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Abstract 
 

Short Tandem Repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. 

Previous studies have estimated the mutation rates of highly polymorphic STRs using capillary 

electrophoresis and pedigree-based designs. While this work has provided insights into the 

mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. 

Here, we harnessed whole-genome sequencing data to estimate the mutation rates of more than 

4,500 Y-chromosome STRs (Y-STRs) with 2-6 base pair repeat units. To this end, we developed 

MUTEA, a new algorithm that infers STR mutation rates from population-scale high-throughput 

sequencing data using a high-resolution SNP-based phylogeny. After extensive intrinsic and 

extrinsic validations, we used MUTEA to estimate the mutation rates of STRs across the Y-

chromosome using data from the 1000 Genomes Project and the Simons Genome Diversity 

Project. In total, we analyzed evolutionary data for over 222,000 meioses to yield the largest set 

of Y-STR mutation rate estimates to date. We found that the average mutation rate of 

polymorphic Y-STRs is an order of magnitude lower than estimates from prior studies. Using our 

ascertainment-free estimates, we identified determinants of STR mutation rates and built a model 

to predict rates for STRs across the genome. Our projection indicates that the load of de novo 

STR mutations exceeds the load of all other known variants. We also identified new Y-STRs for 

forensics and genetic genealogy, assessed the ability to differentiate between the Y-chromosomes 

of father-son pairs, and imputed Y-STR genotypes.	  
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Introduction 
 

Mutations provide the fuel for evolutionary processes. The rates at which new mutations arise 

play a central role in a range of genetic applications, including dating phylogenetic events
1
, 

informing disease studies
2
, and evaluating forensic evidence.

3
 The advent of high-throughput 

sequencing has enabled genome-wide measurements of the number of de novo mutations using a 

broad range of strategies. A host of studies have evaluated the mutation rates of nearly every type 

of genetic variation, ranging from SNPs
4-7

 and short indels
8
 to large structural variations.

9
 These 

sequencing studies have concluded that about 50-100 de novo mutations arise each generation 

and that these are almost exclusively point mutations. However, these studies have largely 

overlooked the contribution of short tandem repeats (STRs).  

 

STRs are one of the most abundant types of repeats in the human genome. They consist of a 

repeating 2-6bp motif and span a median of 25bp. Approximately one million STR loci exist in 

the human genome that in aggregate occupy ~1% of its total length. STR variations have been 

implicated in more than 40 Mendelian traits
10

, and emerging lines of evidence have highlighted 

their involvement in complex traits in humans
11-13

 and in model organisms.
14-16

 The repetitive 

nature of STRs causes error-prone DNA-polymerase replication events that can insert or delete 

copies of the repeat motif in subsequent generations, leading to markedly elevated mutation 

rates.
17; 18

 

 

Previous studies estimated the rates and patterns of de novo STR mutations using capillary 

electrophoresis genotyping of specialized sets of markers, such as the Marshfield panel, the 

CODIS markers, or specific Y-chromosome STRs (Y-STRs). These studies have estimated that 

the average STR mutation rate per locus is 10
-3

-10
-4

 mutations per generation.
17; 19-22

 However, 

STRs in these panels were originally ascertained due to their relatively high levels of diversity. 

As such, it is not clear whether their mutation rates and patterns reflect the typical STR in the 

genome. Furthermore, as most of these loci have tri- and tetranucleotide motifs, the field lacks 

robust estimates of the mutation rates and patterns for other motif lengths, specifically 

dinucleotides that are the most prevalent type of STR. Finally, capillary electrophoresis has 

relatively low throughput, and most STRs were never genotyped in these studies, leaving the 

specific mutation rates of most STRs unknown. 

  

The rapid advancement of next-generation sequencing technologies has provided the opportunity 

to genotype STRs outside existing panels on a larger scale. Coupled with vast improvements in 

the depth, read length, and quality of whole-genome sequencing (WGS) datasets, algorithmic 

progress in STR genotyping tools has made it possible to robustly call these markers from high-

throughput data.
23-25

 In our previous study, we found that 90% of the STRs in the genome are 

accessible to Illumina technology and showed that hemizygous STRs can be called with very high 

accuracy.
26

 

 

Here, we leveraged population-scale high-throughput sequencing data to systematically estimate 

the mutation rates and analyze the dynamics of STRs across the Y-chromosome. To gain power, 

we used two independent datasets, the 1000 Genomes Project
27

 and the Simons Genome 

Diversity Project (SGDP).
28

 The Y-chromosomes in these datasets confer rich genealogical 

information, enabling the analysis of complex STR mutation models without the need for familial 

information. To leverage this genealogical information, we developed an algorithm called 

Measuring Mutation Rates using Trees and Error Awareness (MUTEA) that infers the mutational 

dynamics along the Y-chromosome branches. After validating MUTEA via intrinsic and extrinsic 

sanity checks, we used it to infer the mutation rates of Y-STRs, analyzing 4,500 Y-STRs and 
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inferring the mutation rate of 702 polymorphic Y-STRs. To the best of our knowledge, this is the 

largest collection of Y-STR mutation rates to date. We show the value of this ascertainment-free 

collection of mutation rates by uncovering the sequence determinants of mutability, predicting the 

genetic load of de novo STR mutations across the genome, and performing a series of forensic 

analyses. 
 

Materials and Methods 
 

Sequencing Datasets 

We analyzed 179 male samples in the SGDP cohort from widely dispersed populations across 

Africa, Asia and the Americas. The SGDP samples were sequenced to over 30× coverage using a 

PCR-free protocol and Illumina 100 bp reads. As our previous results with this protocol show that 

it substantially reduces the rate of PCR stutter at STR loci, the SGDP cohort provides a higher 

quality dataset for calling Y-STRs. We also analyzed 1,244 unrelated male samples from phase 3 

of the 1000 Genomes Project. These samples are from 26 diverse populations around the world 

and were sequenced to an average autosomal coverage of 7× using 75-100 bp paired-end reads. 

 

Y-SNP Phylogeny  

To construct the SGDP Y-chromosome haplotype tree, we downloaded VCF files containing the 

Y-SNP calls generated by the SGDP analysis group. As many of these SNPs lie in 

pseudoautosomal regions or regions with low mappability, we applied a series of filters to reduce 

the frequency of genotyping errors. We first removed loci where more than 10% of individuals 

were heterozygous using VCFtools.
29

 For the remaining SNPs, we removed individual SNP calls 

that were heterozygous, had fewer than 7 supporting reads, or had more than 10% of reads 

supporting an uncalled allele. Lastly, we discarded SNP loci if fewer than 150 samples met these 

criteria or if more than 10% of reads had zero mapping quality. Overall, we obtained nearly 

39,000 high quality polymorphic SNPs.  

 

We then used the high-quality SNPs to build the Y-chromosome phylogenetic tree using 

RAxML
30

 and the options –m ASC_GTRGAMMA –f d -asc-corr lewis. The SGDP samples 

included 3 representatives of haplogroup A1b1 and no members of the more basal clades (A00, 

A0, and A1a), so we used Dendroscope
31

 to root the phylogeny along the branch marked by the 

M42 and M94 mutations, markers associated with the split between A1b1 and megahaplogroup 

BT. For the 1000 Genomes phase 3 dataset, we used a RAxML-generated phylogeny that was 

built by the 1000Y analysis group. 

 

Although the maximum-likelihood phylogeny generated for each dataset has numerical branch 

lengths, these lengths are not scaled in units of generations as required by our method. We 

therefore tested two scaling methods. First, we selected the factor that most closely equated the 

total number of generations in each phylogeny to the corresponding value based on published Y-

SNP mutation rates. To do so, we used a recently published Y-SNP mutation rate of 3×10
-8

 

mutations per generation
33; 34

 and the numbers of called SNPs and called sites in each SNP 

dataset. As an alternative method, we scaled the trees using mutation rate estimates for 15 loci in 

the Y-chromosome Haplotype Reference Database (YHRD).
35

 We chose these loci as a 

calibration point because their estimates are based on more than 7,000 father-son pairs per locus 

and should therefore be relatively precise. For the 1000 Genomes data, we used the available 

PowerPlex capillary data for each locus, assumed error-free genotypes, scaled the phylogeny 

using a range of factors, and estimated the set of mutation rates for each scaling factor using 

MUTEA (see below). The choice of scaling factor had essentially no affect on the correlation 

with the YHRD estimates, resulting in an R
2

 of 0.89 (Figure S1). However, the total squared error 
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between the estimates was minimized for a factor of 2800, which we therefore selected as the 

optimal scaling. For the SGDP data, we performed an analogous analysis using HipSTR 

genotypes (see below) for 9 of these 15 loci, again resulting in a uniform R
2

 of 0.91 and an 

optimal scaling factor of ~3200 (Figure S1). 
 

The resulting scaling factors were remarkably concordant between the methods, with the factors 

determined by the Y-SNP method ~25% greater. However, to maximize our concordance with 

pedigree estimates, we used the second method. After scaling the branches, we found that the 

approximate total lengths of the SGDP and 1000 Genomes phylogenies are 60,000 and 160,000 

meioses, respectively.  

 

Defining and Identifying Y-STRs 

To identify Y-STRs, we used a quantitative procedure developed in our previous work.
26

 Briefly, 

this procedure uses Tandem Repeats Finder (TRF) to score each genomic sequence according to 

its purity, length, and nucleotide composition.
36

 It then uses extensive simulations of random 

nucleotide sequences to determine a scoring threshold that distinguishes random DNA from DNA 

that is truly repetitive, selecting regions with scores above this threshold as STRs. Our previous 

results suggest that this approach has less than a 1.4% probability of omitting a polymorphic STR 

and has a false positive rate of about 1%.  

 

We applied this procedure to the Y-chromosome sequence of the hg19 reference genome. As 

TRF occasionally identifies regions that overlap, we ensured that every locus has a unique STR 

annotation using the following steps: (a) We merged STR regions if the highest scoring one 

contained 85% of the bases in the union of the two regions (b) Overlapping entries that failed this 

criterion but which had the same period were further merged. For example, adjacent [GATA]10  

and [TACA]8  entries were merged into one STR (c) Since the sequencing alignments were 

relative to either  hg19 or GrCh38 coordinates, we removed hg19 STR regions that failed to 

liftOver
37

 to the GrCh38 assembly or were lifted from the Y-chromosome to the X-chromosome.  

 

We also added coordinates for Y-STR loci whose mutation rates have been studied in prior 

studies.
21; 38

 For these markers, we used the published set of primer sequences and the isPCR 

tool
37

 to map the primers to hg19 coordinates. We then ran TRF on each region and pinpointed 

the coordinates using the published repeat structure. Lastly, we applied TRF to additional regions 

previously published as part of comprehensive Y-STR maps to obtain coordinates for labeled 

markers whose mutation rates have not been characterized.
39

 In total, we added 261 annotated Y-

STRs, ~190 of which have mutation rate estimates from prior studies. 

 

The complete Y-STR reference is available for download in both hg19 and GrCh38 coordinates 

(Web resources).  

 

Y-STR Call Set and its Accuracy 

We downloaded BWA-MEM
40

 alignments for the SGDP samples from the project website and 

extracted and merged the Y-chromosome alignments into a single BAM file using SAMtools.
40

 

STR genotypes were then generated using HipSTR, an improved version of lobSTR, an STR-

specialized caller for Illumina data we developed in our previous studies.
23

  

 

HipSTR provides additional capabilities over lobSTR by using a specialized hidden Markov 

model to account for PCR stutter artifacts. Combined with its haplotype-based STR genotyping 

model, it produces extremely accurate STR genotypes, particularly in a haploid setting. HipSTR 

was instructed to genotype each STR region in the reference described above using the merged 

BAMs and the following options: --min-reads 25 --haploid-chrs chrY --hide-allreads. Similarly, 
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we downloaded BWA-MEM alignments from the 1000 Genomes phase 3 data release. As these 

alignments were relative to the GrCh38 assembly, we ran HipSTR using the corresponding 

GrCh38 STR regions and the options --min-reads 100 --haploid-chrs chrY --hide-allreads.  

 

We employed several strategies to enhance the STR SGDP call set: (i) To avoid errors introduced 

by neighboring repeats, we omitted genotyped loci that overlapped one another or multiple STR 

regions. (ii) We discarded loci if more than 5% of samples’ genotypes had a non-integer number 

of repeats, such as a three base pair expansion in an STR with a tetranucleotide motif. These 

types of events occur quite rarely and usually reflect genotyping errors rather than a genuine STR 

polymorphism.
23

 (iii) We removed Y-STRs sites that were called in at least 2 SGDP females, as 

they are likely to have high X-chromosome homology. (iv) We omitted sites if more than 15% of 

reads had a stutter artifact or more than 7.5% of reads had in indel in the sequence flanking the 

STR. These HipSTR-reported statistics typically indicate that the locus is not well captured by 

HipSTR’s genotyping model and may arise if duplicated sites are mapping to the same reference 

genome location. (v) For the remaining loci, we discarded unreliable calls on a per-sample basis 

if more than 10% of an individual’s reads had an indel in the flanks. (vi) Finally, we removed loci 

in which fewer than 100 samples had genotype posteriors greater than 66%, as these loci had too 

few samples for accurate inference. 

 

To filter the 1000 Genomes call set, we first removed loci that did not pass the SGDP dataset 

filters. We then applied a set of filters identical to those described above except that we only 

removed loci with more than 15 genotyped females and did not apply a stutter frequency cutoff. 

These alterations account for the 1000 Genomes dataset’s larger sample size and use of PCR 

amplification. 

 

Importantly, we found that both the SGDP and 1000 Genomes HipSTR call sets had high quality. 

We compared our STR genotypes to capillary electrophoresis datasets available for the same 

samples. For the SGDP, we observed a 99.7% concordance rate when comparing the HipSTR and 

capillary results for 3300 calls at 48 Y-STRs. For the 1000 Genomes, a comparison of 4050 calls 

at 15 loci in the PowerPlex Y23 panel resulted in a 97.5% concordance rate.  

 

Measuring Mutation Rates Using Trees and Error Awareness (MUTEA): Theory  

Previous methods estimated Y-STR mutation rates by comparing the squared difference in allele 

lengths to the time to the most recent common ancestor (TMRCA) for pairs of samples. However, 

these models generally assume a single-step mutation model, can be sensitive to haplogroup size 

fluctuations
41

 and require exact error-free genotypes. We therefore sought to develop an 

algorithm that can address these issues by leveraging detailed Y-SNP phylogenies.  

 

Figure 1 outlines the steps underlying MUTEA. Under a naïve setting without genotyping error, 

MUTEA uses Felsenstein’s pruning algorithm
42

 and numerical optimization to evaluate and 

improve the likelihood of a mutation model until convergence. However, due to the error-prone 

and low-coverage nature of WGS-based STR call sets, using these genotypes would result in 

vastly inflated mutation rate estimates. To avoid these biases, MUTEA learns a locus-specific 

error model and uses this error model to compute genotype posteriors. It then uses these 

posteriors rather than fixed genotypes during the mutation model optimization process to obtain 

robust estimates. In addition, MUTEA uses a flexible computational framework for STR 

mutations that includes length constraints and allows for multi-step mutations. We describe each 

step below. 
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Figure 1: Y-STR mutation rate estimation method. Schematic of our procedure to estimate Y-

STR mutation rates. The method first genotypes Y-SNPs (step 1) and uses these calls to build a 

single Y-SNP phylogeny (step 2). This phylogeny provides the evolutionary context required to 

infer Y-STR mutational dynamics, with samples in the cohort occupying the leaves of the tree 

and all other nodes representing unobserved ancestors. Steps 3-6 are then run on each Y-STR 

individually. After using an STR genotyping tool to determine each sample’s maximum-

likelihood genotype and the number of repeats in each read (step 3), an EM-algorithm analyzes 

all of these repeat counts to learn a stutter model (step 4). In combination with the read-level 

repeat counts, this model is used to compute each sample’s genotype posteriors (step 5). After 

randomly initializing a mutation model, Felsenstein’s pruning algorithm and numerical 

optimization are used to repeatedly evaluate and improve the likelihood of the model until 

convergence. The mutation rate in the resulting model provides the maximum-likelihood 

estimate. 
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Mutation Model Likelihood 

We used Felsenstein’s pruning algorithm to evaluate the likelihood of an STR mutation model. 

Let �  denote the STR mutation model, �  denote the dataset containing STR genotype 

likelihoods, and � denote the Y-chromosome phylogeny with root node �. The likelihood of the 

data is: 

� � �,� = � � = �,� �,� =

!

� � = �)�(� � = �,�,�
!

 

 

Let �!! denote the genotype likelihoods of all nodes that are descendants of node �!. If node �! 

has genotype �, the conditional probability of the data in its subtree is given by:  

� �!!
 �! = �,�,� = �(�! = �,�!!| �!

! ∈ !""#"#$!! ∈ !!!"# !!      

= �,�,�) 

 = �(�! = �|�!
! ∈ !""#"#$!! ∈ !!!"# !!      

= �,�,�) �(�!!|�! = �,�,�) 

 

While descending the phylogeny, this recursive relation applies until a node with no children is 

encountered. These nodes represent an observed sample and the conditional probability of the 

data is given by its genotype likelihoods. Therefore, the likelihood of a mutation model can be 

calculated using a post-order tree traversal. First, the algorithm computes the genotype 

likelihoods of each observed genotype at the leaf nodes (sequenced individuals). It then 

progresses to each internal node and calculates the conditional probability for each potential 

genotype after computing its descendants’ probabilities. Finally, upon reaching the root node, the 

total data likelihood is computed using the root node’s conditional probabilities and a uniform 

prior for the root node’s genotype.  

 

In practice, we computed the total log-likelihood to avoid numerical underflow issues. Because 

normalizing the genotype likelihoods of each sample does not affect the relative model 

likelihoods, we used genotype posteriors calculated using a uniform prior throughout our 

analysis.  

 

STR Mutation Model 

To model STR mutations, we used a generalized stepwise mutation model with a length 

constraint. Each mutation model �  is characterized by three parameters: a per-generation 

mutation rate �, a geometric step size distribution with parameter �! and β, a spring-like length 

constraint that causes alleles to mutate back towards the central allele. In this framework, the 

central allele is assigned a value of zero and negative and positive allele values indicate the 

number of repeats from this reference point. Given a starting allele �! , the probability of 

observing allele �!!! the following generation is: 

� �!!! = � �! =

!!!,                                                    !!!!

! !! !! !!!!
!!!!!!,             !!!!

! !! !! !!!!
!!!!!!,            !!!!

 

where the fraction of mutations increasing or decreasing the size of the STR are �! =
!!!!!!!

!
 and 

�! = 1 − �!; �! values greater than one or less than zero were clipped and set to one and zero, 

respectively. These two model features act as spring-like length constraints and attract alleles 

back towards the central allele. To avoid biologically implausible models, we constrained � to 

have non-negative values, where � = 0 reduces to a traditional generalized stepwise mutation 

model and increasingly positive values of � represent STRs with stronger tendencies to mutate 

back towards the central allele.  
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Computing STR Genotype Likelihoods 

To calculate the likelihood of the data D in the leaf nodes, we needed to account for STR 

genotyping errors. These errors are mainly caused by PCR stutter artifacts that insert or delete 

STR repeat units in the observed sequencing reads. We therefore developed a method to learn 

each locus’ distinctive stutter noise profile.  

 

Let �! denote the stutter model for STR locus x. �! is parameterized by the frequency of each 

STR allele (�!), the probability that stutter adds (�) or removes (�) repeats from the true allele in 

an observed read, and a geometric distribution with parameter �! that controls the size of the 

stutter-induced changes. Given a stutter model and a set of observed reads (R), the posterior 

probability of each individual’s haploid genotype is: 

� �! = � �,�! ∝ �!

1 − � − �,                      �!,! = �

��! 1 − �!
!!,!!!!!,    �!,! > �

��! 1 − �!
!!!!,!!!,     �!,! < �

!!"#$%,!

!!!

 

where �! denotes the genotype (number of repeats) in the i
th

 individual, and �!,! denotes the 

number of repeats observed in the k
th

 read for the i
th

 individual.  

 

We implemented an expectation-maximization (EM) framework to learn these model 

parameters.
43

 The E-step computes the genotype posteriors for every individual given the 

observed reads and the current stutter model parameters. The M-step then uses these posterior 

probabilities to update the stutter model parameters as follows: 

�
!!!

=
1

�
� �! = � �,�! � �!,! > �

!!"#$%,!

!!!

!

!!!

!

!!!

  

�
!!!

=
1

�
� �! = � �,�! �(�!,! < �)

!!"#$%,!

!!!

!

!!!

!

!!!

 

�!
!!!

=

� �! = � �,�! � �!,! ≠ �
!!"#$%,!

!!!

!

!!!
!

!!!

� �! = � �,�! �!,! − �
!!"#$%,!

!!!

!

!!!
!

!!!

                 

 �!
!!!

=
1

�
�(�! = �|�,�!)

!

!!!

 

Here, N denotes the number of samples, A denotes the number of putative alleles and Q denotes 

the number of sequencing reads.  

 

MUTEA Computation  

Given STR genotypes for a locus of interest, we used a maximum-likelihood approach to estimate 

the underlying mutation model. Our approach first estimates the central allele of the mutation 

model by computing the median observed STR length and then normalizes all genotypes relative 

to this reference point. It then randomly selects mutation model parameters �, �, and �! subject 

to the constraint that they lie within the ranges of 10
-5

 - 0.05, 0 - 0.75 and 0.5 - 1.0, respectively. 

Using these bounds, the Nelder-Mead optimization algorithm
44

, and the outlined method for 

computing each model’s likelihood, we iteratively update the mutation model parameters until the 

likelihood converges. After repeating this procedure using three different random initializations to 

increase the probability of discovering a global optimum, our algorithm selects the optimized set 

of parameters with the greatest total likelihood. 

 

For each STR in the SGDP and 1000 Genomes call sets that passed the requisite quality control 

filters, we first used the EM algorithm to learn a PCR stutter model. To run this algorithm, we 

obtained the size of the STR observed in each read from the MALLREADS VCF field. HipSTR 
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uses this field to report the maximum-likelihood STR size observed in each read that spans its 

sample’s most probable haplotype. In conjunction with a uniform prior, the learned stutter model 

was then used to compute the genotype posteriors for each sample with a HipSTR quality score 

greater than 0.66. Samples with quality scores below this threshold were omitted because the 

genotype uncertainty can result in erroneous reported read sizes. Finally, together with the 

optimization procedure and the appropriate scaled Y-SNP phylogeny, we used these genotype 

posteriors to obtain a point estimate of the mutation rate.  

 

Results 
 

Verifying MUTEA using Simulations 

We validated MUTEA’s inferences by running the algorithm on simulated data from a wide range 

of Y-STR mutation models (Appendix A). We tested mutation rates (µ) from 10
-5

 to 10
-2

 

mutations per generation, a range that encompasses most known polymorphic Y-STR loci. We 

also varied the distribution of step-sizes for each STR mutation from a single step (ρM=1) to a 

wide range of mutation steps (ρM=0.75) and added various spring-like length constraints that 

ranged from no constraint (β=0) to a strong attractor towards the central allele (β=0.5).  
 

MUTEA obtained unbiased estimates of the simulated mutation rate for nearly all scenarios 

(Figure S2). We only observed a slight upward bias in the estimates for the slowest simulated 

mutation rate (µ=10
-5

) due to the lower bound imposed during numerical optimization. In 

contrast, mutation rates estimated using simpler mutation models limited to single-step mutations 

or no length constraints were far more biased in these scenarios (Figure S3). MUTEA’s 

inferences were also robust to the presence of simulated PCR stutter noise. After forward 

simulating STRs, we simulated reads for each genotype and distorted their repeat numbers using 

various PCR stutter models (Appendix B). We then input these repeat counts into MUTEA 

instead of the STR genotypes. Although MUTEA was completely blind to the selected stutter 

parameters, it reported unbiased estimates of the Y-STR mutation rates, step sizes, and stutter 

models for nearly all scenarios (Figure 2, Figures S4-S6), with just a slight bias for the lowest 

simulated mutation rate, as was the case for the exact genotypes scenario above. As a negative 

control, we again ran MUTEA on the stutter-affected reads but without employing the EM stutter 

correction method. With this procedure, posteriors based on the fraction of reads supporting each 

genotype resulted in marked biases, particularly for low mutation rates, demonstrating the 

importance of correctly accounting for stutter artifacts in these settings (Figure 2, Figures S5-

S6).  

 

MUTEA Estimates are Internally and Externally Consistent 

Encouraged by the robustness of our approach, we turned to inspect real data for Y-STRs in the 

SGDP and the 1000 Genomes Y-STR call sets. In total, we examined  ~4,500 STR loci, 702 of 

which displayed length polymorphisms in both datasets, with the rest nearly fixed. We ran 

MUTEA on each of these polymorphic STRs to estimate its mutation rate (µ), expected step size 

(ρM), and stutter parameters (u, d, ρs) in both datasets (Table S1). 
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Figure 2: Validating MUTEA using simulations. STR sequencing reads were simulated for a 

variety of sample sizes and mutation models (simulation parameters panel) in the presence of 

PCR stutter noise across a large range of scenarios (x-axis). Applying MUTEA (red line) to these 

reads led to relatively unbiased mutation rate estimates (top row) with small standard deviations 

(second row). As a negative control, we also applied a naïve approach to correct for stutter noise 

(blue line). This approach computed genotype posteriors using the fraction of supporting reads, 

resulting in markedly biased mutation rate estimates. 

 

The MUTEA mutation rate estimates were largely consistent between the datasets (Figure 3). We 

obtained an R
2
 of 0.92 when comparing the log mutations rate estimates from the 1000 Genomes 

and SGDP datasets for the 702 polymorphic markers. Importantly, this high concordance was 

achieved despite substantial differences in the quality of the sequencing data, increased stutter 

noise in the 1000 Genomes data and marked differences between the analyzed populations and 

study sizes. As an additional validation, we inspected the rates of stutter MUTEA inferred for 

each locus (Figure S7). We found that the estimated downward and upward stutter rates were 

highly correlated between the two datasets (R
2
 = 0.88 and R

2
 = 0.68 on the log scale), reflecting 

the algorithm’s ability to capture each locus’ distinctive error profile. Genotyping technology 

played only a small role in explaining the consistencies between the datasets. We re-ran MUTEA 

on the 1000 Genomes Y-tree using capillary genotypes for 15 Y-STRs loci that were available for 

the samples (Figure 3). When compared with estimates obtained using sequencing-generated 

genotypes, we obtained an R
2
 of 0.98 between the log mutation rates. These comparisons 

illustrate that our method obtains robust locus-specific values while accounting for varying 

degrees of PCR stutter artifacts and genotyping errors. Furthermore, the inter-dataset concordance 

suggests that there are either very few errors in the phylogenies or that these errors have little 

impact on the resulting mutation rate estimates.  
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Figure 3: Concordance of mutation rate estimates across datasets. The matrix presents the 

correlation of the log mutation rates obtained from two father-son capillary-based studies 

(“Ballantyne” and “Burgarella”) with those obtained in this study using the 1000 Genomes WGS 

data (“1000 Genomes”), the Simons Genome WGS data (“SGDP”) and the capillary data 

available for samples in the 1000 Genomes (“Powerplex”). Each square in the heat map indicates 

the number of markers involved in the comparison and the resulting R
2
. Representative 

scatterplots for three of these comparisons depict the pair of estimates for each marker (cyan) and 

the x = y line (red). The black arrow in the SGDP vs. Ballantyne comparison shows the effective 

lower limit of the Ballantyne et al. mutation rate estimates. 
 

Next, we validated our mutation rate estimates by comparing them to results from previous 

studies that used pedigree-based designs and capillary electrophoresis for genotyping. In these 

studies, Burgarella et al.
38

 and Ballantyne et al.
21

 estimated Y-STR mutation rates for specialized 

panels by examining approximately 2000 and 500 father-son duos per Y-STR, respectively. We 

observed only a moderate replicability between the reported mutation rates from these two prior 

studies (R
2
 of 0.34, Figure 3). This low value presumably stems from the very small number of 

transmissions used by Burgarella et al. In stark contrast, despite considerably different 

methodological approaches, we observed an R
2
 of ~0.65 when we compared either the SGDP or 

the 1000 Genomes estimates to those from Ballantyne et al. (Figure 3). One limitation of this 

comparison is that Ballantyne et al. could not report precise mutation rates for slowly mutating Y-

STRs due to the number of meioses events examined in their study. As a result, their estimates 

were effectively restricted to a lower bound of µ=10
-3.5

 mpg
 
(Figure 3, inset). In contrast, our 

deep phylogeny enabled us to report much lower estimates, highlighting the advantage of 
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analyzing population data, rather than father-son pairs, for slowly mutating STRs. Comparing our 

estimates to those from Burgarella et al. resulted in an R
2
 of ~0.3, but restricting this evaluation to 

loci they characterized using more than 5000 father-son duos resulted in a substantially higher R
2
 

of 0.87 (Figure S8). These results demonstrate that our estimates are concordant with prior 

father-son based results, provided that the latter are generated using sufficiently many pairs.  
  

Characteristics and Determinants of Y-STR Mutations 

Next, we analyzed the STR mutation patterns. To obtain a single mutation rate estimate for each 

Y-STR, we averaged the estimates from the SGDP and 1000 Genomes datasets. We found that 

the distribution of Y-STR mutation rates has a substantial right tail, with most STRs mutating at 

very slow rates and only a few loci mutating at high rates (Figure 4). On average, a polymorphic 

Y-STR mutates at a rate of 3.8×10
-4

 mutations per generation (mpg) and has a median mutation 

rate of 8.7×10
-5

 mpg. The average Y-STR mutation rate is an order of magnitude lower than 

previous estimates from panel-based studies. This difference cannot be explained by our 

phylogenetic measurement procedure since inspection of the same markers yielded relatively 

concordant numbers. Instead, it likely stems from the ascertainment strategy of STR panels, 

which select highly diverse loci that do not reflect the mutation rates of more typical STRs. 

Consistent with this hypothesis, our mutation rate estimates for previously characterized loci were 

upwardly enriched relative to our estimates for all markers (Figure 4). 

 

 

Figure 4: Distribution of Y-STR mutation rates. In red, we show the distribution of mutation 

rates across all STRs in this study. Loci with previously characterized mutation rates (orange) are 

substantially enriched for more mutable loci. When stratified by motif length, loci with 

tetranucleotide motifs (dark blue) are the most mutable, followed by loci with trinucleotide (light 

blue) and dinucleotide (yellow) motifs. 
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Leveraging our Y-STR mutation rate catalog, we searched for new loci with relatively high 

mutation rates. These loci help to distinguish Y-chromosomes of highly related individuals and 

can help to precisely date patrilineal relatedness among individuals, which is important for 

forensics and genetic genealogy. Most of the markers with the greatest estimated mutation rates 

have been characterized in prior studies (Table 1), but we identified six new loci whose mutation 

rates are yet to be reported and were estimated to be greater than ~0.002 mpg (Tables 2-3). Two 

of these markers, DYS548 and DYS467, have been used in previous genealogical panels but to 

the best of our knowledge, their mutation rates were never reported; the other four markers are 

yet to be included in marker tests. In addition, we identified more than 65 novel loci with 

dinucleotide motifs and mutation rates greater than ~1/3000 mpg (Table 3, Table S1).  
 

We observed wide variability in the mutation rates and patterns between motif length classes. 

STRs with tetranucleotide motifs had the greatest median mutation rate (µ=1.76×10
-4

 mpg), 

followed by loci with trinucleotide (µ=1.22×10
-4

 mpg), pentanucleotide (µ=1.19×10
-4

 mpg), 

dinucleotide (µ=7.7×10
-5

 mpg), and hexanucleotide motifs (µ=3.28×10
-5

 mpg) (Figure 4). 

However, within each motif class, mutation rates varied by two or more orders of magnitude, 

indicating that other factors contribute to STR variability. We also found marked differences in 

the mutation patterns between motif classes. Loci with dinucleotide motifs and a mutation rate 

greater than 10
-4

 mpg had a median step size parameter of ρM = 0.8, implying that many of the de 

novo mutations are expected to be greater than one repeat unit. On the other hand, the median 

step size parameter for longer motif classes within this mutation rate range was closer to one, 

implying that nearly all de novo events involve single step mutations.  
 

Next, we harnessed the large number of Y-STR mutation rate estimates to identify sequence 

determinants of mutation rates. For STRs without interruptions, the major allele length explains a 

substantial fraction of the variance in mutation rates for loci with di-, tri-, and tetranucleotide 

motifs (R
2
 = 0.83, R

2
 = 0.67, and R

2
 = 0.82, respectively; pentanucleotide motifs were not 

assessed due to a small number of data points; mutation rates are in logarithmic scales). However, 

when analyzing all STRs, including those with interruptions, the major allele length is a poor 

predictor that explains only a modest amount of the variance (R
2
 = 0.16, R

2
 = 0.25, and R

2
 = 0.42) 

(Figure 5a-c). To construct an improved model, we analyzed the relationship between the log 

mutation rate and the length of the longest uninterrupted repeat tract, regardless of the number of 

interruptions (Figure 5d-f). This model explained more than 75% of the variance in mutability 

for each of the three motif lengths. To assess the impact of the repeat motif on the mutation rate, 

we stratified loci with dinucleotide motifs by repeat sequence (AC, AG, or AT) and once again 

regressed the log mutation rate on the length of either the major allele or uninterrupted tract 

(Figure S9). Major allele length was once again a relatively poor predictor of the log mutation 

rate, but uninterrupted tract length explained more than 80% of the variance for each motif. 

Although these motif-specific models improved the R
2
, the increase was quite limited, suggesting 

that conditioned on the uninterrupted tract length, the repeat motif itself plays a minor role in the 

mutation rate. Taken together, our results show that a simple model of motif size and longest 

uninterrupted tract length largely explains STR mutation rates. 

 

Predicting Genome-Wide STR Mutation Rates 

We estimated the number of de novo mutations across the entire genome using the determinants 

found above. For each repeat motif length, we trained a non-linear mutation rate predictor using 

the uninterrupted tract lengths and mutation rates of the polymorphic Y-STRs. To account for the 

fixed loci in our dataset and to better fit the model at shorter tract lengths, we assigned each fixed 

locus a mutation rate of 10
-5

 mpg, the lower mutation rate boundary used by MUTEA (Figure 

S10), and we jointly trained the predictors across all STRs. To validate these predictors, we used 

them to estimate the mutation rates of paternally transmitted autosomal CODIS markers, which 
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the National Institute of Standards and Technology (NIST) has previously estimated using 

conventional means. Our predictors explained about 75% of the variance in the log mutation rates 

for these markers. In addition, the median mutation rate reported by NIST (µ=1.3×10
-3

 mpg) 

closely matched the result reported by our predictors (µ=1.0×10
-3

 mpg), suggesting that they 

generate reliable predictions. 

 

 

Figure 5: Sequence determinants of Y-STR mutability. Each panel presents the observed log 

mutation rates (y-axis) of STRs versus either the major allele length (left panels, x-axis) or the 

longest uninterrupted tract length (right panels, x-axis) for various repeat motif sizes. The black 

lines represent the mutation rate predicted by a simple linear model. For a given allele length (left 

panels), Y-STRs with no interruptions to the repeat structure (blue) are generally more mutable 

than those with one interruption (green) or more than one interruption (red). While major allele 

length alone is poorly correlated with mutation rate (left panels), the longest uninterrupted tract 

length (right panels) is strongly correlated regardless of the number of interruptions.  

 

Next, we ran our predictors on each STR in the human genome with 2-4 bp motifs, resulting in 

mutation rate estimates for each of the ~630,000 markers (Table S2). Since our model was 

trained using Y-STR mutation rates, these estimates refer only to the paternally inherited half of 

the genome. We discarded estimated rates below 1.25×10
-5

 mpg as these are too close to the 

MUTEA lower boundary and may therefore be upwardly biased. After filtering, our model 

predicts that there are ~70,000 STRs with mutation rates above 10
-4

 mpg, ~44,000 loci with 

mutation rates greater than 1/3000 mpg and that an STR should mutate at an average rate of 

4.4x10
-4

 mpg. Stratifying our results by motif length, we predict 29, 3 and 33 de novo STR 

mutations for loci with di-, tri- and tetranucleotide motifs on the paternal set of chromosomes.  
 

Overall, we predict 76-85 de novo STR mutations each generation for the entire set of 

chromosomes. To account for the maternal chromosomes, we extrapolated our paternal results 
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using prior estimates of the male to female STR mutation rate ratio (3.3:1 to 5.5:1
19; 45

). We posit 

that our estimates for STR de novo mutational load are likely to be conservative. First, we 

omitted loci with 5-6 bp motifs for which we did not have sufficient data to build a mutation rate 

model. Second, for autosomal STRs whose uninterrupted tract lengths exceeded the maximal 

length observed in our study, we estimated their mutation rates using the maximal Y-STR length. 

Given the strong positive correlation between tract length and mutation rate observed in our 

study, these loci are probably far more mutable. Despite our conservative approach, the estimated 

number of genome-wide de novo STR mutations rivals that of any known class of genetic 

variation, including SNPs (~70 events per generation), indels (1-3 events), and SV and 

interspersed repeats (<1 event per generation).
6; 7; 9; 46

 As such, our results highlight the putative 

contribution of STRs to de novo genetic variation. 
 

Y-STRs in Forensics and Genetic Genealogy 

We also assessed the applicability of our Y-STR results to the genetic genealogy and forensic 

DNA communities. First, we considered whether it would be possible to distinguish between 

closely related patrilineal individuals from high-throughput sequencing data. Based on the entire 

Y-STR set reported by our study, we expect roughly one de novo mutation to occur every four 

generations. In addition, from WGS data, one also expects to identify approximately one de novo 

SNP every 2.85 generations
34

, resulting in a 60% theoretical probability of differentiating 

between a father and son’s Y-chromosome haplotype using high-throughput sequencing. Previous 

studies have suggested that capillary genotyping of 13 rapidly mutating Y-STRs can theoretically 

discriminate between father-son pairs in 20% of the cases.
21

 However, these particular markers 

are largely inaccessible to whole-genome sequencing data due to their long length and highly 

repetitive flanking regions that preclude unique mapping. With the increased interest in high-

throughput sequencing in genetic genealogy services (e.g. FullGenomes and Big Y by 

FamilyTreeDNA) and forensics, our results suggest that WGS can achieve better patrilineal 

discrimination compared to common panel-based methods. Of course, the main caveat is that 

WGS technology is at least an order of magnitude more expensive than a panel-based approach. 

However, if the current trajectory of sequencing cost decline continues, shotgun sequencing to 

discriminate between patrilines may soon become economically viable. 
 

We also assessed the accuracy of imputing Y-STR profiles from Y-SNP data. This capability may 

be useful in forensic cases involving a highly degraded male sample for which complete Y-STR 

profiles would be difficult to obtain. In such cases, since there are many more SNPs than STRs on 

the Y-chromosome, it might be possible to salvage some of those markers with a high-throughput 

method and impute Y-STRs profiles for compatibility with common forensic or genealogical 

databases.   
 

For imputation, we created a framework called MUTEA-IMPUTE. Briefly, after building a SNP 

phylogeny relating all samples and learning a mutation model as outlined in Figure 1, MUTEA-

IMPUTE passes two sets of messages along the phylogeny to compute the exact marginal 

posteriors for each node, resulting in imputation probabilities for samples without observed Y-

STR genotypes (Appendix D). We assessed the accuracy of our algorithm by imputing the 1000 

Genomes individuals for the PowerPlex Y23 panel, a set of markers regularly used in forensic 

cases involving sex crimes. Over 100 iterations, we randomly constructed reference panels of 500 

samples and used MUTEA-IMPUTE to calculate the maximum aposteriori genotypes for a 

distinct set of 70 samples.  
 

Despite the small size of the reference panel, we were able to correctly impute an average of 66% 

of the genotypes without any quality filtration (Table S3). Importantly, the resulting imputed 

probabilities roughly matched the average accuracy, indicating that the posteriors computed using 
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this technique are well calibrated (Figure S11). Discarding imputed genotypes with posteriors 

below 70% resulted in an overall accuracy of 88% and retained about 40% of the calls. On a 

marker-by-marker basis, accuracy was generally inversely proportional to the estimated mutation 

rates, with the most slowly mutating markers having accuracies on the order of 95%. This trend 

stems from the fact that as the mutation rate increases, shorter branch lengths are required to 

obtain an estimate with similar confidence. We envision that a larger panel will substantially 

increase the ability to correctly impute Y-STRs and might open new possibilities to work with 

highly degraded samples, a common issue in forensics casework.  

 

Discussion 
Over the past two decades, tremendous advances in sequencing technology have fundamentally 

transformed the applications of Y-STRs. The initial scarcity of available SNP genotypes led to 

the development of methods capable of inferring coalescent models from Y-STR genotypes 

alone. Methods designed to also learn STR mutational dynamics either marginalized over these 

coalescent models
47

 or aimed to simultaneously infer the coalescent and mutational models.
48; 49

 

With the advent of population-scale WGS datasets, many of these STR-centric approaches have 

instead used SNPs, resulting in substantially more detailed phylogenies. On the Y-chromosome, 

these detailed phylogenies now provide the evolutionary context required to interpret Y-STR 

mutations, obviating the need for expensive tree enumeration or marginalization approaches. 

However, the errors prevalent in WGS-based Y-STR genotypes require methods capable of 

accounting for genotype uncertainty, preventing the application of many traditional microsatellite 

distance measures designed for capillary data.
50; 51

 
 

In this study, we developed MUTEA, a novel method that leverages population-scale sequencing 

data to estimate Y-STR mutation rates. One inherent advantage of our approach is its ability to 

model and learn many of the salient features of microsatellite mutations. By incorporating a 

geometric step-size distribution, we allow both single-step mutations that predominate at 

tetranucleotide loci
19; 52

 as well as multistep mutations that frequently occur at dinucleotide loci.
19; 

53
 In addition, the model’s length constraint parameter replicates the intra-locus phenomenon of 

shorter STR alleles preferentially expanding and longer alleles preferentially contracting.
53; 54

 As 

these parameters are learned from the observed STR genotypes, our method avoids many biases 

that stem from imposing single-step mutations or assuming parameters a priori.  
 

In addition to its mutational model flexibility, our approach has both high throughput and high 

dynamic range. With whole-genome sequencing data, we were able to assess every Y-STR that is 

accessible to Illumina sequencing, dramatically increasing the catalog of polymorphic loci with 

estimated mutation rates. The ability to scan the entire chromosome allowed us to obtain a more 

realistic estimate of typical STR mutation rates without the ascertainment biases associated with 

STR panels. In addition, by leveraging deep Y-chromosome phylogenies, we were able to obtain 

mutation rate estimates for very slowly mutating loci. Our estimates were highly replicable and 

consistent, as demonstrated by the strong concordance between the estimates from the two whole-

genome sequencing datasets.  
 

Our approach has several inherent limitations. Because Illumina datasets are comprised of 80-100 

base pair reads, we were unable to genotype and characterize the mutation rates of both long Y-

STRs and Y-STRs that reside in heterochromatic regions. With the strong concordance between 

tract length and mutation rates, we anticipate that more rapidly mutating loci reside on the Y-

chromosome. In addition, we were unable to characterize the mutation rates of homopolymers 

due to a rapid degradation of base quality scores with increasing allele length. As a result, future 

studies may benefit from reapplying our analysis as sequencing technologies, particularly those 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 14, 2016. ; https://doi.org/10.1101/036590doi: bioRxiv preprint 

https://doi.org/10.1101/036590


	 18 

enabling long reads, continue to mature. Another limitation is that our mutation model does not 

capture the full complexity of STR mutational dynamics, as it ignore intra-locus mutation rate 

variation.
55

 Incorporating these and other mutational characteristics may be of interest in future 

studies.  
 

One longstanding question regarding Y-STR mutation rates has been the apparent discrepancy 

between evolutionary and pedigree-based mutation rates. A host of studies have suggested that 

evolutionary rates are 3-4 times lower, resulting in substantial inconsistencies in Y-STR based 

lineage dating and large discrepancies from Y-SNP based TMRCA estimates.
20; 41; 56

 Because this 

study harnessed evolutionary data, we sought to avoid any potential issues by scaling each 

phylogeny such that our estimates best matched those from pedigree-based studies. Nonetheless, 

our investigations into an alternative scaling based on a SNP molecular clock resulted in similar 

scaling factors that only differed by about ~25%. Coupled with the strong concordance we 

observed with pedigree estimates, our study provides little evidence for a substantial difference 

between mutation rates estimated from these two types of data. Future work may benefit from 

assessing whether these previously reported discrepancies were due to simplified Y-STR 

mutation models. 
 

The large corpus of mutation rate estimates has enabled us to dissect the sequence factors 

governing STR mutability. Our results show that the longest uninterrupted tract length is a strong 

predictor of the log mutation rate. This observation matches the exponential relationship between 

mutation rate and tract length previously reported in several pedigree-based studies.
21; 45; 52; 54

 In 

contrast, we found that the total length of the major allele was a poor predictor. Coupled with the 

fact that Y-STRs without interruptions were much more mutable than interrupted ones with the 

same major allele length, our study provides strong evidence that interruptions to the repeat 

structure decrease mutation rates. This finding supports what has long been posited in STR 

evolutionary models
57; 58

 and has been shown in a handful of small-scale experimental studies of 

STR mutability.
59; 60

 However, it contradicts the recent findings of Ballantyne et al. in which no 

effect was observed.
21

  

 

Another open question is why STRs with dinucleotide motifs have lower mutation rates, given 

their higher levels of polymorphisms in the population. Previous panel-based studies reported that 

loci with dinucleotide motifs have lower mutation rates than those with tetranucleotide motifs. 

Our survey confirmed this observation in the absence of ascertainment bias. However, genome-

wide analyses of STRs have shown that dinucleotides have more diverse allelic spectra than 

tetranucleotides.
23; 26

 These results are unlikely to be due to genotyping errors as a study of an 

individual sequenced to a depth of 120× also showed that dinucleotide are more polymorphic than 

other types of STRs.
23

 One potential explanation is that other types of STRs have stronger length 

constraints and are therefore more likely to revert back to a central allele. However, this 

explanation needs to be empirically tested to reconcile this discrepancy.  
 

Our large compendium of mutation rate estimates has also enabled novel predictions about 

genome-wide STR variation. Prior studies have estimated a rate of approximately 75 de novo 

mutations per generation
4; 8

 but have largely ignored STRs, despite their elevated mutation rates. 

Based on our projections for paternally inherited chromosomes, the number of de novo STR 

mutations is likely to rival the combined contribution of all other types of genetic variants. As 

several lines of evidence have highlighted the involvement of STR variations in complex traits
11-

13; 61
, it will be important to assess the biological impact of these de novo STR variations on 

human phenotypes. 
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Appendix A. Simulating Exact STR Genotypes 

Values of � , � , and �!  ranging from 10
-5

-10
-2

, 0–0.5, and 0.75–1.0 were used to simulate 

genotypes under a host of different mutation models. Using either the 1000 Genomes phylogeny 

or the SGDP phylogeny, each simulation was performed as follows: 

1. Randomly assign the root node an STR allele between -4 and 4 and mark it as active 

2. Remove an active node and mark it as inactive. For each of this node’s children: 

i. Calculate the child’s allele probabilities using the branch length, the true 

mutation model and the parent node’s genotype 

ii. Randomly select an STR allele based on these probabilities 

iii. Mark the descendant node as active 

3. While active nodes remain, go to step 2 

4. Report the exact STR alleles for a random subset of the samples (leaf nodes) based on the 

required sample size 

 

Appendix B. Simulating STR Sizes in Reads with PCR Stutter 
We first used the procedure above to simulate STR genotypes down the phylogeny. The true 

genotype for a particular sample �!, in concert with a given stutter model, was then utilized to 

simulate the STR sizes observed in each read as follows: 

1. Sample the number of observed reads �!"#$%,! for each sample with genotype �! from the 

read count distribution  

2. For each read from 1 through �!"#$%,! sample a number n ~ U (0,1)  

I. If � < �, randomly sample an artifact size �!  from a geometric distribution with 

parameter �!. Report the read’s STR size as �! − �! 

II. If � ≤ � < 1 − �, report the read’s STR size as �! 

III. Otherwise, randomly sample an artifact size �!from a geometric distribution with 

parameter �!. Report the read’s STR size as �! + �! 

To assess whether estimates would be accurate for even the most sparsely sequenced loci, we 

used read count distributions obtained from both Y-STR call sets corresponding to loci in the 10
th

 

percentile by coverage. For Figure 2, we used a stutter model with � = 0.15, � = 0.01 and 

�! = 0.8 and used 1, 2 and 3 reads for 65%, 25% and 10% of samples, respectively. 

 

Appendix C. Confidence Interval Estimation 
We utilized a delete-d jackknife approach to estimate mutation rate confidence intervals.

62
 For 

each Y-STR, we sampled without replacement half of the STR genotypes a total of 100 times and 

recalculated the log mutation rate using each of these subsets. Given these subsample estimates 

and the log estimate obtained using all samples, the standard error (SE) and confidence interval 

(CI) for the log mutation rate were calculated according to: 

�� =
1

100
��� �! −

1

100
��� �!

!""

!!!

!
!""

!!!

,         �� = ��� �!"! ± 1.96 ∗ �� 

 

Appendix D: Y-STR Imputation	
We extended MUTEA to impute missing STR genotypes. Using the approach outlined in Figure 

1, we first construct a phylogeny relating all samples and learn a mutation model. We then use 

this learned mutation model to pass two sets of messages along the tree and compute exact 

posteriors for each node, resulting in imputation probabilities for samples with missing 
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genotypes. For node �!  with parent �! , sibling �!  and children �!!  and �!! , its conditional 

genotype probability given the observed likelihoods � is:  

 

� �!  �) =  � �!  �!!!
,�!!! ,�!!!) = � �! ,�!!! ,�!!!  �!!!

)/� �!!!
,�!!!  | �!!!  

                  = � �!  �!!!
) � �!!!

,�!!!  �! ,�!!!)/� �!!!
,�!!!  | �!!!  

               ∝  � �!!!
 �!) � �!!!

 �!)� �!  �!!!
) 

Here, �!!  and �!!! denote the genotype likelihoods in and not in node �!’s subtree, respectively. 

We note that each of these terms is conditioned on the STR mutational model � and the Y-

chromosome phylogeny �, but we omit these here and below for brevity. 

 

The first term in the node posterior expression is computed using a bottom-up traversal of the tree 

from the leaves to the root node. Each node in the tree combines information from its two 

children using the recurrence 

� �!!!
 �! = � �!!!

,�!! = �  �!)

! ∈ !""#"#$

= � �!!!!
,�!!!! ,�!! = �  �!)

! 

 

                                      = � �!! = �  �!) � �!!!!
�!! = �  �(�!!!!

! 

| �!! = �) 

Here, ��!! and ��!! denote the two children of node �!!. This recurrence applies to all nodes 

except the leaves, where genotype posteriors or a uniform prior are used for samples with and 

without genotype information, respectively.  

 

Similarly, the second term in the node posterior expression is computed using a top-down 

traversal of the tree from the root to the leaves. After assigning the root node a uniform prior 

probability, each node combines information from its parent and sibling:  
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Web Resources 
1000 Genomes Project BAM alignments, 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data/  
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1000 Genomes Project capillary genotypes, 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140107_chrY_str_haplotypes/YST

Rs_PowerPLexY23_1000Y_QA_20130107.txt 

MUTEA, https://github.com/tfwillems/str_mut_models  

Dendroscope software, http://dendroscope.org/ 

HipSTR software, https://github.com/tfwillems/HipSTR 

RAxML software, http://sco.h-its.org/exelixis/web/software/raxml/index.html 

Simons Genome Diversity Project, https://www.simonsfoundation.org/life-sciences/simons-

genome-diversity-project-dataset/  

Simons Genome Diversity Project capillary genotypes, ftp://ftp.cephb.fr/hgdp_supp9/genotype-

supp9.txt 

Y-STR references, HipSTR call sets and Y-SNP phylogenies, https://github.com/tfwillems/ystr-

mut-rates 
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Tables	

	

Table 1. Most mutable Y-STRs with previously characterized mutation rates. 

	

Chrom	 Hg19	start	 Hg19	end	 Motif	 Mutation	rate	

(mpg)	

Homogeneous	tract	

length	(bp)	

Annotated	

name	

Y	 7053359	 7053426	 AAAG	 1.37	×	10
-2
	 68	 DYS576	

Y	 7867880	 7867943	 AAAG	 9.20	×	10
-3
	 64	 DYS458	

Y	 6861231	 6861298	 AAAG	 7.80	×	10
-3
	 72	 DYS570	

Y	 14515312	 14515363	 AGAT	 5.08	×	10
-3
	 48	 DYS439	

Y	 8426378	 8426443	 AAG	 4.67	×	10
-3
	 69	 DYS481	

Y	 21520224	 21520275	 AGAT	 4.50	×	10
-3
	 48	 DYS549	

Y	 18718889	 18718940	 AGAT	 4.20	×	10
-3
	 52	 Y-GATA-A10	

Y	 4270960	 4271019	 AGAT	 3.77	×	10
-3
	 60	 DYS456	

Y	 19372273	 19372328	 AGAT	 2.88	×	10
-3
	 48	 DYS543	

Y	 14761101	 14761160	 AGAT	 2.65	×	10
-3
	 46	 DYS442	

	

Table 2. Most mutable Y-STRs with tetranucleotide motifs and previously uncharacterized 

mutation rates. 

	

Chrom	 Hg19	start	 Hg19	end	 Motif	 Mutation	rate	

(mpg)	

Homogeneous	tract	

length	(bp)	

Annotated	

name	

Y	 14612456	 14612520	 AGAT	 5.07	×	10
-3
	 59	 DYS467	

Y	 5409729	 5409801	 AAAG	 5.06	×	10
-3
	 61	 N/A	

Y	 19500594	 19500656	 AAAG	 4.89	×	10
-3
	 63	 N/A	

Y	 14200743	 14200802	 AGAT	 4.54	×	10
-3
	 56	 N/A	

Y	 21665702	 21665764	 AAAT	 3.66	×	10
-3
	 50	 DYS548	

	

Table 3. Most mutable Y-STRs with dinucleotide motifs and previously uncharacterized 

mutation rates. 

	

Chrom	 Hg19	start	 Hg19	end	 Motif	 Mutation	rate	

(mpg)	

Homogeneous	tract	

length	(bp)	

Annotated	

name	

Y	 2807025	 2807064	 AT	 3.62	×	10
-3
	 44	 N/A	

Y	 2708412	 2708457	 AG	 1.75	×	10
-3
	 46	 N/A	

Y	 3832234	 3832278	 AC	 1.66	×	10
-3
	 45	 N/A	

Y	 6398638	 6398684	 AC	 1.62	×	10
-3
	 49	 N/A	

Y	 17109092	 17109141	 AC	 1.57	×	10
-3
	 48	 N/A	
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Supplemental Figures 
	

	

Figure S1: Scaling the Y-SNP phylogenies  

Mutation rate estimates for loci in the Y-Chromosome Haplotype Reference Database 

were compared to estimates for the same loci obtained using data from the Simons 

Genome Project (blue) and the 1000 Genomes Project (red) and a range of scaling 

factors. While the scaling factor had little effect on the R
2
, it substantially impacted the 

total squared error in the log estimates. The values minimizing this squared error were 

chosen as the optimal factor for each phylogeny. 
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Figure S2: MUTEA obtains accurate mutation rate estimates from exact genotypes 

STR genotypes were simulated for a variety of sample sizes and mutation models 

(bottom four rows) for both the Simons Genomes phylogeny (A) and 1000 Genomes 

phylogeny (B). Across 25 iterations for each simulation scenario, mutation rates 

computed after assigning each sample’s genotype unity posterior probability are unbiased 

(top row) and have reasonably low standard deviations (second row). 
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Figure S3: Simplifying mutation models results in biased mutation rate estimates 

STR genotypes were simulated for a variety of sample sizes and mutation models 

(bottom four rows) for both the Simons Genomes phylogeny (A) and 1000 Genomes 

phylogeny (B). Across 25 iterations for each simulation scenario, mutation rates 

computed after assigning each sample’s genotype unity posterior probability are biased 

(top row) if the estimated model is restricted to singe-step mutations (orange) or no 

length constraint (blue), but not if the estimated model is unrestricted as in MUTEA 

(red). 
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Figure S4: MUTEA accurately recovers the underlying stutter model 

STR genotypes were simulated for a variety of sample sizes and mutation models (green 

lines in bottom four rows). Observed reads for each set of genotypes were then simulated 

using various PCR stutter models (dashed black lines in top three rows) and provided as 

input to MUTEA. Across 25 iterators of each scenario, the median inferred stutter 

parameters (red lines) are relatively unbiased. Blue lines indicate the lower and upper 

quartiles of the estimates for each scenario. A, 1, 2, 3, 4, 5 or 6 observed reads were 

generated for 19%, 27%, 21%, 15%, 8% and 10% of the samples using the Simons 

Genome phylogeny, respectively. B, 1,2 or 3 observed reads were generated for 65%, 

25% and 10% of the samples using the 1000 Genomes phylogeny, respectively. 
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Figure S5: MUTEA infers unbiased mutation rates and step size parameters from 

stutter-affected reads using the Simons Genome Diversity Project phylogeny 

STR genotypes were simulated for a variety of sample sizes and mutation models 

(bottom four rows) using the Simons Genome phylogeny. Observed reads for each set of 

genotypes were then simulated using various PCR stutter models and provided as input to 

MUTEA. Across 25 iterations for each scenario, MUTEA inferred unbiased estimates for 

the log mutation rate (top row) and the step size parameter (third row). In contrast, a 

naïve method that computes genotype posteriors based on the fraction of supporting reads 

results in biased mutation rate estimates. For each simulation, 1, 2, 3, 4, 5 or 6 observed 

reads were generated for 19%, 27%, 21%, 15%, 8% and 10% of samples using a stutter 

model with �! = 0.95 and A) � = 0.01 and � = 0.01, B) � = 0.15 and � = 0.01, C) � = 

0.01 and � = 0.15 or D) � = 0.15 and � = 0.15. 
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Figure S6: MUTEA infers unbiased mutation rates and step size parameters from 

stutter-affected reads using the 1000 Genomes Project phylogeny 

STR genotypes were simulated for a variety of sample sizes and mutation models 

(bottom four rows) using the 1000 Genome phylogeny. Observed reads for each set of 

genotypes were then simulated using various PCR stutter models and provided as input to 

MUTEA. Across 25 iterations for each scenario, MUTEA inferred unbiased estimates for 

the log mutation rate (top row) and the step size parameter (third row). In contrast, a 

naïve method that computes genotype posteriors based on the fraction of supporting reads 

results in biased mutation rate estimates. For each simulation, 1, 2, or 3 observed reads 

were generated for 65%, 25%, and 10% of samples using a stutter model with �! = 0.8 

and A) � = 0.01 and � = 0.01, B) � = 0.15 and � = 0.01, C) � = 0.01 and � = 0.15 or D) 

� = 0.15 and � = 0.15. 
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Figure S7: Relationship between stutter probabilities within and across datasets  

For a given Y-STR locus, the probabilities of stutter increasing (u) or decreasing (d) the 

size of the STR in each read were highly correlated (first column). However, the 1000 

Genomes stutter rates largely fell above the diagonal (red line), indicating the higher rates 

of stutter in this dataset. Within each dataset, nearly all loci had a higher rate of 

downward stutter than upward stutter (second column). 
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Figure S8: SGDP estimates replicate Burgarella estimates based on large numbers 

of father-son pairs 

Ten mutation rate estimates generated by Burgarella et al. using more than 5000 father-

son pairs are highly concordant with estimates from the SGDP data and largely fall along 

the diagonal (red line). 
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Figure S9: Sequence determinants of Y-STR mutability for loci with dinucleotide 

repeat units 

Stratified by repeat motif (rows) and major allele length (first column), loci with no 

interruptions to the repeat structure (blue) are generally more mutable than those with one 

interruption (green) or more than one interruption (red). While major allele length is a 

poor predictor of mutability, the length of the longest interrupted tract is a very strong 

predictor of the log mutation rate for each motif length (second column). 
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Figure S10: Sequence-based predictors of Y-STR mutation rates 

For Y-STRs with di-, tri- and tetranucleotide motifs (rows), the mutation rates for 

polymorphic Y-STRs (cyan) and fixed Y-STRs (green) were utilized to fit predictive 

models of the mutation rate (red). In general, the models predict a monotonic increase in 

log mutation rate with increasing uninterrupted tract lengths. Fixed Y-STRs were 

assigned a flat rate of 10
-5

 mpg and are displayed using jittered y-values to facilitate 

visualization.  	
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Figure S11: MUTEA-IMPUTE results in well-calibrated imputation probabilities 

Y-STR genotypes for 1000 Genomes samples and loci in the PowerPlex Y23 panel were 

imputed across 1000 iterations using a reference panel of 500 samples and 70 imputed 

samples. The accuracy for each posterior probability bin (top panel) largely followed the 

diagonal (red line), demonstrating that the imputation probabilities reflect the true 

probability of being correct.  
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Supplemental Tables 
	

	

Table S3. Imputation accuracy for loci in the PowerPlex Y23 Panel 

 

  Posterior > 0% Posterior > 70% 

Marker � (mpg) % Calls % Correct % Calls % Correct 

DYS392 0.0006 100 93.1 96.4 94.5 

DYS438 0.0006 100 93.1 95.4 95.1 

DYS437 0.0007 100 92.7 95.0 94.3 

DYS393 0.0014 100 82.5 76.9 87.8 

DYS448 0.0017 100 81.9 80.2 89.4 

DYS533 0.0017 100 78.1 74.2 85.5 

DYS643 0.0019 100 80.0 78.1 86.3 

DYS391 0.0022 100 73.5 54.8 80.1 

Y-GATA-H4 0.0023 100 72.2 45.3 87.3 

DYS390 0.0025 100 76.4 51.4 84.2 

DYS385a 0.0025 100 74.3 64.5 87.9 

DYS389I 0.0027 100 72.2 28.7 86.5 

DYS19 0.0028 100 70.3 35.0 88.5 

DYS635 0.0032 100 68.6 54.9 81.7 

DYS456 0.0037 100 60.5 20.5 91.6 

DYS549 0.0043 100 55.8 4.9 85.8 

DYS439 0.0050 100 50.0 3.0 83.5 

DYS481 0.0051 100 56.8 24.0 83.0 

DYS385b 0.0052 100 53.7 17.2 87.2 

DYS389II 0.0056 100 49.1 6.6 86.8 

DYS458 0.0079 100 38.3 0.7 34.8 

DYS570 0.0095 100 41.3 0.8 94.3 

DYS576 0.0096 100 33.6 0.5 63.9 

All  100 67.3 38.8 88.5 
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