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Abstract 28 

Background: Single-cell RNA sequencing (scRNA‑seq) offers exciting possibilities to 29 

address biological and medical questions, but a systematic comparison of recently 30 

developed protocols is still lacking.  31 

Results: We generated data from 447 mouse embryonic stem cells using Drop‑seq, 32 

SCRB‑seq, Smart‑seq (on Fluidigm C1) and Smart‑seq2 and analyzed existing data from 33 

35 mouse embryonic stem cells prepared with CEL‑seq. We find that Smart‑seq2 is the 34 

most sensitive method as it detects the most genes per cell and across cells. However, it 35 

shows more amplification noise than CEL‑seq, Drop‑seq and SCRB‑seq as it cannot use 36 

unique molecular identifiers (UMIs). We use simulations to model how the observed 37 

combinations of sensitivity and amplification noise affects detection of differentially 38 

expressed genes and find that SCRB‑seq reaches 80% power with the fewest number of 39 

cells. When considering cost-efficiency at different sequencing depths at 80% power, we 40 

find that Drop‑seq is preferable when quantifying transcriptomes of a large numbers of cells 41 

with low sequencing depth, SCRB‑seq is preferable when quantifying transcriptomes of 42 

fewer cells and Smart‑seq2 is preferable when annotating and/or quantifying 43 

transcriptomes of fewer cells as long one can use in-house produced transposase.  44 

Conclusions: Our analyses allows an informed choice among five prominent scRNA‑seq 45 

protocols and provides a solid framework for benchmarking future improvements in 46 

scRNA‑seq methodologies. 47 

 48 

  49 
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Background 50 

Genome-wide quantification of mRNA transcripts can be highly informative for the 51 

characterization of cellular states and to understand regulatory circuits and processes1,2. 52 

Ideally, such data are collected with high spatial resolution, and scRNA‑seq now allows for 53 

transcriptome-wide analyses of individual cells, revealing new and exciting biological and 54 

medical insights3–5. scRNA‑seq requires the isolation of single cells and the conversion of 55 

their RNA into cDNA libraries that can be quantified using high-throughput sequencing4,6. 56 

How well single-cell transcriptomes can be characterized depends on many factors, 57 

including the sensitivity of the method, i.e. which and how many mRNAs can be detected, 58 

its accuracy, i.e. how well the quantification corresponds to the actual concentration of 59 

mRNAs and its precision, i.e. with how much technical noise mRNAs are quantified. Of high 60 

practical relevance is also the efficiency of the method, i.e. the monetary cost to 61 

characterize single cells, e.g. at a certain level of precision. In order to make a well-62 

informed choice among available scRNA‑seq methods, it is important to estimate these 63 

parameters comparably. Each method is likely to have its own strengths and weaknesses. 64 

For example, it has previously been shown that scRNA‑seq conducted in the small volumes 65 

available in the automated microfluidic platform from Fluidigm (Smart‑seq protocol on the 66 

C1-platform) performs better than Smart‑seq or other commercially available kits in 67 

microliter volumes7. Furthermore, the Smart‑seq protocol has been optimized for sensitivity, 68 

even full-length coverage, accuracy and cost8 and this improved “Smart‑seq2” protocol9 69 

has also become widely used10–14.  70 

Other protocols have sacrificed full-length coverage for 3’ or 5’ sequencing of mRNAs in 71 

order to sequence part of the primer used for cDNA generation. This enables early 72 

barcoding of libraries, i.e. the incorporation of well-specific or cell-specific barcodes, 73 

allowing to multiplex cDNA amplification and library generation and thereby increasing the 74 

throughput of scRNA‑seq library generation by one to three orders of magnitude15–19. 75 
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Additionally, this approach allows the incorporation of Unique Molecular Identifiers (UMIs), 76 

random nucleotide sequences that tag individual mRNA molecules and hence allow for the 77 

distinction between original molecules and amplification duplicates that derive from the 78 

cDNA or library amplification18,20,21. Utilization of UMI information leads to improved 79 

quantification of mRNA molecules22,23 and has been implemented in several scRNA‑seq 80 

protocols, such as STRT22, CEL‑seq23, Drop‑seq17, inDrop19, MARS‑seq16 or SCRB‑seq15.  81 

However, a thorough and systematic comparison of scRNA‑seq methods, evaluating 82 

sensitivity, accuracy, precision and efficiency is still lacking. To address this issue, we 83 

analyzed 482 scRNA‑seq libraries from mouse embryonic stem cells (mESCs), generated 84 

using five different methods with two technical replicates for each method (Fig. 1). 85 

 86 

Results 87 

Generation of scRNA‑seq libraries 88 

We generated scRNA‑seq libraries from mouse embryonic stem cells (mESCs) in two 89 

independent replicates using Smart‑seq24, Smart‑seq28, Drop‑seq17 and SCRB‑seq15. 90 

Additionally, we used available scRNA‑seq data23 from mESCs that was generated using 91 

CEL‑seq18. An overview of the employed methods and their library generation workflows is 92 

provided in Figure 2 and in Supplementary Table 1. 93 

For each replicate of the Smart‑seq protocol, we performed a run on the C1 platform from 94 

Fluidigm (Smart‑seq/C1) using the 10-17 µm mRNA‑seq Integrated Fluidic Circuit (IFCs) 95 

microfluidic chips that can automatically capture up to 96 cells7. We imaged the cells to 96 

identify doublets (see below) and added lysis buffer together with External RNA Control 97 

Consortium spike-ins (ERCCs) that consist of 92 poly-adenylated synthetic RNA transcripts 98 

spanning a range of concentrations25. We used the commercially available Smart‑seq kit 99 

(Clontech) that uses oligo-dT priming, template switching and PCR amplification to 100 
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generate full-length double-stranded cDNA. We harvested the amplified cDNAs and 101 

converted them into 96 different sequenceable libraries by tagmentation (Nextera, Illumina) 102 

and PCR amplification using indexed primers for multiplexing. Advantages of this system 103 

include that single cell isolation and cDNA generation is automated, that captured cells can 104 

be imaged, that reaction volumes are small and that full-length cDNA libraries are 105 

sequenced. 106 

For each replicate of the Smart‑seq2 protocol, we sorted mESCs by flow cytometry into 107 

96‑well PCR plates containing lysis buffer and ERCCs. We generated cDNA as described8,9 108 

and used an in-house produced Tn5 transposase26 to generate 96 libraries by 109 

tagmentation. While Smart‑seq/C1 and Smart‑seq2 are very similar protocols that generate 110 

full-length libraries they differ in how cells are isolated, the reaction volume and in that 111 

Smart‑seq2 has been systematically optimized8,9. The main disadvantage of both protocols 112 

is that the generation of full-length cDNA libraries precludes an early barcoding step and 113 

the incorporation of UMIs.  114 

For each replicate of the SCRB‑seq protocol15, we also sorted mESCs by flow cytometry 115 

into 96-well PCR plates containing lysis buffer and ERCCs. Also similar to Smart‑seq2, 116 

cDNA is generated by oligo-dT priming, template switching and PCR amplification of full-117 

length cDNA. However, the oligo-dT primers contain well-specific (i.e. cell-specific) 118 

barcodes and UMIs. Hence, cDNA from one plate can be pooled and then be converted 119 

into RNA‑seq libraries, whereas a modified transposon-based fragmentation approach is 120 

used that enriches for 3’ ends. The protocol is optimized for small volumes and few 121 

handling steps, but it does not generate full-length RNA‑seq profiles and its performance 122 

compared to other methods is unknown.  123 

The fourth method evaluated was Drop‑seq, a recently developed microdroplet-based 124 

approach17. Similarly to SCRB‑seq, each cDNA molecule is labeled with a cell-specific 125 

multiplexing barcode and an UMI to count original mRNA molecules. In the case of 126 

Drop‑seq, over 108 of such barcoded oligo-dT primers are immobilized on beads with each 127 
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bead carrying a unique cell barcode. A flow of beads suspended in lysis buffer and a flow 128 

of a single-cell suspension are brought together in a microfluidic chip that generates 129 

nanoliter-sized emulsion droplets. Cells are lysed within these droplets, their mRNA binds 130 

to the oligo-dT-carrying beads, and after breaking the droplets, reverse transcription, 131 

template switching and library generation is performed for all cells in parallel in a single 132 

tube. The ratio of beads to cells (20:1) ensures that the vast majority of the beads have 133 

either no (>95% expected when Poisson distributed) or one single cell (4.8% expected) in 134 

their droplet and hence ensures that doublets are rare (<0.12% expected)17. We 135 

benchmarked our Drop‑seq setup as recommended17 and determined the doublet rate by 136 

mixing mouse and human T-cells (~2.5% of sequenced cell transcriptomes; Supplementary 137 

Fig. 1a), confirming that the Drop‑seq protocol works well in our setup. The main advantage 138 

of the protocol is that many scRNA‑seq libraries can be generated at low costs. One 139 

disadvantage is that the simultaneous inclusion of ERCC spike-ins is not practical for 140 

Drop‑seq, as their addition would generate cDNA from ERCCs also in all beads that have 141 

no cell and hence would approximately double the sequencing costs. As a proxy for the 142 

missing ERCC data, we used a published dataset17, where ERCC spike-ins were 143 

sequenced by the Drop‑seq method without single-cell transcriptomes.  144 

Finally, we re-analyzed data23 generated using CEL‑seq18 for which two replicates of 145 

scRNA‑seq libraries were available for the same cell type and culture conditions (mESCs in 146 

2i/LIF). Similarly to Drop‑seq and SCRB‑seq, cDNA is tagged with multiplexing barcodes 147 

and UMIs. As opposed to the four PCR-based methods described above, CEL‑seq relies 148 

on linear amplification by in-vitro transcription (IVT) for the initial pre-amplification of single-149 

cell material. 150 

 151 

 152 
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Processing of scRNA‑seq data 153 

For Smart‑seq2, Smart‑seq/C1, SCRB‑seq and Drop‑seq we generated libraries from 192, 154 

192, 192 and ~200 cells in the two independent replicates and sequenced a total of 852, 155 

437, 443 and 866 million reads, respectively. The data from CEL‑seq consisted of 102 156 

million reads from a total of 74 cells (Fig. 1, Supplementary Fig. 1b). All data were 157 

processed identically, with cDNA reads clipped to 45 bp, mapped using STAR27 and UMIs 158 

being quantified using the Drop‑seq pipeline17. To adjust for differences in sequencing 159 

depths, we used only cells with at least one million reads, resulting in 40, 79, 93, 162, 160 

187 cells for CEL‑seq, Drop‑seq, SCRB‑seq, Smart‑seq/C1 and Smart‑seq2, respectively. 161 

To exclude doublets (libraries generated from two or more cells) in the Smart‑seq/C1 data, 162 

we analyzed microscope images of the microfluidic chips and identified 16 reaction 163 

chambers with multiple cells that were excluded from further analysis. For the three UMI 164 

methods, we calculated the number of UMIs per library and found that - at least in our case 165 

of a rather homogenous cell population - doublets can be readily identified as libraries that 166 

have more than twice the mean total UMI count (Supplementary Fig. 1c), which lead to the 167 

removal of 0, 3 and 9 cells for CEL‑seq, Drop‑seq and SCRB‑seq, respectively.  168 

Finally, to remove low-quality libraries, we used a method that exploits the fact that 169 

transcript detection and abundance in low-quality libraries correlate poorly with high-quality 170 

libraries as well as with other low-quality libraries28. We therefore determined the maximum 171 

Spearman correlation coefficient for each cell in all-to-all comparisons, which readily 172 

allowed the identification of low-quality libraries by visual inspection of the distributions of 173 

correlation coefficients (Supplementary Fig. 1c). This filtering led to the removal of 5, 16, 174 

30 cells for CEL‑seq, Smart‑seq/C1, Smart‑seq2, respectively, while no cells were removed 175 

for Drop‑seq and SCRB‑seq. The higher number for the two Smart‑seq methods is 176 

consistent with the notion that in the early barcoding methods (CEL‑seq, Drop‑seq, 177 

SCRB‑seq), low-quality cells are probably outcompeted by high-quality cells so that they 178 
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do not pass our one million reads filter. As Smart‑seq/C1 and Smart‑seq2 libraries are 179 

generated in separate reactions, filtering by correlation coefficient is more important for 180 

these methods. 181 

In summary, we processed and filtered our data so that we could use a total of 482 high-182 

quality, equally sequenced scRNA‑seq libraries for a fair comparison of the sensitivity, 183 

accuracy, precision and efficiency of the methods. 184 

 185 

Single-cell libraries are sequenced to a reasonable level of saturation at one million 186 

reads 187 

For all five methods >50% of the reads mapped to the mouse genome (Fig. 3a), 188 

comparable to previous results7,16. Overall, between 48% (Smart‑seq2) and 32% (CEL‑seq) 189 

of all reads were exonic and thus used to quantify gene expression levels. However, the 190 

UMI data showed that only 12 %, 5 % and 15 % of the exonic reads were derived from 191 

independent mRNA molecules for CEL‑seq, Drop‑seq and SCRB‑seq, respectively (Fig. 3a). 192 

This indicates that - at the level of mRNA molecules - most of the libraries complexity has 193 

already been sequenced at one million reads. To quantify the relationship between the 194 

number of detected genes or mRNA molecules and the number of reads in more detail, we 195 

downsampled reads to varying depths and estimated to what extend libraries were 196 

sequenced to saturation (Supplementary Fig. 2). The number of unique mRNA molecules 197 

plateaued at 28,632 UMIs per library for CEL‑seq, increased only marginally at 198 

17,207 UMIs per library for Drop‑seq and still increased considerably at 49,980 UMIs per 199 

library for SCRB‑seq (Supplementary Fig. 2c). Notably, CEL‑seq showed a steeper slope at 200 

low sequencing depths than both Drop‑seq and SCRB‑seq, potentially due to a less biased 201 

amplification by in vitro transcription. Hence, among the UMI methods we found that 202 

SCRB‑seq libraries had the highest complexity of mRNA molecules that was not yet 203 

sequenced to saturation at one million reads. To investigate saturation also for non-UMI-204 
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based methods, we applied a similar approach at the gene level by counting the number of 205 

genes detected by at least one read. By downsampling, we estimated that 206 

~90% (Drop‑seq, SCRB‑seq) to 100% (CEL‑seq, Smart‑seq/C1, Smart‑seq2) of all genes 207 

present in the library were detected at 1 million reads (Fig. 3b, Supplementary Fig. 2a). In 208 

particular, the deep sequencing of Smart‑seq2 libraries showed clearly that the number of 209 

detected genes did not change when increasing the sequencing depth from one million to 210 

five million reads per cell (Supplementary Fig. 2b).  211 

All in all, these analyses show that single-cell RNA‑seq libraries are sequenced to a 212 

reasonable level of saturation at one million reads, a cut-off that has also been previously 213 

suggested for scRNA‑seq datasets7,29. While it can be more efficient to analyze scRNA‑seq 214 

data at lower coverage (see power analyses below), one million reads per cell can be 215 

considered as a reasonable starting point for our purpose of comparing scRNA‑seq 216 

methods. 217 

 218 

Smart‑seq2 has the highest sensitivity 219 

Taking the number of detected genes per cell as a measure to compare the sensitivity of 220 

the five methods, we found that Drop‑seq had the lowest sensitivity with a median of 221 

4811 genes detected per cell, while with CEL‑seq, SCRB‑seq and Smart‑seq/C1 6839, 222 

7906 and 7572 genes per cell were detected, respectively (Fig. 3c). Smart‑seq2 detected 223 

the highest number of genes per cell, with a median of 9138. To compare the total number 224 

of genes detected across several cells, we pooled 35 cells per method and detected 225 

~16,000 genes for CEL‑seq and Drop‑seq, ~17,000 for SCRB‑seq, ~18,000 for 226 

Smart‑seq/C1 and ~19,000 for Smart‑seq2 (Fig. 3d). While the vast majority of genes 227 

(~12,000) were detected by all methods, ~500 genes were specific to each of the 3’ 228 

counting methods, but ~1000 genes were specific to each of the two full-length methods 229 

(Supplementary Fig. 3a,b). That the full length methods detect more genes in total is also 230 
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apparent when plotting the genes detected in all available cells, as the 3’ counting methods 231 

level off well below 20,000 genes while the two full-length methods level off well above 232 

20,000 genes (Fig. 3d).  233 

How evenly reads are distributed across mRNAs can be regarded as another measure of 234 

sensitivity. As expected, the 3’ counting methods showed a strong bias of reads mapped to 235 

the 3’ end (Supplementary Fig. 4a). However, it is worth mentioning that a considerable 236 

fraction of reads also covered more 5’ regions, probably due to internal oligo-dT priming30. 237 

Smart‑seq2 showed a more even coverage than Smart‑seq, confirming previous findings8. 238 

A general difference between the 3’-counting and the full-length methods can also be seen 239 

in the quantification of expression levels as they are separated by the first principal 240 

component explaining 75% of the total variance (Supplementary Fig. 4b). 241 

As an absolute measure of sensitivity, we compared the probability of detecting the 92 242 

spiked-in ERCCs, for which the number of molecules available for library construction is 243 

known (Supplementary Fig. 5). We determined the detection probability of each ERCC 244 

mRNA as the proportion of cells with non-zero read or UMI counts31. For the CEL‑seq data, 245 

Gruen et al. noted that their ERCCs were likely degraded23 and we also found that ERCCs 246 

from the CEL‑seq data are detected with a ten-fold lower efficiency than for the other 247 

methods (data not shown). Therefore, we did not consider the CEL‑seq libraries for any 248 

ERCC-based analyses. For Drop‑seq, we used the ERCC-only data set17 and for the other 249 

three methods, 2-5% of the one million reads per cell mapped to ERCCs, which were 250 

sequenced to complete saturation at that level (Supplementary Fig. 5b). For Smart‑seq2, an 251 

ERCC RNA molecule was detected on average in half of the libraries when ~7 molecules 252 

were present in the sample, while Smart‑seq/C1 required ~11 molecules for detection in 253 

half of the libraries. Drop‑seq and SCRB‑seq has estimates of ~16-17 molecules per cell 254 

(Supplementary Fig. 5c-e).  255 

 256 
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Notably, the sensitivity estimated from the number of detected genes does not fully agree 257 

with the comparison based on ERCCs. While Smart‑seq2 is the most sensitive method in 258 

both cases, Drop‑seq performs better and SCRB‑seq performs worse when using ERCCs. 259 

The reasons for this discrepancy are unclear, but several have been noted before32–34 260 

including that ERCCs do not model endogenous mRNAs perfectly since they are shorter, 261 

have shorter poly-A tails, lack a 5’ cap and can show batch-wise variation in concentrations 262 

as observed for the CEL‑seq data. In the case of Drop‑seq, it should be kept in mind that 263 

ERCCs were sequenced separately as discussed above and in this way leading to a higher 264 

efficiency. Therefore, while it is still useful to estimate the absolute range in which 265 

molecules are detected, for our purpose of comparing the sensitivity of methods using the 266 

same cells, we regard the number of detected genes per cell as the more reliable estimate 267 

of sensitivity in our setting, as it sums over many, non-artificial genes. 268 

In summary, we find that Smart‑seq2 is the most sensitive method as it detects the highest 269 

number genes per cell, the most genes in total across cells and has the most even 270 

coverage of transcripts. Smart‑seq/C1 is slightly less sensitive per cell, but detects the 271 

same number of genes across cells, if one considers its lower fraction of mapped exonic 272 

reads (Fig. 3a). Among the 3’ counting methods, SCRB‑seq is most sensitive, closely 273 

followed by CEL‑seq, whereas Drop‑seq detects considerably fewer genes.  274 

Accuracy is similar across scRNA‑seq methods 275 

In order to quantify the accuracy of transcript level quantifications, we compared observed 276 

expression values with annotated molecule concentration of the 92 ERCC transcripts 277 

(Supplementary Fig. 5a). For each cell, we calculated the correlation coefficient (R2) for a 278 

linear model fit (Fig. 4). The median accuracy did differ among methods (Kruskal-Wallis test, 279 

p<2.2e-16) with Smart‑seq2 having the highest accuracy, especially since it is more 280 

accurate at lower concentrations (Supplementary Fig. 6). Importantly, all methods had fairly 281 

high accuracies ranging between 0.86 and 0.91, suggesting that they all measure absolute 282 
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mRNA levels fairly well. As discussed above, CEL‑seq was excluded from the ERCC 283 

analyses due to the potential degradation of the ERCCs in this data set23. The original 284 

publication for CEL‑seq from 10 pg of total RNA input and ERCC spike-in reported a mean 285 

correlation coefficient of R2=0.8718, similar to the correlations reported for the other four 286 

methods. Hence, we find that the accuracy is similarly high across all five methods and also 287 

because absolute expression levels are rarely of interest, the small differences in accuracy 288 

will rarely be a decisive factor when choosing among the five methods.  289 

 290 

Precision is determined by a combination of dropout rates and amplification noise 291 

and is highest for SCRB‑seq 292 

While a high accuracy is necessary to quantify absolute expression values, one of the most 293 

common experimental aims is to compare relative expression levels in order to identify 294 

differentially expressed genes or biological variation among cells. Hence, the precision, i.e. 295 

the reproducibility or the amount of technical variation - is the major factor of a method. As 296 

we used the same cells under the same culture conditions, we assume that the amount of 297 

biological variation is the same across all five methods. Hence, all differences in the total 298 

variation between methods are due to technical variation. Technical variation is substantial 299 

in scRNA‑seq data because a substantial fraction of mRNAs is lost during cDNA generation 300 

and small amounts of cDNA get amplified. Therefore, both these processes, the dropout 301 

probability and the amplification noise, need to be considered when quantifying variation. 302 

Indeed, a mixture model including a dropout-rate, and a negative binomial distribution, 303 

modelling the overdispersion in the count data, have been shown to represent scRNA‑seq 304 

data better than the negative binomial alone35,36.  305 

To compare the methods for a common set of genes without penalizing more sensitive 306 

methods, we selected the 12,942 genes that were detected in 25% of the cells by at least 307 

one method (Supplementary Fig. 7). We then assessed their technical variation in a 308 
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subsample of 35 cells per method to exclude any bias due to the different numbers of cells 309 

analysed in each method. We measured the loss of molecules in cDNA generation as the 310 

fraction of cells with zero counts (Fig. 5a, Supplementary Fig. 7b). As expected from the 311 

number of detected genes per cell (Fig. 3c), Drop‑seq had the highest median dropout 312 

probability (71%) and Smart‑seq2 the lowest (26%). To assess the variation due to the 313 

amplification of the detected genes, we calculated the coefficient of variation (CV, standard 314 

deviation divided by the mean) of all cells with non-zero counts. As expected from the 315 

removal of amplification noise when using UMI information, the three UMI methods showed 316 

the lowest median variation, even when considering that the CV could not be calculated for 317 

all genes (Fig. 5b). When ignoring UMI information, it becomes apparent that Smart‑seq2 is 318 

the protocol that has the lowest amplification noise and that the reduction in amplification 319 

noise due to UMIs is considerable (Fig. 5b, Supplementary Fig. 9). The latter effect has 320 

been previously described for CEL‑seq23 and is even stronger for SCRB‑seq and Drop‑seq, 321 

fitting with the notion that in vitro amplification is more precise than PCR amplification. In 322 

summary, Smart‑seq2 measures the common set of 12,942 in more cells with more 323 

amplification noise and the UMI methods measure them in fewer cells with less 324 

amplification noise. However, how the different combinations of dropout rates and 325 

amplification precisions affect the power to detect e.g. differentially expressed genes is not 326 

evident, neither from this analysis nor from variation measures that combine dropout 327 

probabilities and amplification precision (CV of all cells, Supplementary Fig. 8 and 9). 328 

Therefore, we conducted power simulations that used for each method the observed mean-329 

variance and mean-dropout relationship for the 12,942 genes. First, we estimated the mean 330 

and dispersion parameter (i.e. the shape parameter of the gamma mixing distribution) for 331 

each gene per method. Next, we fitted a spline to the resulting pairs of mean and 332 

dispersion estimates in order to predict the dispersion of a gene given its mean 333 

(Supplementary Fig. 10a). Finally, we included the sensitivity of each scRNA‑seq method in 334 

the power simulations by modeling a gene-wise dropout parameter from the observed 335 
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detection rates also dependent on the mean expression (Supplementary Fig. 10b). When 336 

simulating data according to these fits, we recovered distributions of dropout rates and 337 

amplification noise closely matching the observed data (Supplementary Fig. 11). To 338 

compare the power for differential gene expression among the methods, we simulated read 339 

counts for two groups of cells by adding log-fold changes to 5% of the genes. These log-340 

fold changes were drawn from observed differences between microglial subpopulations 341 

from a previously published dataset37 to mimic a biologically realistic scenario. The 342 

simulated datasets were then tested for differential expression using limma38, from which 343 

the average true positive rate (TPR) and the average false discovery rate (FDR) could be 344 

calculated for all the 12,942 genes. 345 

First, we analyzed how the number of analyzed cells affects TPR and FDR by running 100 346 

simulations each for a range of 16 to 512 cells per group. SCRB‑seq performed best, 347 

reaching a median TPR of 80% with 64 cells. CEL‑seq, Drop‑seq and Smart‑seq2 348 

performed slightly worse, reaching 80% power with 103, 99 and 95 cells per group, 349 

respectively, while Smart‑seq/C1 needed with 150 cells per group considerably more cells 350 

to reach 80% power (Fig. 6a). FDRs were similar in all methods and just slightly above 5% 351 

(Supplementary Fig. 12). As expected from the effect of UMIs on amplification noise (Fig. 352 

5b), Smart‑seq2 performed best when just considering reads and UMIs strongly increased 353 

the power, especially for Drop‑seq and SCRB‑seq (Fig. 6b). 354 

Next, we asked how TPR and FDR depend on the sequencing depth. We repeated our 355 

simulation studies as described above, but estimated the mean-dispersion and mean-356 

dropout relationships from data downsampled to 500,000 or 250,000 reads per cell. 357 

Overall, the decrease in power was moderate (Fig. 6c, Table 1) and mainly linked to 358 

decreased gene detection rates. Importantly, not all methods responded to downsampling 359 

at similar rates, congruent with their different relationship of sequenced reads and detected 360 

genes (Supplementary Fig. 2). While Smart‑seq2 was only slightly affected and reached 361 

80% power with 95, 105 and 128 cells at 1, 0.5 and 0.25 million reads, respectively, 362 
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SCRB‑seq and Drop‑seq required 2.6 fold more cells at 0.25 million reads than at 1 million 363 

reads (Table 1). In summary, at one million reads and half a million reads SCRB‑seq is the 364 

most precise, i.e. most powerful method, but at a sequencing depth of 250,000 reads 365 

Smart‑seq2 needs the lowest number of cells to reach 80% power. The optimal balance 366 

between the number of cells and their sequencing depth depends on many factors, but the 367 

monetary cost is certainly an important one. Hence, we used the results of our simulations 368 

to compare the costs among the methods for a given level of power. 369 

 370 

 371 

  372 
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Cost-efficiency is similarly high for Drop‑seq, SCRB‑seq and Smart‑seq2 373 

Given the number of single cells that are needed per group to reach 80% power as 374 

simulated above for three sequencing depths (Fig. 6c), we calculated the minimal costs to 375 

generate and sequence these libraries. For example, at one million reads, SCRB‑seq 376 

requires 64 cells per group. Generating 128 SCRB‑seq libraries costs ~260€ and generating 377 

128 million reads costs ~640€. Note, that the necessary paired-end reads for CEL‑seq, 378 

SCRB‑seq and Drop‑seq can be done with a 50 cycles single end kit and hence we assume 379 

that sequencing costs are the same for all methods.  380 

 381 

Table 1 | Cost efficiency extrapolation for single-cell RNA‑seq experiments. 382 

Method TPRa FDRa (%) Cell per groupb Library cost (€) Minimal costc (€) 

CEL‑seq 0.8 ~5.7 103 | 138 | 181 ~8 ~ 2680 | 2900 | 3350 

Drop‑seq 0.8 ~8.4 99 | 135 | 254 ~0.1 ~ 1010 | 700 | 690 

SCRB‑seq 0.8 ~6.1 64 | 90 | 166 ~2 ~ 900 | 810 | 1080 

Smart‑seq/C1 0.8 ~4.9 150 | 172 | 215 ~25 ~ 9010 | 9440 | 11290 

Smart‑seq2 
(commercial) 

0.8 ~5.1 95 | 105 | 128 ~30 ~ 10470 | 11040 | 13160 

Smart‑seq2 

(in-house Tn5) 

0.8 ~5.1 95 | 105 | 128 ~3 ~ 1520 | 1160 | 1090 

 383 

a True positive rate and false discovery rate based on simulations (Fig. 6 and Supplementary Fig. 12); 384 

b sequencing depth of 1, 0.5 and 0.25 million reads; c Assuming 5 € per one million reads; 385 

 386 

 387 

When we do analogous calculations for the four other methods, Drop‑seq is with 690 € the 388 

most cost-efficient method when sequencing 254 cells at a depth of 250,000 reads (Table 389 

1, Supplementary Fig. 13). SCRB‑seq is just slightly more expensive in this calculation and 390 
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also Smart‑seq2 is with 1090 € in the same range, as long as one uses in-house Tn5 391 

transposase26 as was also done in our experiments. When using the commercial Nextera kit 392 

as described9, the costs for Smart‑seq2 are ten-fold higher and even if one reduces the 393 

amount of Nextera transposase as in the Smart‑seq/C1 protocol by 4-fold, the published 394 

Smart‑seq2 protocol is four times more expensive than the early barcoding methods. 395 

Smart‑seq/C1 is almost ten-fold less efficient due its high library costs that arise from the 396 

microfluidic chips, the commercial Smart‑seq kit and the costs for commercial Nextera XT 397 

kits.  398 

Of note, these calculations are the minimal costs of the experiment and several factors are 399 

not considered such as costs to set-up the methods, costs to isolate single cells or costs 400 

due to practical constraints in generating a fixed number of scRNA‑seq libraries. In 401 

particular, it is important that independent biological replicates are needed when 402 

investigating particular factors such as genotypes or developmental timepoints and 403 

Smart‑seq/C1 and Drop‑seq are less flexible in distributing scRNA‑seq libraries across 404 

replicates than the other three methods that use PCR-plates. Furthermore, the costs are 405 

increased by unequal sampling from the included cells as well as from sequencing reads 406 

from cells that are excluded. In our case, between 6% (CEL‑seq, SCRB‑seq) and 407 

32% (Drop‑seq) of the reads came from cell barcodes that were not included. While it is 408 

difficult to accurately and transparently compare these costs among the methods, it is 409 

evident that they will increase the costs for Drop‑seq relatively more than for the other 410 

methods. In summary, we find that Drop‑seq, SCRB‑seq are the most cost-efficient 411 

methods, closely followed by Smart‑seq2 when producing one's own transposase. 412 

 413 

  414 
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Discussion 415 

Single-cell RNA‑sequencing (scRNA‑seq) is a powerful technology to tackle a multitude of 416 

biomedical questions. To facilitate choosing among the many approaches that were 417 

recently developed, we systematically compared five scRNA‑seq methods and assessed 418 

their sensitivity, accuracy, precision and cost-efficiency. We chose a leading commercial 419 

platform (Smart‑seq/C1), one of the most popular full-length methods (Smart‑seq2), a UMI- 420 

method that uses in-vitro transcription for cDNA amplification from manually isolated cells 421 

(CEL‑seq), a UMI-method that has a very high throughput (Drop‑seq) and a UMI-method 422 

that allows single-cell isolation by FACS (SCRB‑seq). Protocols are available for all these 423 

methods and can therefore be set up by any molecular biology lab.  424 

We find that SCRB‑seq, Smart‑seq/C1 and CEL‑seq detect a similar number of genes per 425 

cell, while Drop‑seq detects nearly 50% less than the most sensitive method Smart‑seq2 426 

(Fig. 3b,c). Despite this lower per cell sensitivity, Drop‑seq does not generally detect fewer 427 

genes since the total number of detected genes converges around 18,000, similar as for 428 

SCRB‑seq and CEL‑seq (Fig. 3d). A potential explanation could be that a fraction of mRNA 429 

molecules gets randomly detached from the beads when droplets are broken up for reverse 430 

transcription. It will be interesting to see whether this step could be optimized in the future. 431 

While the three 3’ counting methods detect largely the same set of genes, Smart‑seq/C1 432 

and Smart‑seq2 detect around 3000 additional genes (Fig. 3d, Supplementary Fig. 3b), 433 

suggesting that some 3’ ends of cDNAs might be difficult to convert to sequenceable 434 

molecules. When using ERCCs to compare absolute sensitivities, we again find Smart‑seq2 435 

to be the most sensitive method. However, we also find that sensitivity estimates from 436 

ERCCs do not perfectly correlate with estimates from endogenous genes, suggesting that 437 

they might not always be an ideal benchmark for comparing different methods. In summary, 438 

we find that Smart‑seq2 is the most sensitive method based on its gene detection rate per 439 

cell and in total. In addition, Smart‑seq2 shows the most even read coverage across 440 
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transcripts (Supplementary Fig. 4a), making it the most appropriate method for detecting 441 

alternative splice forms. Hence, Smart‑seq2 is certainly the most suitable method when an 442 

annotation of single cell transcriptomes is the focus. 443 

We find that Smart‑seq2 is the also the most accurate method, i.e. has the highest 444 

correlation of known mRNA concentrations and read counts per million. Importantly, 445 

accuracy is similarly high across all methods. As absolute quantification of mRNA 446 

molecules is rarely of interest, the slight differences in accuracy will rarely be an important 447 

criterion for choosing among the five methods. In contrast, relative quantification of gene 448 

expression levels is of interest for most scRNA‑seq studies and hence the precision of the 449 

method is an important benchmark. 450 

How precisely a gene is measured depends on two factors: in how many cells it is 451 

measured and, if it is measured, how reproducibly this is done. For the first factor (dropout 452 

probability), we find Smart‑seq2 to be the best method (Fig. 5a), as expected from its 453 

highest gene detection sensitivity. For the second factor (CV of non-zero cells), we find the 454 

three UMI methods to perform best (Fig. 5b), as expected from their ability to eliminate 455 

variation introduced by amplification21. To assess the importance of these two factors in 456 

combination, we performed simulations and could show that SCRB‑seq has the highest 457 

power to detect differentially expressed genes (Fig. 6). This strongly depends on the use of 458 

UMIs, especially for the PCR-based amplification methods (Fig. 5b and Fig. 6b) and the 459 

strong reduction in amplification noise can also be seen in mean-variance plots 460 

(Supplementary Fig. 9). Notably, this is due to the large amount of amplification needed for 461 

scRNA‑seq libraries, as the effect of UMIs on power for bulk RNA‑seq libraries is 462 

neglectable39.  463 

Maybe practically most important, our power simulations also allow to compare the 464 

efficiency of the methods by calculating the costs to generate the data for a given level of 465 

power. Using simple, minimal cost calculations we find that Drop‑seq is the most efficient 466 

method, closely followed by SCRB‑seq and Smart‑seq2. However, when considering that 467 
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Drop‑seq costs are more underestimated than those for SCRB‑seq and Smart‑seq2, due to 468 

its lower flexibility in generating a fixed number of libraries and due to its higher fraction of 469 

reads that come from cells that are excluded, Drop‑seq and SCRB‑seq are in practice 470 

probably similar efficient. For Smart‑seq2 to be similar efficient it is absolutely necessary to 471 

use in-house produced transposase as described26 and also done here.  472 

Given comparable efficiencies of Drop‑seq, SCRB‑seq and Smart‑seq2, additional factors 473 

will play a role when choosing a suitable method for a particular question. Due to its low 474 

library costs, Drop‑seq is probably preferable when analysing large numbers of cells at low 475 

coverage, e.g. to find rare cell types. On the other hand, Drop‑seq in its current setup 476 

requires a relatively large amount of cells (>6,500 for one minute of flow). Hence, if few 477 

and/or unstable cells are isolated by FACS, SCRB‑seq or Smart‑seq2 is probably 478 

preferable. Additional advantages of these two methods over Drop‑seq include that 479 

technical variation can be estimated from ERCCs for each cell, which is helpful to estimate 480 

biological variation40–42, and that the exact same setup can be used to generate bulk 481 

RNA‑seq libraries. While SCRB‑seq is slightly more efficient than Smart‑seq2 and has the 482 

advantage that one does not need to produce transposase in-house, Smart‑seq2 is 483 

preferable when transcriptome annotation and the quantification of different splice forms 484 

are of interest. So while such factors will be differently weighted by each individual lab and 485 

for each research question, our analyses provide a solid basis for such considerations 486 

when choosing among the analysed methods.  487 

While we find comparable efficiencies for Drop‑seq, SCRB‑seq and Smart‑seq2, CEL‑seq 488 

and even more so Smart‑seq/C1 and Smart‑seq2 (using commercial transposase) are 3-489 

13‑fold less efficient and cannot compete at these precisions and costs. However, a 490 

CEL‑seq2 protocol with considerable improvements in sensitivity and costs has recently 491 

been published43. The sensitivity of this CEL‑seq2 protocol is even further improved when 492 

run in the nanoliter volumes of the C1 device43, again showing that small volumes in general 493 

improves sensitivity7. Also the efficiency of the Fluidigm C1 platform can be further 494 
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increased by microfluidic chips with a higher throughput, as available in the HT mRNA‑seq 495 

IFC. Our finding that Smart‑seq2 is the most sensitive protocol when ignoring UMIs, also 496 

hints towards further possible improvements of SCRB‑seq and Drop‑seq. As these 497 

methods also rely on template switching and PCR amplification, the improvements found in 498 

the systematic optimization of Smart‑seq28 could also improve the sensitivity of SCRB‑seq 499 

and Drop‑seq. Furthermore, the costs of SCRB‑seq libraries per cell can be halfed when 500 

switching to a 384-well format15. Hence, it is clear that scRNA‑seq protocols can and will be 501 

further improved and that our analysis does not provide a final answer on which scRNA‑seq 502 

method is most efficient. However, our analysis does allow an informed choice for five 503 

prominent current scRNA‑seq methods and - maybe more importantly - provides a 504 

framework and starting point for comparative evaluations in the future. 505 

Conclusions 506 

We systematically compared five prominent scRNA‑seq methods and find that Drop‑seq is 507 

preferable when quantifying transcriptomes of a large numbers of cells with low sequencing 508 

depth, SCRB‑seq is preferable when quantifying transcriptomes of fewer cells and 509 

Smart‑seq2 is preferable when annotating and/or quantifying transcriptomes of fewer cells 510 

as long one can use in-house produced transposase. Our analysis allows an informed 511 

choice among the tested methods and provides a solid framework for benchmarking future 512 

improvements in scRNA‑seq methodologies. 513 

  514 
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Methods 515 

Published data 516 

CEL‑seq data for J1 mESC cultured in 2i/LIF condition23 were obtained under accession 517 

GSE54695. Drop‑seq ERCC17 data were obtained under accession GSE66694. Raw fastq 518 

files were extracted using the SRA toolkit (2.3.5). We trimmed cDNA reads to the same 519 

length and processed raw reads in the same way as data sequenced for this study. 520 

 521 

Cell culture of mESC 522 

J1 mouse embryonic stem cells were maintained on gelatin-coated dishes in Dulbecco's 523 

modified Eagle's medium supplemented with 16% fetal bovine serum (FBS, Sigma-Aldrich), 524 

0.1 mM β-mercaptoethanol (Invitrogen), 2 mM L-glutamine, 1x MEM non-essential amino 525 

acids, 100 U/ml penicillin, 100 µg/ml streptomycin (PAA Laboratories GmbH), 1000 U/ml 526 

recombinant mouse LIF (Millipore) and 2i (1 µM PD032591 and 3 µM CHIR99021 (Axon 527 

Medchem, Netherlands). J1 embryonic stem cells were obtained from E. Li and T. Chen 528 

and mycoplasma free determined by a PCR-based test. Cell line authentication was not 529 

recently performed. 530 

 531 

Single cell RNA‑seq library preparations 532 

Drop‑seq 533 

Drop‑seq experiments were performed as published17 and successful establishment of the 534 

method in our lab was confirmed by a species-mixing experiment (Supplementary Fig. 1a). 535 

For this work, J1 mES cells (100/µl) and barcode-beads (120/µl, Chemgenes) were co-flown 536 

in Drop‑seq PDMS devices (Nanoshift) at rates of 4000 µl/hr. Collected emulsions were 537 

broken by addition of perfluoroctanol (Sigma-Aldrich) and mRNA on beads was reverse 538 
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transcribed (Maxima RT, Thermo Fisher). Unused primers were degraded by addition of 539 

Exonuclease I (New England Biolabs). Washed beads were counted and aliquoted for pre-540 

amplification (2000 beads / reaction). Nextera XT libraries were constructed from 1 ng of 541 

pre-amplified cDNA with a custom P5 primer (IDT). 542 

 543 

SCRB‑seq 544 

RNA was stabilized by resuspending cells in RNAprotect Cell Reagent (Qiagen) and RNAse 545 

inhibitors (Promega). Prior to FACS sorting, cells were diluted in PBS (Invitrogen). Single 546 

cells were sorted into 5 µl lysis buffer consisting of a 1/500 dilution of Phusion HF buffer 547 

(New England Biolabs) and ERCC spike-ins (Ambion), spun down and frozen at -80 °C. 548 

Plates were thawed and libraries prepared as described previously15. Briefly, RNA was 549 

desiccated after protein digestion by Proteinase K (Ambion). RNA was reverse transcribed 550 

using barcoded oligo-dT primers (IDT) and products pooled and concentrated. 551 

Unincorporated barcode primers were digested using Exonuclease I (New England 552 

Biolabs). Pre-amplification of cDNA pools were done with the KAPA HiFi HotStart 553 

polymerase (KAPA Biosystems). Nextera XT libraries were constructed from 1 ng of pre-554 

amplified cDNA with a custom P5 primer (IDT). 555 

 556 

Smart‑seq/C1 557 

Smart‑seq/C1 libraries were prepared on the Fluidigm C1 system according to the 558 

manufacturer's protocol. Cells were loaded on a 10-17 µm RNA‑seq microfluidic IFC at a 559 

concentration of 200,000/ml. Capture site occupancy was surveyed using the Operetta 560 

(Perkin Elmer) automated imaging platform. 561 

 562 

Smart‑seq2 563 

mESCs were sorted into 96-well PCR plates containing 2 µl lysis buffer (1.9 µl 0.2% 564 

TritonX-100; 0.1 µl RNAseq inhibitor (Lucigen)) and spike-in RNAs (Ambion), spun down 565 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2016. ; https://doi.org/10.1101/035758doi: bioRxiv preprint 

https://doi.org/10.1101/035758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 

and frozen at -80 °C. To generate Smart‑seq2 libraries, priming buffer mix containing 566 

dNTPs and oligo-dT primers was added to the cell lysate and denatured at 72 °C. cDNA 567 

synthesis and pre-amplification of cDNA was performed as described previously8,9. 568 

Sequencing libraries were constructed from 2.5 ng of pre-amplified cDNA using an in-569 

house generated Tn5 transposase26. Briefly, 5 µl cDNA was incubated with 15 µl 570 

tagmentation mix (1 µl of Tn5; 2 µl 10x TAPS MgCl2 Tagmentation buffer; 5 µl 40% 571 

PEG8000; 7 µl water) for 8 min at 55 °C. Tn5 was inactivated and released from the DNA by 572 

the addition of 5 µl 0.2% SDS and 5 min incubation at room temperature. Sequencing 573 

library amplification was performed using 5 µl Nextera XT Index primers (Illumina) that had 574 

been first diluted 1:5 in water and 15 µl PCR mix (1 µl KAPA HiFi DNA polymerase (KAPA 575 

Biosystems); 10µl 5x KAPA HiFi buffer; 1.5 µl 10mM dNTPs; 2.5µl water) in 10 PCR cycles. 576 

Barcoded libraries were purified and pooled at equimolar ratios. 577 

 578 

DNA sequencing 579 

For SCRB‑seq and Drop‑seq, final library pools were size-selected on 2% E-Gel Agarose 580 

EX Gels (Invitrogen) by excising a range of 300-800 bp and extracting DNA using the 581 

MinElute Kit (Qiagen) according to the manufacturer's protocol. 582 

Smart‑seq/C1, Drop‑seq and SCRB‑seq library pools were sequenced on an Illumina 583 

HiSeq1500 using the High Output mode. Smart‑seq2 pools were sequenced on Illumina 584 

HiSeq2500 (Replicate A) and HiSeq2000 (Replicate B) platforms. Smart‑seq/C1 and 585 

Smart‑seq2 libraries were sequenced 45 cycles single-end, whereas Drop‑seq and 586 

SCRB‑seq libraries were sequenced paired-end with 20 cycles to decode cell barcodes 587 

and UMI from read 1 and 45 cycles into the cDNA fragment. Similar sequencing qualities 588 

were confirmed by FastQC v0.10.1 (Supplementary Fig. 1b). 589 

 590 
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Basic data processing and sequence alignment 591 

Smart‑seq/C1/Smart‑seq2 libraries (i5 and i7) and Drop‑seq/SCRB‑seq pools (i7) were 592 

demultiplexed from the Nextera barcodes using deML44. All reads were trimmed to the 593 

same length of 45 bp by cutadapt45 and mapped to the mouse genome (mm10) including 594 

mitochondrial genome sequences and unassigned scaffolds concatenated with the ERCC 595 

spike-in reference. Alignments were calculated using STAR 2.4.027 using all default 596 

parameters. 597 

For libraries containing UMIs, cell- and gene-wise count/UMI tables were generated using 598 

the published Drop‑seq pipeline (v1.0)17. We discarded the last 2 bases of the Drop‑seq cell 599 

and molecular barcodes to account for bead synthesis errors. 600 

For Smart‑seq/C1 and Smart‑seq2, features were assigned and counted using the 601 

Rsubread package (v1.20.2)46. 602 

 603 

Power Simulations 604 

We developed a framework in R for statistical power evaluation of differential gene 605 

expression in single cells. For each method, we estimated the mean expression, dispersion 606 

and dropout probability per gene from the same number of cells per method. In the read 607 

count simulations, we followed the framework proposed in Polyester47, i.e. we retained the 608 

observed mean-variance dependency by applying a cubic smoothing spline fit. 609 

Furthermore, we included a local polynomial regression fit for the mean-dropout 610 

relationship to capture the heteroscedasticity observed. In each iteration, we simulated 611 

count measurements for the 12,942 genes for sample sizes of 24, 25, 26, 27, 28 and 29 cells 612 

per group. The read count for a gene i in a cell j is modeled as a product of a binomial and 613 

negative binomial distribution:  614 

Xij ~ B(p = 1 - p0) * NB(μ,θ) 615 
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The mean expression magnitude µ was randomly drawn from the empirical distribution. 5 616 

percent of the genes were defined as differentially expressed with an effect size drawn from 617 

the observed fold changes between microglial subpopulations in Zeisel et al37. The 618 

dispersion θ and dropout probability p0 were predicted by above mentioned fits.  619 

For each method and sample size, 100 RNA‑seq experiments were simulated and tested 620 

for differential expression using limma38 in combination with voom48 (v3.26.7). 621 

The power simulation framework was implemented in R and is available in Additional File 1, 622 

including an example dataset. 623 

ERCC capture efficiency 624 

To estimate the single molecule capture efficiency, we assume that the success or failure of 625 

detecting an ERCC is a binomial process, as described before31. Detections are 626 

independent from each other and are thus regarded as independent Bernoulli trials. We 627 

recorded the number of cells with nonzero and zero read or UMI counts for each ERCC per 628 

method and applied a maximum likelihood estimation to fit the probability of successful 629 

detection. The fit line was shaded with the 95% Wilson score confidence interval. 630 

Cost efficiency calculation 631 

We based our cost efficiency extrapolation on the power simulations starting from empirical 632 

data at different sequencing depths (250,000 reads, 500,000 reads, 1,000,000 reads; 633 

Fig. 6c). We determined the number of cells required per method and depth for adequate 634 

power (80%) by an asymptotic fit to the median powers. For the calculation of sequencing 635 

cost, we assumed 5€ per million raw reads, independent of method. Although UMI-based 636 

methods need paired-end sequencing, we assumed a 50 cycle sequencing kit is sufficient 637 

for all methods.  638 
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Figure Legends 777 

Figure 1 | Schematic overview of the experimental and computational workflow. 778 

Mouse embryonic stem cells (mESCs) cultured in 2i/LIF and ERCC spike-in RNA were used 779 

to generate single-cell RNA‑seq data with five different library preparation methods 780 

(CEL‑seq, Drop‑seq, SCRB‑seq, Smart‑seq/C1 and Smart‑seq2). The methods differ in the 781 

usage of unique molecular identifier sequences (UMI), which allow the discrimination 782 

between reads derived from original mRNA molecules and duplicates during cDNA 783 

amplification. Data processing was identical across methods and analyzed cell numbers 784 

per method and replicate are given, which were used to compare sensitivity, accuracy, 785 

precision and cost-efficiency. The five scRNA‑seq methods are denoted by color 786 

throughout the figures of this study: purple - CEL‑seq, orange - Drop‑seq, green SCRB‑seq, 787 

blue - Smart‑seq, yellow - Smart‑seq2. 788 

  789 

Figure 2 | Schematic overview of library preparation steps. For details see text. 790 

  791 

Figure 3 | Sensitivity of scRNA‑seq methods. (a) Percentage of reads 792 

(downsampled to 1 million per cell) that can not be mapped to the mouse genome 793 

(grey), are mapped to regions outside exons (orange), inside exons (blue) and carry a 794 

unique UMI (green). For UMI methods, blue denotes the exonic reads amplified from 795 

unique UMIs. (b) Median number of genes detected per cell (counts >=1) when 796 

downsampling total read counts to the indicated depths. Dashed lines above 1 million 797 

reads represent extrapolated asymptotic fits. (c) Number of genes detected (counts 798 

>=1) per cell. Each dot represents a cell and each box represents the median, first 799 

and third quartile per replicate and method. (d) Cumulative number of genes detected 800 

as more cells are added. The order of cells considered was drawn randomly 100 801 

times to display mean ± standard deviation (shaded area). 802 
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  803 

Figure 4 | Accuracy of scRNA‑seq methods. ERCC expression values were correlated to 804 

their annotated molarity. Shown are the distributions of correlation coefficients (adjusted R2 805 

of linear regression model) across methods. Each dot represents a cell/bead and each box 806 

represents the median, first and third quartile. 807 

  808 

Figure 5 | Precision of scRNA‑seq methods. We compared precision among methods 809 

using the 12,942 genes detected in at least 25% of all cells by any method in a subsample 810 

of 35 cells per method. (a) Distributions of dropout rates across the 12,942 genes are 811 

shown as violin plots and medians are shown as bars and numbers. (b) Distributions of the 812 

coefficient of variation (CV) across the 12,942 genes calculated from cells with at least one 813 

count are shown as violin plots and medians are shown as bars and numbers. For 1096, 814 

1487, 480, 904, 621 genes for CEL‑seq, Drop‑seq, SCRB‑seq, Smart‑seq/C1 and 815 

Smart‑seq2, respectively no CV could be calculated as fewer than two cells had non-zero 816 

counts. Including these genes with a high CV would result in median values of 0.9/0.54, 817 

1.49/0.6,  1.54/0.55, 1.01, 0.66, respectively. 818 

  819 

Figure 6 | Power of scRNA‑seq methods. Using the empirical mean/dispersion and 820 

mean/dropout relationships (Supplementary Fig. 10), we simulated data for two groups of n 821 

cells each for which 5% of the 12,942 genes were differentially expressed with log-fold 822 

changes drawn from observed differences between microglial subpopulations from a 823 

previously published dataset37. The simulated data were then tested for differential 824 

expression using limma38, from which the average true positive rate (TPR) and the average 825 

false discovery rate (FDR) was calculated (Supplementary Fig. 12). (a) TPR for 1 million 826 

reads per cell for sample sizes n=16, n=32, n=64, n=128, n=256 and n=512 per group. 827 

Boxplots represent the median, first and third quartile of 100 simulations. (b) TPR for 1 828 
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million reads per cell for n=64 per group with and without using UMI information. Boxplots 829 

represent the median, first and third quartile of 100 simulations. (c) TPRs as in (a) using 830 

mean/dispersion and mean/dropout estimates from 1 million (as in (a)), 0.5 million and 0.25 831 

million reads. Line areas indicate the median power with standard error from 100 832 

simulations. 833 
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