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Abstract

Variance components methods that estimate the aggregate contribution of large sets

of variants to the heritability of complex traits have yielded important insights into the

disease architecture of common diseases. Here, we introduce new methods that estimate

the total variance in trait explained by a single locus in the genome (local heritability)

from summary GWAS data while accounting for linkage disequilibrium (LD) among

variants. We apply our new estimator to ultra large-scale GWAS summary data of

30 common traits and diseases to gain insights into their local genetic architecture.

First, we find that common SNPs have a high contribution to the heritability of all

studied traits. Second, we identify traits for which the majority of the SNP heritability

can be confined to a small percentage of the genome. Third, we identify GWAS risk

loci where the entire locus explains significantly more variance in the trait than the

GWAS reported variants. Finally, we identify 55 loci that explain a large proportion

of heritability across multiple traits.

Introduction

Large-scale genome-wide association studies (GWAS) have identified thousands of single

nucleotide polymorphisms (SNPs) associated with hundreds of traits1,2,3,4. However, only a
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fraction of the variance in trait can be explained by the risk SNPs reported by GWAS. The

so-called “missing heritability problem” is in part due to the stringent significance threshold

imposed in GWAS, which neglects causal variants that fail to reach the genome-wide sig-

nificance level at current sample sizes. As an alternative, variance component (heritability)

analysis aggregates the effect of all SNPs regardless of their significance to increase accuracy5

and has yielded important insights into the genetic architecture of complex traits6,7,8,9,10,11.

Standard approaches for heritability estimation and partitioning rely on estimating the

genetic relationships between pairs of individuals (estimated genome-wide or across a sub-

set of the genome)8,12,13. Therefore, these analyses require individual-level genotype data

which prohibits their applicability to ultra-large GWAS that, due to privacy concerns, is

typically available only at the summary level. To solve this bottleneck, recent methods have

shown that heritability, both genome-wide as well as for different functional categories in

the genome, can be accurately estimated using only summary GWAS data6,7. Although

these methods have enabled powerful analyses making insights into genetic basis of complex

traits, they rely on the infinitesimal model assumption (i.e. all SNPs contribute to the trait)

which is invalid at most risk loci6,7. To overcome this drawback, alternative approaches have

proposed to impose a prior on the sparsity of effect sizes to further increase heritability esti-

mation accuracy14. A potentially more robust approach is to not assume any distribution for

the effect sizes at causal variants and treat them as fixed effects in the heritability estimation

procedure. Indeed, recent works have shown that heritability estimation can be performed

under maximum-likelihood from polygenic scores under a fixed-effect model assuming no LD

among SNPs11.

Here, we introduce Heritability Estimator from Summary Statistics (HESS), an ap-

proach to estimate the variance in trait explained by a single locus while accounting for

linkage disequilibrium (LD) among SNPs. We build upon recent works11,15 that treat causal

effect sizes as fixed effects and model the genotypes at the locus as random correlated vari-

ables. Our estimator can be viewed as a weighted summation of the squares of the projection

of GWAS effect sizes onto the eigenvectors of the LD matrix at the considered locus, where

the weights are inversely proportional to the corresponding eigenvalues. Through extensive

simulations, we show that HESS is unbiased when in-sample LD is available regardless of
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disease architecture (i.e. number of causals and distribution of effect sizes). We extend our

method to use LD estimated from reference panels16 and show that a principal components

based regularization of the LD matrix17 yields approximately unbiased and more consistent

estimates of local heritability as compared to existing methods6.

We applied HESS to partition common SNP heritability at each locus in the genome

using GWAS summary data for 30 traits spanning over 10 million SNPs and 2.4 million

phenotype measurements. First, we show tht common SNPs explain a large fraction of the

total familial heritability, ranging anywhere from 20% to 70% across the studied quanti-

tative traits. Second, we showcase the utility of local heritability estimates in finding loci

that explain more variance in trait than the top associated SNP at the locus (an effect

likely due to multiple signals of association). Third, we contrast the polygenicity of all 30

traits by comparing the fraction of total SNP heritability attributable to loci with highest

local heritability. We find that most of the 30 selected traits are highly polygenic with a

small number of traits driven by a small number of loci. Finally, we report 55 “heritability

hotspots” – regions of genome that have a high contribution to the heritability of multiple

traits. Taken together, our results give insights into traits where further GWAS and/or

fine-mapping studies are likely to recover a significant amount of the missing heritability.

Materials and methods

Overview of methods

We introduce estimators for the variance in trait explained by typed variants at a single

locus (local heritability, h2
g,local) from summary GWAS data (i.e. Z-scores, effect sizes and

their standard errors). We derive our estimator under the assumption that effect sizes at

causal variants are fixed and genotypes are drawn from a distribution with a pre-specified

covariance structure. The covariance, (i.e. pairwise correlation between any variants at a

locus, LD) can be estimated in-sample, from the genotype data in GWAS, or from external

reference panels (e.g. 1000 Genomes Project16). The finite sample size of the GWAS studies

as well as the reference panels used to estimate LD induces statistical noise that needs to be
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accounted for to obtain an accurate estimation. Since the top projections make up the bulk

of the summation, truncated-SVD lends itself as the appropriate regularization method to

account for noise in the estimated LD matrices. Finally we extend our approach to consider

multiple independent loci each contributing to the trait.

Estimating heritability at a single locus from GWAS summary data

Let yi “ xi
Tβββ ` εi, where yi is the trait value for individual i, xi are the genotypes of

individual i at the p SNPs in the locus, βββ “ pβ1, ¨ ¨ ¨ , βpq is the vector of fixed effect sizes for

the p SNPs, and εi „ Np0, σ2
eq is the environmental effect. Assuming that βββ is fixed and X

is random, the variance is

Varrys “ VarrXβββs ` σ2
e “ βββTCovrXsβββ ` σ2

e “ βββTVβββ ` σ2
e (1)

where V is a p ˆ p variance-covariance matrix of the genotype vector (i.e. the LD matrix).

If we make a standard assumption that the phenotypes are standardized (i.e. Varrys “ 1),

it follows that the amount of variance contributed by the p SNPs to the trait (i.e. local

heritability) is h2
g,local “ βββTVβββ. If the true effect size vector βββ and the LD matrix V are

given, then computing h2
g,local is trivial. In reality, however, the vector βββ is unknown and

is estimated in GWAS involving n samples and p SNPs, where β̂gwas,i is estimated as the

marginal standardized regression coefficient for SNP i

β̂gwas,i “
1

n
XT
i y “

1

n
XT
i

´”

X1 ¨ ¨ ¨ Xp

ı

βββ ` εεε
¯

“

”

1
n
XT
i X1 ¨ ¨ ¨ 1

n
XT
i Xp

ı

βββ `
1

n
XT
i εεε “

p
ÿ

j“1

rijβj `
1

n
XT
i εεε

(2)

where Xi denotes standardized genotypes for SNP i across the n individuals, and rij denotes

the LD between SNPs i and j. Extending to p SNPs at the locus, if follows that β̂ββgwas “

Vβββ ` 1
n
XTεεε where V is the LD matrix. With βββ fixed and ε random, β̂ββgwas is a random

variable with Erβ̂ββgwass “ ErVβββ ` 1
n
XTεεεs “ Vβββ, and Covrβ̂ββgwass “ VarrVβββ ` 1

n
XTεεεs “

1
n2 X

TCovrεεεsX “
σ2
e

n
V “

1´h2g,local
n

V. By central limit theorem, β̂ββgwas „ N
´

Vβββ,
1´h2g,local

n
V
¯

.

As GWAS sample size (n) increases β̂ββgwas converges to βββgwas “ Vβββ. By simple substi-
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tution in Equation (1) it follows that an estimator for h2
g,local is

pβββTgwasV
´1
qVpV´1βββgwasq “ βββTgwasV

´1βββgwas (3)

Unfortunately the finite sample size of GWAS induces statistical noise in the estimation of

βββgwas which leads to biased estimation if we would simply replace βββgwas with β̂ββgwas above,

as Erβ̂ββ
T

gwasV
´1β̂ββgwass “ trpV´1Covrβ̂ββgwassq ` βββTVβββ. However we can correct for the bias

trpV´1Covrβ̂ββgwassq as follows.

Let ĥ2
g,local be an unbiased estimator of h2

g,local, then by definition Erĥ2
g,locals must satisfy

Erĥ2
g,locals “ h2

g,local. Then it follows that

Erβ̂ββ
T

gwasV
´1β̂ββgwass “ tr

ˆ

1´ h2
g,local

n
V´1V

˙

` h2
g,local “

1´ Erĥ2
g,locals

n
p` Erĥ2

g,locals. (4)

A sufficient condition for Equation (4) to hold is
1´ĥ2g,local

n
p`ĥ2

g,local “ β̂ββ
T

gwasV
´1β̂ββgwas. Solving

for ĥ2
g,local gives an unbiased estimator for h2

g,local

ĥ2
g,local “

nβ̂ββ
T

gwasV
´1β̂ββgwas ´ p

n´ p
. (5)

Following quadratic form theory18, the variance of ĥ2
g,local is

Varrĥ2
g,locals “

ˆ

n

n´ p

˙2 ˆ

2p

ˆ

1´ h2
g,local

n

˙

` 4h2
g,local

˙ˆ

1´ h2
g,local

n

˙

. (6)

Since h2
g,local, the true local heritability, is unknown, we use ĥ2

g,local instead. For h2
g,local

near 0, Varrĥ2
g,locals «

4
pn´pq2

h2
g,local `

2p
pn´pq2

through Taylor expansion around 0. Thus, the

plug in principle yields an estimation of Varrĥ2
g,locals approximately equal to the truth in the

expectation.

Accounting for rank deficiencies in the LD

In the above derivation we made the assumption that the inverse of the LD matrix

V exists. In practice, however, due to pairs of SNPs in perfect LD, V is usually rank
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deficient, and thus V´1 does not exist. In such cases we use the Moore-Penrose pseu-

doinverse V:. Let q “ rankpVq, by rank decomposition, V “ VAVB, where VA P Rpˆq

and VB P Rqˆp are matrices with full column rank and full row rank respectively, then

trpV:Vq “ trpV:

BV:

AVAVBq “ trpVBV:

BV:

AVAq “ trpIqq “ q. Accounting for rank-

deficient LD matrix, we obtain an unbiased estimator, ĥ2
g,local “

nβ̂ββ
T
gwasV

:β̂ββgwas´q

n´q
. We make

the same adjustment (replacing p with q) in the variance estimator for ĥ2
g,local.

Adjusting for noise in external reference LD

When genotype data of GWAS samples is not available, we substitute the in-sample LD

matrix V with external reference LD matrix V̂ estimated from the 1000 Genomes Project16

using a population that matches the GWAS samples. However, due to limited sample size,

external reference LD matrices contain statistical noise that biases our estimate. We apply

truncated SVD regularization to remove noise from external reference LD matrix as follows.

First note that β̂ββ
T

gwasV
:β̂ββgwas “

řq
i“1 si “

řq
i“1

1
wi
pβ̂ββ

T

gwasuiq
2 , where wi and ui are the

eigenvalues and eigenvectors of the LD matrix V, and q “ rankpVq. For external reference

LD matrix V̂ with eigenvalues and eigenvectors ŵi and ûi, we have the same decomposition

except that si is replaced by ŝi “
1
ŵi
pβ̂ββ

T

gwasûiq
2. Through simulations, we show that most

of the signal in β̂ββ
T

gwasV
:β̂ββgwas comes from si where i ! q and that ŝi « si for i ! q (see

Supplementary Figure 1). In our previous works19,20, we propose to regularize V̂ using ridge

regression penalty. This regularization method is equivalent to replacing ŵi with ŵi ` λ,

where λ is the penalty. We notice that a large λ is needed to drive down the noise (ŝi for

large i), which diminishes the true signal at the same time. These results motivate us to apply

truncated-SVD to remove noise in V̂, i.e. we estimate β̂ββ
T

gwasV
:β̂ββgwas by

řk
i“1 1{ŵipβ̂ββ

T

gwasûiq
2,

where k ! q. Let gpβ̂ββgwas, kq “
řk
i“1

1
ŵi
pβ̂ββ

T

gwasûiq
2, through eigen-decomposition of V̂, it can

be shown that

Ergpβ̂ββgwas, kqs “
kp1´ h2

g,localq

n
`

k
ÿ

i“1

ŵipû
T
i βββq

2. (7)

Since the true local heritability is h2
g,local “

řq
i“1 wipu

T
i βββq

2, assuming ûi “ ui for i ! q,

Equation (7) is an approximation of h2
g,local with bias

kp1´h2g,localq

n
. Correcting for this bias
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yields the estimator for the single-locus case

h̃2
g,local “

ngpβ̂ββgwas, kq ´ k

n´ k
. (8)

In theory, the variance of h̃2
g,local is Varrh̃2

g,locals «
4

pn´kq2
ĥ2
g,local`

2k
pn´kq2

. In practice, however,

this gives an underestimation of the truth. Thus, we replace k with q “ rankpVq.

Extension to multiple independent loci

For genomes partitioned into m independent loci, the linear model for individual i’s

trait value becomes yi “ xTi,1βββ1` . . .`xTi,mβββm` εi where xi,j denotes the genotypes at the pi

SNPs in the i-th locus for individual i, and βββi denotes the effect sizes of SNPs in this locus.

Based on the revised model, we decompose Varrys into

Varrys “ VarrX1βββ1s ` ¨ ¨ ¨ ` VarrXmβββms ` σ
2
e “ h2

g,local,1 ` ¨ ¨ ¨ ` h
2
g,local,m ` σ

2
e , (9)

where h2
g,local,i denotes the local heritability contributed by the i-th locus. In the case of

multiple independent loci, the noise term σ2
e is equal to 1 ´

řm
j“1 h

2
g,local,j. Thus, in order

to correct for the bias generated by σ2
e , one need to know h2

g,local,j for all j. Accounting for

bias and adjusting for noise in external reference LD (V̂i) following strategies outlined in

previous sections, we arrive at the estimator,

h̃2
g,local,i “

ngpβ̂ββgwas,i, kiq ´ p1´
řm
j“1,j‰i ĥ

2
g,local,jqki

n´ ki
, (10)

which defines a system of linear equations involving m variables (ĥ2
g,local,i) and m equations.

A similar system of linear equations can be solved to obtain the variance estimator,

Varrĥ2
g,is “

ˆ

n

n´ qi

˙2 ˆ

2qi
σ̂2
e

n
` 4ĥ2

g,local,i

˙

σ̂2
e

n
`

ˆ

qi
n´ qi

˙2 m
ÿ

j“1,j‰i

Varrĥ2
g,local,js, (11)

where σ̂2
e “ 1´

řm
j“1 ĥ

2
g,local,j.
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Simulation framework

We use HAPGEN221 to simulate genotypes for 50,000 individuals starting from half of

the 505 European (EUR) individuals in the 1000 Genomes Project16 for SNPs with minor

allele frequency (MAF) greater than 5% in one randomly selected region (1 Mb) on chromo-

some 1. We reserve the other half of the EUR individuals as external reference panel. From

the simulated genotypes of the 50,000 individuals, we then simulate phenotypes based on

the linear model y “ Xβββ`εεε, where X is the standardized genotype matrix with mean 0 and

variance 1 at each column. To choose, βββ, the true effect size vector, we first select a subset C

of |C| causal SNPs at random, such that βββC „ Np0, h
2

|C|
I|C|q, where h2 is the heritability to

be simulated, and βββC̄ “ 0. We draw εεε from Np0, p1´h2qInq such that Erys “ 0, Varrys “ 1,

and that the SNP heritability for this locus is h2. For fixed βββ, we then generate replications

of trait values y by varying εεε. Finally, we compute summary statistics, β̂ββgwas, following

procedures outlined in previous sections.

Empirical data sets

We obtained publicly available GWAS summary over European ancestry data for 30

traits from the websites of 11 GWAS consortia (see Table 1). For quality control, we restricted

our analysis to GWAS studies involving at least 20,000 samples. We used the definition of

independent loci as defined in22 (1.6 Mb on the average). To reduce statistical noise in LD

matrix, we focused on estimating heritability attributable to common SNPs, i.e. SNPs with

MAF greater than 5% in the European population. Prior to estimating heritability, we also

removed SNPs with ambiguous alleles as compared to the reference panel (Supplementary

Table 1) and applied our estimator as defined in Equation 11.

Most GWAS apply the genomic control factor (λgc) to the χ2 statistics to correct for

inflation due to population structure23. However, recent works6,24 show that λgc can not

distinguish between inflation and true polygenicity and overestimates the correction factor

needed for population stratification. Although dividing the χ2 statistics by λgc does not affect

computing the ratios between local and genome-wide heritability7, it can result in underes-

timation of the total heritability across the entire genome (by scaling the local estimates of
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heritability in our framework). We notice all the summary GWAS data has at least one round

of genomic correction. To account for this, we first re-estimate the λgc from summary GWAS

and re-inflate the effect sizes with the estimated λgc before estimating local heritabilities. To

estimate λgc we conservatively regress β̂ββ
T

gwasV
:β̂ββgwas against β̂ββ

T

gwas,gcV
:β̂ββgwas,gc for the bottom

30% of loci with the smallest estimated local heritability. This is based on the observation

that at loci where h2
g,local “ 0, Erβ̂ββ

T

gwasV
:β̂ββgwass “

q
n

and Erβ̂ββ
T

gwas,gcV
:β̂ββgwas,gcs “

1
λgc

q
n
, where

β̂ββgwas,gc “
β̂ββgwas?
λgc

denotes GC corrected effect size vector. We report estimated λgc for all 30

traits in Supplementary Table 1.

We define GWAS hits as SNPs with p-values less than 5ˆ 10´8. For FI and HOMA-IR

that do not have any GWAS hits at this threshold, we relax the threshold to 10´7. To

avoid overestimation due to LD tagging, for each locus, we only select the most significant

(i.e. smallest p-value) GWAS hit as the index SNP. Heritability attributable to index SNPs,

ĥ2
gwas, is then estimated as

řI
i“1 β̂

2
i , where β̂i is effect size of the i-th index SNP, and I the

number of index SNPs. We estimate the variance of ĥ2
gwas as Varrĥ2

gwass “
řI
i“1 Varrβ̂2

i s “

řI
i“1 VarrpZi{

?
nq2s “

řI
i“1 Varr 1

n
χ2
i s “ 2I{n2.

For case-control traits, an adjustment factor is needed to correct for ascertainment25.

We note that this adjustment factor is derived based on the infinitesimal model, and does

not apply to our method, which assumes a fixed effect model. Therefore, we only report

unadjusted heritability estimates for case-control traits. However, we note that ratio between

local to genome-wide SNP heritability is not affected by this scaling factor.

Results

Performance of HESS in simulations

We used simulations to assess the performance of our proposed approach under a variety

of disease architectures. First, we confirmed that by accounting for rank deficiency in the LD

matrix we obtain unbiased estimation whereas the approach that uses the number of SNPs

to correct for bias generated by the quadratic form15 leads to a severe under-estimation of

heritability (Supplementary Figure 2). Second, we find that using the top 10-30 eigenvectors
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of the LD matrix (see Methods) provides a good approximation for the estimated heritability

when LD is estimated from external reference panels (Supplementary Figure 1).

Next, we compared HESS to the recently proposed LD-score regression (LDSC)6,7

method that provides estimates of heritability from GWAS summary data. Although LDSC

is not designed for local analyses due to model assumptions on polygenicity, it is able to esti-

mate the variance in trait attributable to any sets of SNPs. As expected, in our simulations

we find that LDSC is sensitive to the underlying polygenicity and, in general, yields biased

estimation of heritability. In contrast, HESS provides an unbiased estimation of heritability

across all simulated disease architectures when in-sample LD is available. For example, in

simulations where 20% of the variants at the locus are causal explaining 0.05% heritability,

HESS yields an estimate of 0.054% (s.e. 0.004%) as compared to 0.025% (s.e. 0.0009%) for

LDSC (Figure 1). We attribute this to the fact that HESS does not make any assumption

on the distribution of effect sizes at causal variants by treating them as fixed effects in the

model. When LD from the sample is unavailable and has to be estimated from reference

panels, both methods are biased with HESS yielding results closer to simulated heritability

than LDSC (Figure 1 and Supplementary Figure 3).

Finally, unlike LDSC that employs a jack-knife approach to estimate variance in the

estimated heritability (thus requiring multiple loci), HESS provides a variance estimator

following quadratic form theory (see Methods). We find that the variance estimator yields

unbiased estimates when in-sample LD is available and under-estimates the theoretical vari-

ance when LD is estimated from reference data (Supplementary Figure 4). We attribute this

to the fact that the rank of in-sample LD, which is computed based on many more samples,

is in general larger than that of external reference LD.

Common variants explain a large fraction of heritability

Having demonstrated the utility of HESS in simulations, we next applied our method

to empirical GWAS summary data across 30 complex traits and diseases spanning more

than two million phenotypic measurements (see Methods, Table 1, Supplementary Table

1). We estimated the local heritability at 1,703 approximately-independent loci22 using

European individuals of the 1000 Genomes to estimate LD16. We first investigated the
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total contribution of common variants (MAF ą 5%) to the heritability of complex traits.

We summed up the local estimates provided by our method to obtain an estimate for the

total genome-wide heritability for all genotyped SNPs. For traits where the SNP-heritability

was previously reported we find a broad consistency between our estimate and the existing

estimates from the literature (with differences likely due to different quality controls steps

that retained slightly different SNP sets) (see Table 1). For example, HESS estimates a

genome-wide SNP heritability (h2
g) of 19.4% (s.e. 0.5%) for BMI and 39.0% (s.e. 0.4%) for

height as compared to previously reported estimates of 21.6% (2.2%) for BMI1 and 49.8%

(4.4%) for height2. Most importantly, we find that common SNPs explain a large fraction of

the previously reported narrow sense heritability for all quantitative traits we interrogated

ranging from 21% for Forearm BMD to 76% for HDL(Table 1). Although we observe a very

high contribution of common SNPs to case-control traits as well, we note that our estimator

can be biased due to ascertainment in this case (see Methods).

Hidden heritability at known risk loci

Recent work10,26 has shown that the total heritability explained by all variants at the

GWAS risk loci (h2
g,local,gwas) is higher than heritability explained by GWAS index SNPs

(h2
gwas). This suggests that a fraction of the missing heritability is due to multiple causal

variants or poor tagging of hidden causal variants at known risk loci. We used HESS to

quantify the gap between these two estimates of heritability at known risk loci. We find

several traits for which h2
g,local,gwas is significantly larger than h2

gwas. For example, h2
g,local,gwas

is almost two fold higher (24.2%, s.e. 0.2%) than h2
gwas (14.3%, s.e. 0.01%) for height (Table

1). The difference can be accounted by incomplete tagging of hidden causal variant(s) or

allelic heterogeneity (i.e., multiple causal variants). Indeed, conditional analysis identified 36

GWAS loci that contain multiple signals of associations (for a total of 87 GWAS risk SNPs

at these loci) for height27. Restricting to the 43 loci that contain these multiple causal loci

we estimate h2
g,local,gwas=3.7%(s.e. 0.09%), an almost 3-fold increase over h2

gwas=1.2%(s.e.

0.003%). These loci, 8.7% of all GWAS loci for height, contribute to 38.1% of the difference

between h2
g,local,gwas and h2

gwas across all loci, thus suggesting that the difference is likely due

to multiple signals of association. We observe similar results suggesting multiple signals of
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associations for HDL, TG, RA, SCZ (Table 1).

In contrast, the majority of traits show similar h2
g,local,gwas and h2

gwas (see Table 1) sug-

gesting a single causal variant at these loci very well tagged by the index GWAS variant. For

example, it is known that LDL is strongly regulated by single non-coding functional variant

at the SORT1 locus3,28 and that bone mineral density traits (FN) are strongly regulated

by WNT1629,30. Finally, we note that reference panel LD approximation makes HESS is

intrinsically conservative (see Methods) which can also lead to h2
local,GWAS being less than

h2
gwas.

Contrasting polygenicity across multiple complex traits

Most studied common traits exhibit a strong polygenic architecture (i.e. an abundance

of loci of small effect contributing to trait)1,2,3,9 . We recapitulate this observation using the

HESS analysis and find a strong correlation between chromosome length and the fraction

of heritability it explains for most traits we analyze here (Figures 2, 3 ). We also observe,

consistent with previous findings31, regions such as FTO on chromosome 16 and HLA on

chromosome 6 contributing disproportionately to the fraction of heritability for HDL, BMI,

and RA, respectively.

Next, we sought to quantify the variability in polygenicity across traits. We rank order

loci based on their estimated local heritability, sum their contribution and plot it versus the

percentage of genome they occupy (Figure 4). For highly polygenic traits, we expect the

cumulative fraction of total SNP heritability to be proportional to the fraction of genome

covered, whereas for less polygenic traits, we expect to see a small fraction of the genome

accounting for a large fraction of total SNP heritability. For example, in schizophrenia

and height the top 1% of the loci with the highest local heritability contribute to 3.9%(s.e.

0.94%) and 8.2%(s.e. 1.8%) of the total SNP heritability of these traits, respectively. This

is consistent with previous reports on the degree of polygenicity of these traits2,3,9. At the

other extremes, RA and lipid traits (HDL, LDL, TC, TG) have a lower degree of polygenicity,

with the top 1% of loci accounting for 15-25% of the total SNP heritability. We note that

the different degrees of polygenic signals across traits reflect both a difference in disease

architecture (i.e. distribution of effect sizes) as well as a difference in the sample sizes for
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the GWAS summary data.

A different perspective of polygenicity is to restrict to GWAS risk loci (as they clearly

contain risk variants) and contrast the proportion of explained variance with the proportion

of the genome they occupy. We observe a wide distribution across traits reflecting diverse

genetic architectures as well as different sample sizes for the GWAS performed for these

traits. For example, approximately 30% of loci across the genome harbor a risk variant

for height and account for 50% to the total SNP heritability (an 1.6-fold enrichment). On

the other hand, while only 5% of the loci contain GWAS risk variants for HDL, these loci

collectively explain 25% of the SNP heritability of HDL (a 5-fold enrichment) (Figure 5).

Loci that contribute to heritability of multiple traits

The 30 traits studied in this work share genetic correlations6 and we recapitulate this

correlation using HESS estimates (Supplementary Figure 5). Motivated by this, we searched

for pleiotropic loci which we define as loci that contribute more than 0.3% of the total SNP

heritability for at least 3 out of the 30 analyzed traits. In total, we identified 55 such loci

distributed genome-wide (see Figure 7 Supplementary Figure 6). As expected, the HLA

region (chr16:26-34M), displays strong pleiotropic signal, particularly for immunologically

relevant phenotypes (see Figure 7). For instance, locus chr16:32-33M contributes more than

0.3% of total SNP heritability for over 10 traits, with exceptionally strong signals for RA,

UC, and IBD (see Figure 7). We also observe several pleiotropic loci on chromosome 10

and 16, including the loci chr10:63-66M, which contributes to PLT, IBD, CD, and UC,

and the loci chr16:49-52M, which contributes to CD, IBD, and FN. Previous research has

revealed the association between platelet count and inflammatory bowel diseases32 and the

association between IBD traits and bone mineral density traits33. Our results suggest that

the associations may be caused in part by the pleiotropic effect of the regions chr10:63-66M

and chr16:49-52M, respectively. We note that the selection of traits can bias the identification

of pleitropic loci towards over-represented traits. Nevertheless, local heritability analysis is

still a useful tool to quantify the fraction of total SNP heritability contributed by a single

loci and provide valuable insights into identifying pleiotropic loci.
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Discussion

We have presented HESS, an unbiased estimator of local heritability from GWAS sum-

mary data. Our approach extends existing works that treat SNP effects as fixed and model

genotypes as random variables15 – we proposed a method to regularize LD matrix estimated

from external reference panel and generalized the estimator to multiple independent loci.

Through extensive simulations, we demonstrated that HESS yields more consistent and less

biased local heritability estimates than another recently proposed method that models SNP

effects as random variables. We applied HESS on GWAS summary data of 30 traits from

11 GWAS consortia and showed that our results recapitulate previous findings. We then

used the local estimate to contrast polygenicity of these traits, find loci with multiple causal

variants, and identify heritability hot spots. We note that the enrichment of heritability

at GWAS risk loci could be leveraged into prioritizing GWAS or fine-mapping; for exam-

ple, traits with small enrichment of heritability at GWAS risk loci are more suitable for

larger GWAS, whereas traits with large enrichment of heritability at known risk loci could

be investigated further through fine-mapping.

Our focus in this work is estimating local heritability attributable to common SNPs

(MAF ą 5%). Thus, we did not explore the issues of effect size and LD at rare variants. We

also note that methods that adjust heritability estimation for case-control traits are currently

lacking. Our reported heritability estimation for case-control traits can be biased due to

ascertainment in GWAS for case-control traits. Nevertheless, our method still demonstrates

its utility in studying and comparing genetic architectures of complex traits. We conjecture

that future work that addresses local heritability estimation including both common and rare

variants as well as adjustment of local heritability under the fixed-effect model will further

improve the utility of our approach.
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Trait h2
g h2

pub h2
g{h

2
pub h2

gwas h2
g,local,gwas h2˚

g,local,gwas Enrichmenta

BMI (Body Mass Index)1 19.4(0.5) 4234 0.46 2.2(0.01) 3.6(0.1) 3.5(0.1) 3.4(0.5)
Height (Height)2 39.0(0.4) 6934 0.57 13.9(2.32) 23.5(0.2) 23.2(0.2) 1.9(0.1)
HB (Haemoglobin)35 20.9(2.5) 3736 0.56 2.6(0.06) 2.1(0.3) 2.1(0.3) 7.2(1.4)
MCH (Mean Cell Haemoglobin)35 25.5(3.1) 5237 0.49 8.0(0.92) 5.3(0.5) 5.2(0.5) 9.1(2.1)
MCHC (MCH Concentration)35 13.7(3.1) 4838 0.29 0.5(0.00) 0.5(0.3) 0.4(0.3) 3.6(1.1)
MCV (Mean Cell Volume)35 23.3(2.7) 5237 0.44 7.2(0.79) 5.0(0.5) 4.9(0.5) 6.9(1.3)
PCV (Packed Cell Volume)35 20.8(3.1) 3036 0.69 1.6(0.02) 1.1(0.3) 1.1(0.3) 5.6(1.1)
RBC (Red Blood Cell Count)35 23.6(2.9) 5637 0.42 4.1(0.22) 2.6(0.4) 2.5(0.4) 5.0(1.4)
PLT (Number of Platelets)39 23.2(1.9) 5736 0.41 4.1(0.16) 3.5(0.3) 3.5(0.3) 5.9(1.0)
FG (Fasting Glucose)40 20.0(3.0) 6641 0.30 2.9(0.07) 1.9(0.3) 1.9(0.3) 9.6(3.6)
FI (Fasting Insulin)40 19.5(3.1) 3642 0.54 0.1(0.00) 0.1(0.1) 0.1(0.1) 11.5(0.0)
HBA1C (HBA1C)43 20.0(3.1) 7541 0.27 2.1(0.03) 0.8(0.3) 0.8(0.3) 6.8(1.4)
HOMA-B (HOMA-B)40 19.1(3.1) 7244 0.27 0.7(0.00) 0.5(0.2) 0.5(0.2) 10.3(3.5)
HOMA-IR (HOMA-IR)40 20.3(3.0) 3842 0.53 0.1(0.00) 0.1(0.1) 0.1(0.1) 12.3(0.0)
HDL (High Density Lipoprotein)3 32.0(1.1) 4245 0.76 6.4(0.27) 11.6(0.3) 11.3(0.3) 5.6(1.7)
LDL (Low Density Lipoprotein)3 26.5(1.2) 4045 0.66 8.8(0.49) 8.3(0.3) 8.1(0.3) 6.3(1.1)
TC (Total Cholesterol)3 25.8(1.2) 5046 0.52 9.0(0.52) 9.3(0.3) 9.1(0.3) 5.9(0.8)
TG (Triglycerides)3 28.8(1.2) 4047 0.72 9.3(0.52) 9.2(0.3) 9.1(0.3) 8.0(2.1)
EY (Education Years)48 15.3(1.0) 4048 0.38 0.1(0.00) 0.1(0.1) 0.1(0.1) 3.1(0.9)
COL (College)48 15.5(1.0) 4048 0.39 0.1(0.00) 0.1(0.1) 0.1(0.1) 4.2(1.0)
FA (Forearm BMD)49 17.4(3.8) 8450 0.21 0.4(0.00) 0.4(0.1) 0.4(0.1) 12.8(4.6)
FN (Femoral Neck BMD)49 28.4(3.3) 8450 0.34 2.2(0.05) 2.1(0.4) 2.1(0.4) 6.0(0.7)
LS (Lumbar Spine)49 30.1(3.2) 8450 0.36 2.3(0.06) 2.5(0.4) 2.5(0.4) 5.9(0.7)
AM (Age at Menarche)51 19.6(0.9) 4952 0.40 2.7(0.06) 3.2(0.2) 3.2(0.2) 3.5(0.2)
RA (Rheumatoid Arthritis)53 64.9(1.4) 5554 1.18 12.2(2.12) 21.7(0.3) 21.6(0.3) 10.9(4.9)
SCZ (Schizophrenia)55 64.6(1.0) 8156 0.80 6.2(0.74) 8.9(0.3) 8.8(0.3) 2.0(0.1)
CD (Crohn’s Disease)57 29.4(1.6) 5358 0.55 3.9(0.17) 4.6(0.3) 4.5(0.3) 4.4(0.6)
IBDb (Inflammatory Bowel Disease)57 33.5(1.5) – – 5.0(0.34) 5.9(0.3) 5.8(0.3) 4.2(0.4)
UC (Ulcerative Colitis)57 26.2(1.7) 5858 0.45 2.8(0.08) 3.0(0.3) 3.0(0.3) 4.7(0.7)
T2D (Type 2 Diabetes)59 22.2(2.0) 2660 0.85 1.4(0.01) 1.4(0.2) 1.3(0.2) 6.0(1.1)

Table 1: Total SNP heritability estimates and the amount of h2
g attributable to loci contain-

ing GWAS index SNPs (h2
g,local,gwas) and index SNPs only (h2

gwas). h
2˚
g,local,gwas is the same as

h2
g,local,gwas except that GWAS index SNPs are excluded in the computation. In supplemen-

tary, we report h2:
g,local,gwas, obtained by excluding all GWAS hits. We also report narrow

sense heritability (h2
pub) estimates obtained from twin or family studies. We list case-control

traits where our estimate of h2
g is biased due to ascertainment at the bottom of the table.

aSimilar to7, we define enrichment as the ratio between the fraction of h2
g attributable to

h2˚
g,local,gwas and the fraction of genome covered by these loci. We obtain standard errors by

jackknife over the loci. bIBD refers to the union of CD and UC.
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Figure 1: HESS provides superior accuracy over LDSC in estimating local heritability. HESS
attains unbiased estimates when in-sample LD is used (top) and approximately unbiased
estimates when reference LD is used (bottom). Mean and standard errors in these figures
are computed based on 500 simulations, each involving 50,000 simulated GWAS data sets.
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Figure 2: Fraction of h2
g per chromosome across the 30 traits studied. Here, the chromosomal

heritability is obtained by summing local heritability at loci within the chromosome. For each
chromosome we plot the box plots of estimates at the 30 considered traits. Chromosomes are
ordered by size. With some notable exceptions, all traits show a strong polygenic signature
of genetic architecture.
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Figure 3: Heritability attributable to each chromosome for four example traits. The chromo-
somal heritability is obtained by summing local heritability at loci within the chromosome.
Standard error is obtained by taking the square root of the sum of variance estimation. See
Supplementary Note for results across all traits.
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Figure 4: Stacked bar plot showing the percentage of total heritability attributable to differ-
ent fractions of genome. We rank ordered all genomic loci by their explained heritability and
quantified the fraction of total heritability attributable to different percentile ranges. Traits
with high polygenicity tend to have bars with height proportional to bin size (e.g. Height
and SCZ), whereas less polygenic traits tend to have bars much larger than bin size (e.g.
RA and HDL).
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Figure 5: Fraction of h2
g explained by all loci that contain a GWAS hit versus the fraction of

genome covered by these loci. Images on the right focus successively on the traits near the
bottom left.
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Figure 6: Manhattan-style plots of regional heritability across the genome for the trait
Height, HDL, and SCZ. See Supplementary Note for results across all traits.
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Figure 7: Heat map showing the fraction of total SNP heritability (h2
g) contributed by each

of the 55 “pleiotropic” loci. For each locus, we only display the traits to which the locus
contributes more than 0.3% of total SNP heritability. We mark traits to which the locus
contributes more than 5% of the total SNP heritability in dark blue.
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