 0.10, 0.15, . . . , 0.95,
following the example of the qvalue package (Storey et al., 2015), with the final estimate being the
smoothed value at λ = 0.95. The estimates should generally be thresholded at 1, as Eq. (5) may
otherwise lead to values greater than 1. It is also possible but less likely that the smoothed estimate
would be below 0, hence we also threshold it at 0.

If we assume that the p-values are independent, we can also use bootstrap samples of them to
obtain a confidence interval for π̂0(xi). The details for the entire estimation and inference procedure
for π0(xi) are in Algorithm 1.

4.1 Algorithm 1: Estimation and inference for π̂0(xi)

a) Obtain the p-values P1, P2, . . . , Pm, for the m hypothesis tests.

b) For a given threshold λ, obtain Yi = 1(Pi > λ) for 1 ≤ i ≤ m.

c) Estimate E[Yi|Xi = xi] via logistic regression using a design matrix Z and π0(xi) by:

π̂λ0 (xi) =
Ê[Yi|Xi = xi]

1− λ
, (6)

thresholded at 1 if necessary.
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d) Smooth π̂λ0 (xi) over a series of thresholds λ ∈ (0, 1) to obtain π̂0(xi), by taking the smoothed
value at the largest threshold considered. Take the minimum between each value and 1 and the
maximum between each value and 0.

e) Take B bootstrap samples of P1, P2, . . . , Pm and calculate the bootstrap estimates π̂b0(xi) for 1 ≤
b ≤ B using the procedure described above.

f) Form a 1 − α confidence interval for π̂0(xi) by taking the 1 − α/2 quantile of the π̂b0(xi) as the
upper confidence bound, the lower confidence bound being α/2.

In order to estimate FDR(xi), we multiply the BH adjusted p-values by π̂0(xi), thus leading to a

simple plug-in estimator, denoted F̂DR(xi). This is done in the spirit of Storey (2002), whose approach
uses an estimate which is not conditional on covariates.

Figure 2 shows the estimates of π0(xi) plotted against the SNP-specific sample size N for the data
analysis, stratified by the CEU MAFs for a random subset of 50,000 SNPs. We note that the results are
similar for λ = 0.8, λ = 0.9, and for the final smoothed estimate. A 95% bootstrap confidence interval
based on 100 iterations is also shown for the final smoothed estimate. Our approach is compared
to that of Scott et al. (2015a), which assumes that the test statistics are normally distributed. We
considered both the theoretical and empirical null Empirical Bayes (EB) estimates of Scott et al.
(2015a), implemented in the FDRreg package (Scott et al., 2015b). The former assumes a N(0, 1)
distribution under the null, while the latter estimates the parameters of the null distribution. Both
approaches show similar qualitative trends to our estimates, although the empirical null tends to result
in much higher values over the entire range of N, while the theoretical null leads to lower values for
smaller N and larger or comparable values for larger N. Our results are consistent with intuition -
larger sample sizes and larger MAFs lead to a smaller fraction of SNPs estimated to be null. They do
however allow for improved quantification of this relationship: For example, we see that the range for
π̂0(xi) is relatively wide ([0.697, 1] for the final smoothed estimate), while the Storey (2002) smoothed
estimate of π0 without covariates is 0.949.

The results for the number of SNPs with estimated FDR ≤ 0.05 are given in Table 2. Our approach
results in a slightly larger number of discoveries compared to the Storey (2002) and Benjamini and
Hochberg (1995) approaches. Due to the plug-in approaches of both our procedure and the one
of Storey (2002), all the discoveries from Benjamini and Hochberg (1995) are also present in our
approach. The total number of shared discoveries between our method and that of Storey (2002) is
12,740. The Scott et al. (2015a) approaches result in either a substantially larger number of discoveries
(theoretical null) or a substantially smaller number of discoveries (empirical null). In particular, the
number of discoveries for the empirical null is also much smaller than that when using Benjamini and
Hochberg (1995). The overlap between the theoretical null and Benjamini and Hochberg (1995) is
12,251; between the theoretical null and our approach it is 13,119.

5 Special cases

5.1 No covariates

If we do not consider any covariates, the usual estimator π̂0 from Eq. (4) can be deduced from applying
Algorithm 1 by fitting a linear regression with just an intercept.

5.2 Partioning the features

Now assume that the set of features is partitioned into S sets, namely that a collection of sets S =
{As : 1 ≤ s ≤ S} is considered such that all sets are non-empty, pairwise disjoint, and have the set
of all the features as their union. We consider them ordered for the sake of convenience, for example,
the first set in S is A1 et cetera, but note that this ordering does not necessarily have scientific
relevance. In the GWAS meta-analysis dataset, the SNPs are partitioned according to their MAFs.
Other examples of such partionings include all possible atoms resulting from gene-set annotations or
brain regions of interest in a functional imaging analysis, when considering only the genes or voxels
that are annotated (Boca et al., 2013). We can consider this in the covariate framework we developed
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by taking the set A1 as the “baseline set.” We then consider vectors xi of length S − 1, with each
element corresponding to the remaining sets in S, {A2, . . . , AS}. We define xi = 0 for i ∈ A1 and:

xiAs =

{
1 if i ∈ As,
0 if i /∈ As.

(7)

for i ∈ As, s ≥ 2. Thus, using the component notation in linear algebra:

xi =

{
eAs for i ∈ As and s ≥ 2,

0 for i ∈ A1.
(8)

Taking into account the partition, a natural way of estimating π0(xi) is to just apply the estimator
π̂0 from Eq. (4) to each of the S sets:

π̂0(eAs) =

∑
i∈As

Yi
|As|

1− λ
for 2 ≤ s ≤ S,

π̂0(0) =

∑
i∈A1

Yi

|A1|

1− λ
.

A related idea has been proposed for partitioning hypotheses into sets to improve power (Efron,
2008). These results would be obtained directly from our approach if we considered linear instead of
logistic regression and fit a linear regression with an intercept and the covariates xi in Algorithm 1.
As we are considering a logistic regression approach, our results will be slightly different.

6 Theoretical results

We now proceed to explore some theoretical properties of the estimator π̂λ0 (xi). Applying Theorem 3
to Eq. (5), we get that:

π̂λ0 (xi) = π0(xi) +
1−G(λ)

1− λ
{1− π0(xi)}+

b(xi)

1− λ
, (9)

where b(xi) = Ê[Yi|Xi = xi] − E[Yi|Xi = xi], so that E[b(xi)] is the bias of Ê[Yi|Xi = xi] when

estimating E[Yi|Xi = xi]. Note that 1−G(λ)
1−λ {1 − π0(xi)} ≥ 0, since λ ≤ 1, G(λ) ≤ 1, and π0(xi) ≤ 1.

Thus, if the bias when estimating E[Yi|Xi = xi] is positive or negative and small in absolute value,
then π̂λ0 (xi) is a conservative estimator of π0(xi). For example, if we had considered a correctly
specified linear regression model, this would always hold; indeed the case where π0 is shared by all the
features, i.e. in the case of no dependence on covariates, this is shown in Storey (2002). Given that
here we are taking Ê[Yi|Xi = xi] to be the MLE from the logistic regression model, we know that it
represents a consistent estimator of E[Yi|Xi = xi] if the model is correctly specified for m→∞, given
certain technical conditions, for instance those specified in Gourieroux and Monfort (1981). Thus,

we can show that π̂λ0 (xi) is a consistent estimator of π0(xi) + 1−G(λ)
1−λ {1 − π0(xi)} under these same

conditions:

Theorem 5 Under a correctly specified model and technical regularity conditions,

π̂λ0 (xi)→p π0(xi) +
1−G(λ)

1− λ
{1− π0(xi)} ≥ π0(xi).

as m→∞.

Eq. (9) also leads to Var[π̂λ0 (xi)] = V ar[b(xi)]
(1−λ)2 . Once again, using the properties of the MLE, under

appropriate conditions:
√
mb(xi)→D N(0, σ2)

for some σ2, leading to V ar[π̂λ0 (xi)] being approximately inversely proportional to m for large values
of m.

We note that our approach to estimating π0(xi) does not place any restrictions on its range.
In practice, the values will also be thresholded to be between 0 and 1, as detailed in Algorithm 1.
In Result 6, we show that implementing this thresholding decreases the mean squared error of the
estimator. The approach is similar to that taken in Theorem 2 in the work of Storey (2002).
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Result 6 Let

π̂C0 (xi) =


0 π̂0(xi) < 0

π̂0(xi) 0 ≤ π̂0(xi) ≤ 1

1 1 < π̂0(xi)

Then:

E[(π̂0(xi)− π0(xi))2] ≥ E[(π̂C0 (xi)− π0(xi))2].

7 Simulations

We consider simulations to evaluate the usefulness of our plug-in estimator, F̂DR(xi), in terms of both
controlling the true FDR and having good power - measured by the true positive rate (TPR) - under
a variety of scenarios. We consider a nominal FDR value of 5%, meaning that any test with an FDR
less than or equal to 5% is considered a discovery. In each simulation, the FDR is calculated as the
fraction of truly null discoveries out of the total number of discoveries and the TPR is the fraction of
truly alternative discoveries out of the total number of truly alternative features. In the case of no
discoveries, the FDR is estimated to be 0.

We consider 4 different possible functions π0(xi), shown in Figure 3. Scenario I considers a flat
function π0 = 0.9, to illustrate a case where there is no dependence on covariates and scenarios II-IV
are similar to the BMI GWAS meta-analysis. Scenario II is a smooth function of one variable similar
to the rightmost panel in Figure 2, scenario III is a function which is smooth in one variable within
categories of a second variable - similar to the stratification of SNPs within MAFs - and scenario IV is
the same function as in scenario III multiplied by 0.6, to show the effect of having much lower fractions
of null hypotheses, respectively higher fractions of alternative hypotheses. The exact functions are
given in the Supporting Information for this paper. For scenario I we consider fitting a model that is
linear in x1 on the logistic scale, whereas for scenarios II-IV we consider a model that is linear in x1
and a model that fits cubic splines with 3 degrees of freedom for x1, both on the logistic scale. For
scenarios III and IV, all models also consider different coefficients for the categories of x2. We set up
simulations with independent test statistics for m = 1, 000 and m = 10, 000 features and additionally,
with dependent test statistics for m = 1, 000 features and within each setup, different distributions for
the alternative test statistics/p-values, the null always assuming a Unif(0, 1) distribution. For each
combination of factors, we consider 200 simulation runs and obtain the average FDR and TPR over
these runs. For each simulation run, we first randomly generated whether each feature was from the
null or alternative distribution, so that the null hypothesis was true for the features for which a success
was drawn from the Bernoulli distribution with probability π0(xi).

Table 3 and Table 4 consider simulation results for m = 1, 000 features and m = 10, 000 features
respectively For the Beta(1, 20) simulations, we generated the alternative p-values directly from a
Beta(1, 20) distribution. For the other simulations, we first generated the test statistics, then cal-
culated the p-values from them. For the normally distributed and t-distributed test statistics, we
drew the means µi of approximately half the alternative features from a N(µ = 3, σ2 = 1), with the
remaining alternative features from a N(µ = −3, σ2 = 1) distribution, with the mean of the null
features being 0. We then drew the actual test statistic for feature i from either a N(µ = µi, σ

2 = 1)
or T(µ = µi, df = 10) distribution (df = degrees of freedom). Note that 10 degrees of freedom for
a t-distribution is obtained from a two-sample t-test with 6 samples per group, assuming equal vari-
ances in the groups. We also considered chi-squared test statistics with either 1 degree of freedom
(corresponding to a test of independence for a 2 x 2 table) or 4 degrees of freedom (corresponding to a
test of independence for a 3 x 3 table). In this case, we first drew the non-centrality parameter (ncpi)
from the square of a N(µ = 3, σ2 = 1) distribution for the alternative and took it to be 0 for the null,
then generated the test statistics from χ2(ncpi = µi, df = 1 or 4).

We compared our approach (BL = Boca-Leek) to the Benjamini and Hochberg (1995) (BH) ap-
proach, the Storey (2002) approach as implemented in the qvalue package Storey et al. (2015), and
both the theoretical and null EB approaches of Scott et al. (2015a) (Scott T = theoretical null, Scott
E = empirical null), implemented in the FDRreg package. The Scott et al. (2015a) approaches use
z-values, as opposed to the other methods, which use p-values. Therefore we used the z-statistics and
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t-statistics as inputs when appropriate, otherwise - for the beta distribution and the chi-squared test
- we back-transformed the p-values into z-values via the standard normal quantile function.

We see in Tables 3 and 4 that our approach had a true FDR close to the nominal value of 5%
in most scenarios. As expected, its performance is better for the larger value of m, with some slight
anticonservative behavior for m = 1, 000, especially when considering the spline models. The Scott
et al. (2015a) approaches perform the best in the case where the test statistics are normally distributed,
as expected. In particular, the FDR control of the theoretical null approach is also close to the nominal
level and the TPR can be 15% higher in absolute terms than that of our approach for scenarios II
and III. The empirical null performs less well. In fact, in some cases it leads to errors in 24.5% of the
simulation runs for scenarios I-III and up to 100% for scenario IV (shown as blank cells in the tables),
although these errors do not occur for the normal or t distributions and are much less frequent for
10,000 features (1% or less for scenarios I-III). In general, the Scott et al. (2015a) approaches lose
control of the FDR once we are out of the normal case. We always see a gain in power for our
method over the BH approach, however it is often marginal (1-3%) for scenarios I-III, which have
relatively high values of π0(xi), which is to be expected, since BH in essence assumes π0(xi) ≡ 1. For
scenario IV, however, the average TPR may increase by as much as 6% to 11% in absolute terms for
m = 10, 000 while still maintaining the FDR. The gains over the Storey (2002) approach are much
more modest, as expected (0-2% in absolute terms while maintaining the FDR for m = 10, 000). We
also compare the empirical means of the estimates of π0(xi) over the 200 simulation runs compared
to the true values of π0(xi) for the normally-distributed and t-distributed independent test statistics
in Figures S1 - S4. We note that for the t-distributed statistics, the Scott theoretical null estimate is
less conservative than ours in scenario I (we only considered the theoretical, not the empirical null for
the Scott approach in the plots, given their properties). For scenarios II and III, the Scott theoretical
null was more anti-conservative for lower values of π0(xi), leading to much higher FDRs in Tables 3
and 4.

Tables 5 and 6 considers simulation results for m = 1, 000 features and several dependence struc-
tures for the test statistics. We considered multivariate normal and t distributions, with the means
drawn as before and block-diagonal variance-covariance matrices with the diagonal entries equal to 1
and a number of blocks equal to either 20 (50 features per block) or 10 (100 features per block). The
within-block correlation, ρ, took on the values 0.2, 0.5, or 0.9. As expected, the FDR was generally
closer to the nominal value of 5% for 20 blocks than for 10 blocks, as 20 blocks leads to less correlation.
Increasing ρ also leads to worse control of the FDR. These same trends are also present for the Scott
et al. (2015a) approaches, but generally with worse control. Furthermore, for ρ = 0.5, the empirical
null leads to errors in 1% or fewer of the simulation runs; however, for ρ = 0.9 it leads to errors in as
many as 33% of the runs. In contrast, Storey (2002) shows estimated FDR values closer to 5% and
results in a single error for ρ = 0.9 and 10 blocks for the t distribution. We also note that the TPR is
generally very low for the multivariate t distributions, with the exception of scenario IV.

8 Reproducibility

All analyses and simulations in this paper are fully reproducible and the code is available on Github
at: https://github.com/SiminaB/Fdr-regression

9 Discussion

Here we have introduced an approach to estimating false discovery rates conditional on covariates in a
multiple testing framework, by first estimating the proportion of true null hypotheses via a regression
model and then using this in a plug-in estimator. Our motivating case study considers a GWAS meta-
analysis of BMI-SNP associations, where we are interested in adjusting for sample sizes and allele
frequencies of the individual SNPs. Using extensive simulations, we compared our approach to FDR
regression as proposed by Scott et al. (2015a), as well as to the approaches of Benjamini and Hochberg
(1995) and Storey (2002), which estimate the FDR without covariates. While the Scott et al. (2015a)
approaches outperform our approach for normally-distributed test statistics, which is one of modeling
assumptions therein, that approach tends to lose FDR control for test statistics from t-distributions
and chi-squared distributions. which may arise from commonly performed analyses. In general, our
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method provides the flexibility of performing the modeling at the level of the p-values. Our approach
always shows a gain in true positive rate over Benjamini and Hochberg (1995), which is often limited,
but was as high as 6%-11% in our simulations for low values of the prior probabilities. While the
gains over the Storey (2002) approach were more modest, our method allows for improved flexibility
in modeling, as evidenced in Figures S1 - S4. It may also be the case that estimating the proportion
of true null hypotheses as a function of covariates is of interest. We further show that control of the
FDR is maintained in the presence of moderate correlation between the test statistics.

Applying our estimator to GWAS data from the GIANT consortium demonstrated that, as ex-
pected, the estimate of the fraction of null hypotheses decreases with both sample size and minor allele
frequency. It is a well-known and problematic phenomenon that p-values for all features decrease as
the sample size increases. This is because the null is rarely precisely true for any given feature. One
interesting consequence of our estimates is that we can calibrate what fraction of p-values appear
to be drawn from the non-null distribution as a function of sample size, potentially allowing us to
quantify the effect of the “large sample size means small p-values” problem directly. Using an FDR
cutoff of 5%, our approach leads to 13,384 discoveries, compared to 12,771 from the Storey (2002)
method; given the fact that they are both multiplicative factors to the Benjamini and Hochberg (1995)
approach, which in effect assumes the proportion of true null hypotheses to be 1, they both include
the 12,500 discoveries using this approach. By contrast, the Scott et al. (2015a) approach leads to
very different results based on whether the theoretical null or empirical null is assumed.

We note that our approach relies on a series of assumptions, such as independence of p-values
and independence of the p-values and the covariates conditional on the null or alternative. We note
that assuming that the p-values are independent of the covariates conditional on the null is also
an assumption used in Ignatiadis et al. (2016). Therein, diagnostic approaches for checking this
assumption are provided, namely examining the histograms of p-values stratified on the covariates.
In particular, it is necessary for the distribution to be approximately uniform for larger p-values. We
perform this diagnostic check in Figure S5 and note that it appears to hold approximately. The slight
conservative behavior seen for smaller values of N in Figures 1 and S5 may be the result of publication
bias, where studies with borderline significant p-values become part of larger meta-analyses. It is
interesting that the estimated proportion of nulls in Figure 2 also starts decreasing substantially right
at the median sample size (of 235,717). This may also be due to the same publication bias.

In conclusion, our approach shows good performance across a range of scenarios and allows for
improved interpretability compared to the Storey (2002) method and control of the FDR in the case
of non-normal test statistics compared to the Scott et al. (2015a) approaches. It always leads to
an improvement in estimating the true positive rate compared to the now-classical Benjamini and
Hochberg (1995) method, although in the high correlation cases, it does not appropriately control
the FDR. We also note the subtle issue that the accuracy of the estimation is based on the number
of features/tests considered, not on the sample sizes within the tests. Thus, our “large-sample”
theoretical results are to be interpreted within this framework. In our simulations, for example, we see
that using 10,000 rather than 1,000 features improved the FDR control. We note that our motivating
data analysis had over 2.5 million features and that many high-dimensional problems have features in
the tens of thousands or higher. A range of other applications for our methodology are also possible
by adapting our regression framework, including estimating false discovery rates for gene sets (Boca
et al., 2013), estimating science-wise false discovery rates (Jager and Leek, 2013), or improving power
in high-throughput biological studies (Ignatiadis et al., 2016).
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Tables and figures

Table 1: Outcomes of testing multiple hypotheses.

Fail to reject null Reject null Total

Null true U V m0

Null false T S m−m0

m−R R m

Table 2: Results for BMI GWAS meta-analysis giving the number of SNPs with an estimated FDR
≤ 5% for various approaches. BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott
empirical null, BH = Benjamini-Hochberg.

BL Scott T Scott E Storey BH

Number
with
F̂DR ≤
5%

13384 16697 7636 12771 12500
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Table 3: Simulation results for m = 1, 000 features, 200 runs for each scenario, independent test
statistics. “Reg. model” = specific logistic regression model considered, BL = Boca-Leek, Scott T =
Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg. A nominal FDR =
5% was considered.

FDR % TPR %

π0(x) Dist. under H1 Reg. model BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I Beta(1,20) Linear 5.0 90.0 84.0 5.2 3.9 0.2 100.0 95.9 0.2 0.1
II Beta(1,20) Linear 4.8 92.6 85.9 4.8 4.1 0.2 100.0 98.0 0.1 0.1
II Beta(1,20) Spline 6.5 92.6 86.6 4.8 4.1 0.2 100.0 98.3 0.1 0.1
III Beta(1,20) Linear 5.2 94.9 88.9 5.4 5.4 0.2 100.0 97.5 0.2 0.2
III Beta(1,20) Spline 6.2 94.9 89.4 5.4 5.4 0.3 100.0 97.6 0.2 0.2
IV Beta(1,20) Linear 6.4 56.7 5.1 3.4 12.2 100.0 5.4 0.3
IV Beta(1,20) Spline 7.9 56.7 5.1 3.4 15.4 100.0 5.4 0.3

I Norm Linear 5.0 5.2 6.6 4.9 4.4 51.0 50.9 49.7 50.8 49.7
II Norm Linear 5.4 5.7 8.1 5.3 4.9 48.5 63.5 61.3 47.6 47.0
II Norm Spline 5.6 5.9 8.3 5.3 4.9 49.3 63.5 61.5 47.6 47.0
III Norm Linear 5.8 5.9 9.9 5.4 5.1 45.1 60.3 57.9 44.0 43.4
III Norm Spline 5.9 6.0 10.1 5.4 5.1 45.6 60.9 58.2 44.0 43.4
IV Norm Linear 5.0 4.9 2.4 4.7 2.8 71.6 71.8 60.6 71.2 65.4
IV Norm Spline 5.2 5.0 2.4 4.7 2.8 72.0 71.9 60.7 71.2 65.4

I T Linear 5.7 21.3 23.4 5.5 4.8 15.7 55.4 56.9 15.2 13.6
II T Linear 4.8 20.7 23.8 5.0 4.4 13.0 64.5 65.5 11.6 10.6
II T Spline 4.7 21.1 24.5 5.0 4.4 13.8 64.8 65.6 11.6 10.6
III T Linear 6.2 26.8 31.0 5.9 5.4 9.4 54.6 54.7 8.2 7.6
III T Spline 6.8 27.3 31.3 5.9 5.4 10.0 55.2 55.3 8.2 7.6
IV T Linear 5.0 9.3 2.8 4.7 2.9 52.5 72.9 44.4 52.0 40.3
IV T Spline 5.4 9.3 2.8 4.7 2.9 53.0 73.0 44.6 52.0 40.3

I Chisq 1 df Linear 5.0 90.0 85.5 4.8 4.4 51.2 100.0 98.7 50.9 49.7
II Chisq 1 df Linear 4.8 92.6 89.4 4.8 4.4 48.3 100.0 99.6 47.1 46.3
II Chisq 1 df Spline 5.0 92.6 90.0 4.8 4.4 48.9 100.0 99.6 47.1 46.3
III Chisq 1 df Linear 5.0 94.9 93.8 4.9 4.8 44.3 100.0 99.7 43.1 42.5
III Chisq 1 df Spline 5.3 94.9 93.9 4.9 4.8 44.8 100.0 99.7 43.1 42.5
IV Chisq 1 df Linear 5.1 56.7 4.7 2.8 71.6 100.0 71.1 65.1
IV Chisq 1 df Spline 5.3 56.7 4.7 2.8 71.9 100.0 71.1 65.1

I Chisq 4 df Linear 5.3 90.0 83.5 5.4 4.8 30.8 100.0 95.3 30.6 29.6
II Chisq 4 df Linear 5.3 92.6 89.6 5.3 5.0 28.4 100.0 98.5 27.5 26.7
II Chisq 4 df Spline 5.4 92.6 89.9 5.3 5.0 29.2 100.0 98.6 27.5 26.7
III Chisq 4 df Linear 5.9 94.9 92.4 5.4 5.3 24.8 100.0 98.3 24.0 23.4
III Chisq 4 df Spline 5.9 94.9 93.0 5.4 5.3 25.2 100.0 98.7 24.0 23.4
IV Chisq 4 df Linear 5.1 56.7 55.9 4.7 2.8 52.3 100.0 98.8 51.7 44.5
IV Chisq 4 df Spline 5.5 56.7 55.9 4.7 2.8 52.7 100.0 98.8 51.7 44.5
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Table 4: Simulation results for m = 10, 000 features, 200 runs for each scenario, independent test
statistics. “Reg. model” = specific logistic regression model considered, BL = Boca-Leek, Scott T =
Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg. A nominal FDR =
5% was considered.

FDR % TPR %

π0(x) Dist. under H1 Reg. model BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I Beta(1,20) Linear 3.7 90.0 90.0 3.7 3.6 0.0 100.0 100.0 0.0 0.0
II Beta(1,20) Linear 3.1 92.6 92.6 3.1 3.0 0.0 100.0 100.0 0.0 0.0
II Beta(1,20) Spline 3.1 92.6 92.6 3.1 3.0 0.0 100.0 100.0 0.0 0.0
III Beta(1,20) Linear 4.0 94.9 94.9 3.5 3.5 0.0 100.0 100.0 0.0 0.0
III Beta(1,20) Spline 4.5 94.9 94.9 3.5 3.5 0.0 100.0 100.0 0.0 0.0
IV Beta(1,20) Linear 4.4 56.9 4.8 2.5 1.2 100.0 0.5 0.0
IV Beta(1,20) Spline 5.0 56.9 4.8 2.5 2.0 100.0 0.5 0.0

I Norm Linear 5.0 5.0 5.9 5.0 4.5 50.6 50.6 52.1 50.7 49.6
II Norm Linear 4.9 5.2 5.3 4.9 4.6 48.4 63.9 62.9 47.3 46.6
II Norm Spline 4.9 5.2 5.3 4.9 4.6 48.8 64.0 63.0 47.3 46.6
III Norm Linear 4.9 5.2 5.5 4.9 4.7 44.2 60.2 59.3 43.5 43.0
III Norm Spline 4.9 5.2 5.4 4.9 4.7 44.4 60.6 59.7 43.5 43.0
IV Norm Linear 4.8 5.0 2.3 4.8 2.8 71.3 71.8 62.2 71.2 65.3
IV Norm Spline 4.8 5.0 2.3 4.8 2.8 71.3 71.8 62.2 71.2 65.3

I T Linear 5.2 21.7 20.8 5.1 4.7 14.1 55.3 53.2 14.1 12.6
II T Linear 4.6 20.0 19.9 4.9 4.5 11.5 65.7 65.4 10.2 9.2
II T Spline 4.5 20.2 20.1 4.9 4.5 12.0 65.7 65.4 10.2 9.2
III T Linear 4.9 24.7 26.8 5.2 5.2 6.8 62.5 63.7 6.0 5.5
III T Spline 4.8 24.8 26.9 5.2 5.2 7.0 62.6 63.9 6.0 5.5
IV T Linear 4.8 9.3 1.2 4.8 2.9 51.8 72.8 28.5 51.6 40.2
IV T Spline 4.8 9.3 1.2 4.8 2.9 51.9 72.9 28.6 51.6 40.2

I Chisq 1 df Linear 5.0 90.0 90.0 5.0 4.5 50.7 100.0 100.0 50.6 49.6
II Chisq 1 df Linear 4.9 92.6 92.6 5.0 4.6 48.2 100.0 100.0 47.2 46.4
II Chisq 1 df Spline 4.8 92.6 92.6 5.0 4.6 48.6 100.0 100.0 47.2 46.4
III Chisq 1 df Linear 5.0 94.9 94.9 5.0 4.8 44.0 100.0 100.0 43.2 42.7
III Chisq 1 df Spline 5.0 94.9 94.9 5.0 4.8 44.2 100.0 100.0 43.2 42.7
IV Chisq 1 df Linear 4.8 56.9 4.8 2.8 71.1 100.0 71.0 65.2
IV Chisq 1 df Spline 4.8 56.9 4.8 2.8 71.2 100.0 71.0 65.2

I Chisq 4 df Linear 5.0 90.0 90.0 5.0 4.5 29.7 100.0 100.0 29.7 28.7
II Chisq 4 df Linear 4.9 92.6 92.6 5.0 4.7 28.0 100.0 100.0 27.1 26.5
II Chisq 4 df Spline 4.9 92.6 92.6 5.0 4.7 28.4 100.0 100.0 27.1 26.5
III Chisq 4 df Linear 5.2 94.9 94.9 5.2 5.0 24.3 100.0 100.0 23.6 23.2
III Chisq 4 df Spline 5.2 94.9 94.9 5.2 5.0 24.4 100.0 100.0 23.6 23.2
IV Chisq 4 df Linear 4.7 56.9 57.1 4.7 2.8 51.8 100.0 100.0 51.7 44.8
IV Chisq 4 df Spline 4.7 56.9 57.1 4.7 2.8 51.9 100.0 100.0 51.7 44.8
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Table 5: Simulation results for m = 1, 000 features, 200 runs for each scenario, dependent test statistics
from a multivariate normal distribution with a block-diagonal variance-covariance matrix. The block
size and within-block correlaton, ρ, are specified. “Reg. model” = specific logistic regression model
considered, BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott empirical null, BH =
Benjamini-Hochberg. A nominal FDR = 5% was considered.

FDR % TPR %

π0(x) Dist. under H1 Reg. model BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I N, 20 blocks, ρ=0.2 Linear 5.3 6.2 6.8 5.0 4.4 51.5 51.4 48.4 51.3 50.1
II N, 20 blocks, ρ=0.2 Linear 5.2 6.9 8.0 5.1 4.6 48.6 63.4 59.3 47.6 46.5
II N, 20 blocks, ρ=0.2 Spline 5.7 8.3 9.2 5.1 4.6 49.2 63.3 59.6 47.6 46.5
III N, 20 blocks, ρ=0.2 Linear 5.5 7.6 9.3 5.2 4.8 45.1 60.0 56.0 44.0 43.2
III N, 20 blocks, ρ=0.2 Spline 5.7 9.6 10.6 5.2 4.8 45.9 60.2 56.3 44.0 43.2
IV N, 20 blocks, ρ=0.2 Linear 5.3 5.3 2.5 4.9 2.9 71.8 71.9 61.0 71.4 65.6
IV N, 20 blocks, ρ=0.2 Spline 5.6 5.5 2.5 4.9 2.9 72.0 71.9 61.1 71.4 65.6

I N, 20 blocks, ρ=0.5 Linear 6.4 10.0 10.7 6.0 5.2 52.0 51.7 47.6 51.6 50.3
II N, 20 blocks, ρ=0.5 Linear 6.1 12.4 13.5 5.7 5.1 48.4 62.8 57.6 47.3 46.2
II N, 20 blocks, ρ=0.5 Spline 7.1 18.7 20.4 5.7 5.1 49.5 62.6 58.0 47.3 46.2
III N, 20 blocks, ρ=0.5 Linear 5.6 11.5 15.9 5.2 4.6 45.4 59.6 56.6 44.0 43.2
III N, 20 blocks, ρ=0.5 Spline 6.6 19.9 23.6 5.2 4.6 46.2 59.0 56.9 44.0 43.2
IV N, 20 blocks, ρ=0.5 Linear 5.8 6.1 2.8 5.3 3.1 72.1 72.3 59.4 71.6 65.7
IV N, 20 blocks, ρ=0.5 Spline 6.5 6.4 3.0 5.3 3.1 72.4 72.2 59.6 71.6 65.7

I N, 20 blocks, ρ=0.9 Linear 9.0 17.6 36.2 6.9 5.3 53.8 53.3 57.9 52.6 50.4
II N, 20 blocks, ρ=0.9 Linear 7.8 20.0 47.5 6.4 4.9 49.6 63.8 68.0 48.0 46.2
II N, 20 blocks, ρ=0.9 Spline 18.2 34.5 53.6 6.4 4.9 52.2 64.4 69.8 48.0 46.2
III N, 20 blocks, ρ=0.9 Linear 6.4 23.1 48.8 5.1 4.0 47.3 60.5 67.9 46.1 44.0
III N, 20 blocks, ρ=0.9 Spline 21.5 38.4 60.5 5.1 4.0 51.0 60.9 69.7 46.1 44.0
IV N, 20 blocks, ρ=0.9 Linear 7.7 8.4 6.9 6.1 3.1 73.1 73.2 57.4 72.2 65.9
IV N, 20 blocks, ρ=0.9 Spline 11.8 10.0 8.0 6.1 3.1 74.4 72.8 57.8 72.2 65.9

I N, 10 blocks, ρ=0.2 Linear 5.4 7.8 6.1 5.1 4.4 51.6 51.6 47.3 51.2 49.9
II N, 10 blocks, ρ=0.2 Linear 5.0 9.3 8.8 4.8 4.3 48.2 63.0 59.8 47.2 46.1
II N, 10 blocks, ρ=0.2 Spline 5.5 13.3 11.1 4.8 4.3 49.1 62.8 59.8 47.2 46.1
III N, 10 blocks, ρ=0.2 Linear 5.2 8.6 9.8 5.0 4.5 44.6 59.5 56.4 43.4 42.7
III N, 10 blocks, ρ=0.2 Spline 5.8 14.3 13.2 5.0 4.5 45.2 59.2 56.6 43.4 42.7
IV N, 10 blocks, ρ=0.2 Linear 5.3 5.7 2.4 5.0 2.9 71.8 71.8 60.4 71.4 65.5
IV N, 10 blocks, ρ=0.2 Spline 5.7 5.9 2.5 5.0 2.9 72.1 71.8 60.5 71.4 65.5

I N, 10 blocks, ρ=0.5 Linear 7.3 17.1 15.9 6.5 5.4 51.9 51.8 48.8 51.7 50.0
II N, 10 blocks, ρ=0.5 Linear 5.9 20.3 19.9 5.3 4.5 48.3 62.6 61.0 46.8 45.6
II N, 10 blocks, ρ=0.5 Spline 8.6 32.5 27.7 5.3 4.5 49.2 63.3 61.4 46.8 45.6
III N, 10 blocks, ρ=0.5 Linear 5.8 17.4 17.7 4.9 4.2 44.2 58.1 54.3 43.0 42.0
III N, 10 blocks, ρ=0.5 Spline 8.6 32.7 30.2 4.9 4.2 45.0 58.1 55.6 43.0 42.0
IV N, 10 blocks, ρ=0.5 Linear 6.3 7.5 3.3 5.5 3.2 72.4 72.4 59.0 71.9 65.8
IV N, 10 blocks, ρ=0.5 Spline 7.6 8.3 3.8 5.5 3.2 72.7 72.1 59.3 71.9 65.8

I N, 10 blocks, ρ=0.9 Linear 14.1 30.6 45.6 6.6 4.1 55.5 54.7 65.6 53.3 50.2
II N, 10 blocks, ρ=0.9 Linear 13.3 35.5 55.9 5.9 3.3 51.1 66.5 75.8 49.0 46.1
II N, 10 blocks, ρ=0.9 Spline 35.1 49.9 67.5 5.9 3.3 56.1 67.4 77.6 49.0 46.1
III N, 10 blocks, ρ=0.9 Linear 13.3 33.7 66.4 5.4 3.3 45.6 58.1 75.7 43.4 40.7
III N, 10 blocks, ρ=0.9 Spline 40.7 51.5 73.0 5.4 3.3 52.0 61.6 77.4 43.4 40.7
IV N, 10 blocks, ρ=0.9 Linear 11.2 12.4 12.0 7.0 3.1 74.0 73.5 63.9 72.5 65.8
IV N, 10 blocks, ρ=0.9 Spline 19.2 15.6 13.8 7.0 3.1 76.2 73.3 64.3 72.5 65.8
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Figure 1: Histograms of p-values for the SNP-BMI tests of association from the GIANT consortium.
Panel a) shows the distribution for all sample sizes N (2,500,573 SNPs), while panel b) shows the
subset N <200,000 (187,114 SNPs).
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Figure 3: The four simulation scenarios considered for π0(xi). Scenarios I and II consider smooth
functions of a single covariate, whereas scenarios III and IV consider smooht functions of a single
covariate (x1) within categories of a second covariate (x2).
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Table 6: Simulation results for m = 1, 000 features, 200 runs for each scenario, dependent test statistics
from a multivariate t distribution with a block-diagonal variance-covariance matrix. The block size
and within-block correlaton, ρ, are specified. “Reg. model” = specific logistic regression model
considered, BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott empirical null, BH =
Benjamini-Hochberg. A nominal FDR = 5% was considered.

FDR % TPR %

π0(x) Dist. under H1 Reg. model BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I T, 20 blocks, ρ=0.2 Linear 1.7 9.1 7.4 1.5 0.9 8.0 51.6 57.8 7.6 5.7
II T, 20 blocks, ρ=0.2 Linear 3.2 13.9 7.3 3.2 1.8 8.0 63.8 61.0 6.8 4.5
II T, 20 blocks, ρ=0.2 Spline 3.7 14.7 8.5 3.2 1.8 9.2 63.9 61.3 6.8 4.5
III T, 20 blocks, ρ=0.2 Linear 2.6 13.8 9.6 2.1 1.3 4.3 59.4 60.1 3.4 2.3
III T, 20 blocks, ρ=0.2 Spline 3.6 15.1 11.0 2.1 1.3 5.2 59.7 60.3 3.4 2.3
IV T, 20 blocks, ρ=0.2 Linear 2.7 5.4 2.9 2.4 1.0 55.4 71.8 65.1 54.4 44.3
IV T, 20 blocks, ρ=0.2 Spline 3.0 5.4 2.8 2.4 1.0 56.0 71.9 65.1 54.4 44.3

I T, 20 blocks, ρ=0.5 Linear 1.7 10.3 11.0 1.5 1.0 8.6 51.6 57.4 8.2 5.9
II T, 20 blocks, ρ=0.5 Linear 3.5 16.3 11.9 3.3 2.1 7.7 64.2 61.7 6.6 4.5
II T, 20 blocks, ρ=0.5 Spline 4.7 19.5 16.6 3.3 2.1 9.1 63.9 62.1 6.6 4.5
III T, 20 blocks, ρ=0.5 Linear 3.2 17.6 13.0 2.3 1.5 5.0 59.3 59.0 3.6 2.6
III T, 20 blocks, ρ=0.5 Spline 4.4 23.4 20.5 2.3 1.5 5.6 59.6 59.5 3.6 2.6
IV T, 20 blocks, ρ=0.5 Linear 2.7 5.5 3.0 2.3 1.0 55.3 71.9 64.7 54.3 44.4
IV T, 20 blocks, ρ=0.5 Spline 3.2 5.8 3.1 2.3 1.0 55.8 71.9 64.8 54.3 44.4

I T, 20 blocks, ρ=0.9 Linear 3.0 14.5 29.0 1.5 0.9 11.5 51.7 64.1 9.9 6.2
II T, 20 blocks, ρ=0.9 Linear 3.8 20.9 45.7 2.3 1.9 10.2 64.9 70.6 7.7 5.0
II T, 20 blocks, ρ=0.9 Spline 15.8 32.1 54.6 2.3 1.9 14.2 64.7 70.5 7.7 5.0
III T, 20 blocks, ρ=0.9 Linear 5.2 23.9 49.7 3.2 1.4 7.3 60.7 63.5 5.6 3.1
III T, 20 blocks, ρ=0.9 Spline 19.0 35.1 60.6 3.2 1.4 10.6 61.7 65.5 5.6 3.1
IV T, 20 blocks, ρ=0.9 Linear 3.6 6.6 7.5 2.4 1.0 56.1 72.2 67.5 54.6 44.3
IV T, 20 blocks, ρ=0.9 Spline 8.6 7.5 8.0 2.4 1.0 58.4 72.0 67.2 54.6 44.3

I T, 10 blocks, ρ=0.2 Linear 1.8 9.9 7.8 1.6 0.8 8.3 51.3 57.2 8.0 5.9
II T, 10 blocks, ρ=0.2 Linear 3.4 15.0 8.1 3.4 1.5 7.3 63.1 61.3 6.4 4.3
II T, 10 blocks, ρ=0.2 Spline 4.0 16.7 9.9 3.4 1.5 8.6 63.2 61.5 6.4 4.3
III T, 10 blocks, ρ=0.2 Linear 2.2 15.2 9.5 1.6 1.2 3.7 58.7 59.4 3.0 1.9
III T, 10 blocks, ρ=0.2 Spline 2.7 18.0 12.7 1.6 1.2 4.2 58.5 59.7 3.0 1.9
IV T, 10 blocks, ρ=0.2 Linear 2.6 5.5 2.8 2.4 1.0 54.8 71.5 64.6 53.9 43.9
IV T, 10 blocks, ρ=0.2 Spline 3.0 5.6 2.8 2.4 1.0 55.4 71.5 64.7 53.9 43.9

I T, 10 blocks, ρ=0.5 Linear 2.2 13.5 14.2 1.6 0.9 9.3 50.8 57.4 8.5 6.1
II T, 10 blocks, ρ=0.5 Linear 3.3 19.2 13.6 3.4 1.7 7.9 63.1 61.2 7.0 4.4
II T, 10 blocks, ρ=0.5 Spline 6.2 27.6 21.3 3.4 1.7 9.9 63.5 61.3 7.0 4.4
III T, 10 blocks, ρ=0.5 Linear 2.3 23.4 21.5 1.3 0.7 4.4 58.0 59.5 3.0 2.1
III T, 10 blocks, ρ=0.5 Spline 3.8 35.9 31.4 1.3 0.7 5.6 58.1 60.1 3.0 2.1
IV T, 10 blocks, ρ=0.5 Linear 3.1 6.1 3.4 2.5 1.0 54.4 71.4 63.5 53.4 43.2
IV T, 10 blocks, ρ=0.5 Spline 4.3 6.6 3.8 2.5 1.0 55.3 71.2 64.0 53.4 43.2

I T, 10 blocks, ρ=0.9 Linear 7.7 23.0 38.0 1.6 1.0 14.9 51.5 70.9 11.4 6.7
II T, 10 blocks, ρ=0.9 Linear 10.1 31.5 50.0 4.1 1.7 12.4 65.4 76.2 11.1 6.0
II T, 10 blocks, ρ=0.9 Spline 41.7 43.6 60.7 4.1 1.7 22.4 68.2 78.9 11.1 6.0
III T, 10 blocks, ρ=0.9 Linear 12.7 36.2 62.9 2.2 1.3 11.0 60.5 77.2 5.8 2.6
III T, 10 blocks, ρ=0.9 Spline 43.0 48.4 71.0 2.2 1.3 19.3 62.9 78.7 5.8 2.6
IV T, 10 blocks, ρ=0.9 Linear 6.2 9.2 11.1 3.2 1.0 56.3 72.1 68.3 54.2 42.4
IV T, 10 blocks, ρ=0.9 Spline 15.1 10.8 11.8 3.2 1.0 59.3 71.8 68.3 54.2 42.4
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