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I. Abstract	24	

Background:	Epistasis	and	gene-environment	interactions	are	known	to	contribute	significantly	to	25	

variation	of	complex	phenotypes	in	model	organisms.	However,	their	identification	in	human	26	

association	studies	remains	challenging	for	myriad	reasons.	In	the	case	of	epistatic	interactions,	the	27	

large	number	of	potential	interacting	sets	of	genes	presents	computational,	multiple	hypothesis	28	

correction,	and	other	statistical	power	issues.	In	the	case	of	gene-environment	interactions,	the	lack	29	

of	consistently	measured	environmental	covariates	in	most	disease	studies	precludes	searching	for	30	

interactions	and	creates	difficulties	for	replicating	studies.		31	

	32	

Results:	In	this	work,	we	develop	a	new	statistical	approach	to	address	these	issues	that	leverages	33	

genetic	ancestry	in	admixed	populations.	We	applied	our	method	to	gene	expression	and	methylation	34	

data	from	African	American	and	Latino	admixed	individuals	respectively,	identifying	nine	35	

interactions	that	were	significant	at	𝑝 < 5×10'(,	we	show	that	two	of	the	interactions	in	methylation	36	

data	replicate,	and	the	remaining	six	are	significantly	enriched	for	low	p-values	(𝑝 < 1.8×10'+).			37	

	38	

Conclusion:	We	show	that	genetic	ancestry	can	be	a	useful	proxy	for	unknown	and	unmeasured	39	

covariates	in	the	search	for	interaction	effects.	These	results	have	important	implications	for	our	40	

understanding	of	the	genetic	architecture	of	complex	traits.	41	

	42	
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	45	

II. Background	46	

Genetic	association	studies	in	humans	have	focused	primarily	on	the	identification	of	47	

additive	SNP	effects	through	marginal	tests	of	association.	There	is	growing	evidence	that	both	48	

epistatic	and	gene-environment	 𝐺×𝐸 	interactions	contribute	significantly	to	phenotypic	variation	49	

in	humans	and	model	organisms[1-5].	In	addition	to	explaining	additional	components	of	missing	50	

heritability,	interactions	lend	insights	into	biological	pathways	that	regulate	phenotypes	and	improve	51	

our	understanding	of	their	genetic	architectures.	However,	identification	of	interactions	in	human	52	

studies	has	been	complicated	by	the	computational	and	multiple	testing	burden	in	the	case	53	

of	epistatic	interactions,	and	the	lack	of	consistently	measured	environmental	covariates	in	the	case	54	

of	𝐺×𝐸	interactions[6,7].	55	

To	overcome	these	challenges,	we	leverage	the	unique	nature	of	genomes	from	recently	56	

admixed	populations	such	as	African	Americans,	Latinos,	and	Pacific	Islanders.	Admixed	genomes	are	57	

mosaics	of	different	ancestral	segments[8]	and	for	each	admixed	individual	it	is	possible	to	58	

accurately	estimate	𝜃,	the	proportion	of	ancestry	derived	from	each	ancestral	population	(e.g.	the	59	

fraction	of	European/African	ancestry	in	African	Americans)[9].	Ancestry	has	been	previously	60	

leveraged	to	demonstrate	that	an	array	of	environmental	and	biomedical	covariates	are	correlated	61	

with	𝜃	[10-20]	and	we	therefore	consider	its	use	as	a	surrogate	for	unmeasured	and	unknown	62	

environmental	exposures.	𝜃	is	also	correlated	with	the	genotypes	of	SNPs	that	are	differentiated	63	

between	the	ancestral	populations,	suggesting	that	𝜃	may	be	effectively	used	as	a	proxy	for	detecting	64	

multi-way	epistatic	interactions.	Therefore,	we	propose	a	new	SNP	by	𝜃	test	of	interaction	in	order	to	65	

detect	evidence	of	interaction	in	admixed	populations.		66	

We	first	investigate	the	properties	of	our	method	through	simulated	genotypes	and	67	

phenotypes	of	admixed	populations.	In	our	simulations	we	demonstrate	that	differential	linkage-68	

disequilibrium	(LD)	between	ancestral	populations	can	produce	false	positive	SNP	by	θ	interactions	69	

when	local	ancestry	is	ignored.	To	accommodate	differential	LD,	we	include	local	ancestry	in	our	70	

statistical	model	and	demonstrate	that	this	properly	controls	this	confounding	factor.	We	also	show	71	
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that	our	approach,	the	Ancestry	Test	of	Interaction	with	Local	Ancestry	(AITL),	is	well-powered	to	72	

detect	𝐺×𝐸	interactions	when	θ	is	correlated	with	the	environmental	covariates	of	interest	and	73	

multi-way	epistatic	interactions.	The	power	for	detecting	pairwise	𝐺×𝐺	interactions	at	highly	74	

differentiated	SNPs	is	lower	than	direct	interaction	tests	even	after	accounting	for	the	additional	75	

multiple	testing	burden.	However,	the	results	of	our	simulations	show	that	AITL	is	well	powered	to	76	

detect	multi-way	epistasis	involving	tens	or	hundreds	of	SNPs	of	small	effects,	not	detectable	by	77	

pairwise	tests.	78	

We	first	examined	molecular	phenotypes	by	applying	our	method	to	gene	expression	data	79	

from	African	Americans,	as	well	as	DNA	methylation	data	from	Latinos.	Gene	expression	traits	have	80	

previously	been	shown	to	have	large-scale	differences	as	a	function	of	genetic	ancestry[13].	Other	81	

molecular	phenotypes,	such	as	LDL	levels,	have	also	been	shown	to	be	associated	with	genetic	82	

ancestry	[13,16,21-24].	For	gene	expression	in	particular,	Price	et	al.	showed	that	the	effects	of	83	

ancestry	on	expression	are	widespread	and	not	restricted	to	a	handful	of	genes.	Additionally,	84	

molecular	phenotypes	are	often	used	in	deep	phenotyping	and	Mendelian	randomization	studies	and	85	

are	thus	directly	relevant	to	elucidating	disease	biology[25,26].		86	

We	identified	one	genome-wide	significant	interaction	 𝑝 < 5×10'( 	associated	with	gene	87	

expression	in	the	African	Americans	and	eight	significant	interactions	 𝑝 < 5×10'( 	associated	with	88	

methylation	in	the	Latinos.	Two	of	the	eight	interactions	associated	with	DNA	methylation	in	the	89	

Latinos	also	replicated	and	the	remaining	six	were	enriched	for	low	p-values	(𝑝 < 1.8×10'+).	To	90	

demonstrate	that	our	approach	works	in	larger	data	sets	we	also	applied	AITL	to	asthma	case-control	91	

data	from	Latinos	and	observed	well-calibrated	test	statistics.	Together,	these	results	provide	92	

evidence	for	the	existence	of	interactions	regulating	expression	and	methylation	and	show	that	our	93	

approach	is	statistically	sound.		94	

III. Results	95	

Simulated	Data	96	
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To	determine	the	utility	of	using	𝜃	as	a	proxy	for	unmeasured	and	unknown	environmental	97	

covariates,	we	applied	the	AITL	to	simulated	2-way	admixed	individuals.	We	tested	𝜃8,	the	98	

proportion	of	ancestry	from	ancestral	population	1,	for	interaction	with	simulated	SNPs	(see	99	

Simulation	Framework).	Power	was	computed	over	1,000	simulations,	assuming	10,000	SNPS	being	100	

tested,	and	using	a	Bonferroni	correction	p-value	cutoff	of	5×10'+.	We	calculated	the	power	using	101	

assumed	interaction	effect	sizes	(either	𝛽:×: 	or	𝛽:×;)	of	0.1,	0.2,	0.3,	and	0.4	(see	Simulation	102	

Framework).	Although	the	few	interactions	reported	for	human	traits	and	diseases	have	smaller	103	

effects	in	terms	of	the	phenotypic	variance	they	explain,	we	simulated	large	effects	because	genetic	104	

and	environmental	effect	sizes	in	omics	data,	such	as	the	expression	and	methylation	data	considered	105	

here,	are	known	to	be	of	larger	magnitude.	For	example,	some	cis-eQTL	SNPs	explain	up	to	50%	of	106	

the	variance	of	gene	expression[27].	However	for	most	phenotypes,	known	interactions	will	explain	a	107	

very	small	proportion	of	the	phenotypic	variance,	mainly	due	to	the	fact	that	so	few	interactions	have	108	

been	identified	and	replicated[28].	109	

	110	

Power	When	Using	𝜃	as	a	Proxy	for	Highly	Differentiated	SNPs		111	

To	determine	whether	using	𝜃	as	a	proxy	for	highly	differentiated	SNPs	is	more	powerful	112	

than	testing	all	pairs	of	potentially	interacting	SNPs	directly,	we	simulated	two	interacting	SNPS	in	113	

1000	admixed	individuals	(see	Simulation	Framework).	We	then	tested	for	an	interaction	using	AITL	114	

by	replacing	the	genotypes	at	the	highly	differentiated	SNP	with	𝜃8.	We	observed	that	even	with	115	

moderate	effect	sizes,	using	𝜃	in	place	of	the	actual	genotypes	does	not	provide	any	increase	in	power	116	

even	after	accounting	for	multiple	corrections	(see	Figure	1a).	This	is	in	agreement	with	recent	work	117	

showing	the	limited	utility	of	local	ancestry	by	local	ancestry	interaction	test	to	identify	underlying	118	

SNP	by	SNP	interaction	when	genotype	data	are	available[29].	For	the	larger	effect	sizes	we	119	

simulated,	we	do	see	power	increasing	as	the	delta	between	ancestral	frequencies	increases.	The	120	

plots	show	that	AITL	has	little	power	unless	the	effect	was	very	strong.	Figure	1b	reveals	that	even	121	

with	the	multiple	correction	penalty,	testing	all	pairwise	SNPS	directly	is	always	more	powerful.	We	122	

note	that	when	testing	the	interacting	SNPs	directly,	we	used	a	cutoff	p-value	of	1×10'<	since	in	123	

theory	we	were	testing	all	unique	pairs	of	10,000	SNPs.	Based	on	these	results,	we	would	124	
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recommend	testing	for	pairs	of	interacting	SNPs	directly	if	pairwise	𝐺×𝐺	interactions	are	a	subject	of	125	

interest	in	the	study.		126	

However,	when	multi-way	interactions	are	considered,	AITL	may	become	more	powerful	127	

since	differentiated	SNPs	across	the	genome	will	be	correlated	with	genetic	ancestry.	These	128	

simulations	are	important	as	other	studies	have	suggested	that	higher	order	interactions	may	be	129	

important	for	some	traits[1,30,31].	To	evaluate	the	ability	of	𝜃	to	serve	as	a	proxy	for	multiple	130	

(independent)	differentiated	SNPs,	we	simulated	a	scenario	where	a	candidate	SNP	z	had	131	

interactions	with	m	SNPs	(see	Simulation	Framework).	For	each	interaction,	we	assumed	a	small	132	

interaction	effect	size	 𝛽:×: = 0.025 ,	which	would	not	be	detectable	using	a	pairwise	approach,	as	133	

we	demonstrated	in	the	pairwise	simulation.	Figure	2	shows	that	AITL	is	better	powered	to	detect	134	

the	existence	of	interactions	than	a	pairwise	approach	in	the	presence	of	multiple	interacting	SNPs	135	

with	a	candidate	SNP.		136	

	137	

Power	When	Using	𝜃	as	a	Proxy	Environmental	Covariate		138	

When	assessing	the	utility	of	𝜃	as	a	proxy	for	an	environmental	covariate	E,	we	simulated	139	

3000	individuals.	E	was	simulated	such	that	it	was	correlated	with	the	global	ancestries	in	varying	140	

degrees	(see	Simulation	Framework).	Figure	3	shows	the	power	of	the	AITL	as	a	function	of	the	141	

Pearson	correlation	between	𝜃8	and	E.	The	power	of	testing	E	directly	is	exactly	the	power	of	the	142	

AITL	when	the	correlation	is	equal	to	1.	As	expected,	as	the	correlation	increases,	the	power	143	

increases	as	well.		When	the	effect	size	is	0.1,	the	power	to	detect	a	𝐺×𝐸	interaction	is	low	whether	144	

one	uses	𝜃8	or	E.	However,	both	tests	are	much	better	powered	for	effect	sizes	greater	or	equal	to	0.2,	145	

with	the	AITL’s	power	being	dependent	on	the	level	of	correlation.	Note	that	using	𝜃	as	a	proxy	for	E	146	

is	equivalent	to	testing	GxE	in	the	presence	of	measurement	error.	Under	the	assumption	of	non-147	

differential	error	with	regard	to	the	outcome	(e.g.	the	correlation	between	𝜃	and	E	is	equal	among	148	

cases	and	control)	such	a	test	is	underpowered	but	has	a	controlled	type	I	error	rate	under	the	149	

null[32].	150	

	151	

Differential	LD	152	
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To	demonstrate	that	differential	LD	has	the	potential	to	cause	inflated	test-statistics,	we	ran	153	

10,000	simulations	of	1000	admixed	individuals.	For	each	individual	we	simulated	2	SNPs,	a	causal	154	

SNP	and	a	tag	SNP.		The	LD	between	the	tag	SNP	and	causal	SNP	was	different	based	on	the	ancestral	155	

background	the	SNPs	were	on	(see	Simulation	Framework).	Over	10,000	simulations,	we	computed	156	

the	mean	𝜒8@	test-statistic	for	the	AIT	and	the	AITL.	We	note	that	the	phenotypes	for	these	157	

simulations	were	generated	under	a	model	that	assumed	no	interaction.	We	observed	a	mean	𝜒8@ =158	

0.996	with	a	standard	deviation	of	1.53	for	AITL.	AIT,	which	does	not	condition	on	local	ancestry,	had	159	

a	mean	𝜒8@ = 3.59	with	a	standard	deviation	of	3.60.	We	also	looked	at		genomic	control	𝜆:E ,	the	ratio	160	

of	the	observed	median	𝜒@	over	the	expected	median	𝜒@	under	the	null[33].	𝜆:E 	compares	the	161	

median	observed	𝜒@	test-statistic	versus	the	true	median	under	the	null.	In	our	simulations,	we	162	

observed	𝜆:E = 5.81	for	AIT	and	𝜆:E = 0.980	for	AITL	(see	Supplementary	Figure	S1).	Last,	we	163	

computed	the	proportion	of	test-statistics	that	passed	a	p-value	threshold	of	.05	and	.01	in	our	164	

simulations.	The	AIT	had	3687	statistics	passing	a	p-value	of	.05	and	1687	at	a	threshold	of	.01,	165	

whereas	AITL	had	464	and	96	at	the	same	p-value	thresholds.	The	results	for	AITL	are	as	expected	166	

under	a	true	null.	The	results	from	our	simulations	show	that	not	accounting	for	local	ancestry	can	167	

result	in	inflated	test-statistics	and	can	potentially	lead	to	false	positive	findings.	168	

	169	

Real	Data	170	

Coriell	Gene	Expression	Results	171	

We	first	applied	our	method	to	the	Coriell	gene	expression	dataset[34].	The	Coriell	cohort	is	172	

composed	of	94	African-American	individuals	and	the	gene	expression	values	of	~8800	genes	in	173	

lymphoblastoid	cell	lines	(LCLs).	Since	African	Americans	derive	their	genomes	from	African	and	174	

European	ancestral	backgrounds,	we	tested	for	interaction	between	a	given	SNP	and	the	proportion	175	

of	European	ancestry,	𝜃;FG .	Each	SNP	by	𝜃;FG 	term	was	tested	once	for	association	with	the	176	

expression	of	the	gene	closest	to	the	SNP.	We	observed	well-calibrated	statistics	with	a	𝜆:E 	equal	to	177	

1.04	(see	Supplementary	Figure	S2).	In	the	LCLs,	we	found	that	interaction	of	rs7585465	with	𝜃;FG 	178	

was	associated	with	ERBB4	expression	 AITL	𝑝 = 2.95×10'(,marginal	𝑝 = 0.404 	at	a	genome-wide	179	

significant	threshold	 𝑝 ≤ 5×10'( .	rs7585465	has	a	‘C’	allele	frequency	of	0.218	in	the	Corriell	data	180	
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and	appears	to	be	differentiated	between	CEU	and	YRI	with	allele	frequencies	of	0.619	and	0.097	in	181	

the	respective	populations.	182	

Given	that	the	gene	expression	values	come	from	LCLs	(all	cultured	according	to	the	same	183	

standards),	the	SNPs	may	be	interacting	with	epigenetic	alterations	due	to	environmental	exposures	184	

that	have	persisted	since	transformation	into	LCLs.	This	scenario	is	unlikely,	and	we	believe	that	185	

signals	are	driven	by	multi-way	epistatic	interactions.	In	our	simulations,	we	showed	that	using	𝜃	as	186	

a	proxy	for	a	single	highly	differentiated	SNP	is	underpowered	compared	to	testing	all	pairs	of	187	

potentially	interacting	SNPs	directly.	However,	there	are	many	SNPs	that	are	highly	differentiated	188	

across	the	genome	with	which	𝜃	will	be	correlated.	It	is	therefore	possible	that	𝜃	is	capturing	the	189	

interaction	between	the	aggregate	of	many	differentiated	trans-SNPs	(i.e.	global	genetic	background)	190	

and	the	candidate	SNP.	This	is	consistent	with	a	recently	reported	finding,	conducted	in	human	iPS	191	

cell	lines,	that	genetic	background	accounts	for	much	of	the	transcriptional	variation[2,35].		192	

Although	we	believe	the	ERBB4	result	to	be	representative	of	multi-way	epistasis,	we	193	

performed	a	standard	pairwise	interaction	test	(see	Methods)	to	check	for	interaction	between	194	

rs7585465	and	other	SNPs	genome-wide.	Interestingly,	we	found	that	the	standard	interaction	test	195	

(see	Methods)	showed	substantial	departure	from	the	null	with	a	𝜆:E 	equal	to	1.8	(see	196	

Supplementary	Figure	S3).	Since	the	interaction	of	rs7585465	by	𝜃	was	significant,	the	pairwise	197	

interaction	test-statistics	of	rs7585465	by	any	SNP	j	can	be	inflated	if	j	is	correlated	with	𝜃.	We	found	198	

that	including	the	original	significant	SNP	by	𝜃	term	in	the	null	(see	Methods)	brought	the	𝜆:E 	down	199	

to	1.05,	and	controlled	for	such	scenarios	in	this	dataset	(See	Supplementary	Figure	S3).	As	we	had	200	

previously	anticipated,	identifying	the	exact	interactions	driving	the	SNP	by	𝜃	interaction	proved	to	201	

be	difficult.	We	found	one	borderline	significant	SNP	(rs4839709,	𝑝 = 3.08×10'T)	but	no	202	

interactions	that	passed	genome-wide	significance.	These	results	are	consistent	with	what	we	have	203	

observed	in	simulations,	in	which	even	though	a	standard	pairwise	interaction	test	is	underpowered	204	

to	detect	interactions,	AITL	is	able	to	identify	the	main	locus	involved	in	a	multi-way	interaction.	205	

	206	
	207	

GALA	II	Case-Control	208	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 1, 2016. ; https://doi.org/10.1101/036640doi: bioRxiv preprint 

https://doi.org/10.1101/036640


	

	 9	

To	determine	if	our	method	is	biased	in	large	structured	GWAS	data,	we	applied	AITL	to	209	

case-control	data	from	a	study	of	asthmatic	Latino	individuals	called	the	Genes-environments	and	210	

Admixture	in	Latino	Americans	(GALA	II)[36].	The	dataset	includes	1158	Mexicans	and	1605	Puerto	211	

Ricans,	which	were	analyzed	separately.	Case	status	was	assigned	to	individuals	if	they	were	212	

between	the	ages	of	8	and	40	years	with	a	physician-diagnosed	mild	to	moderate-to-severe	asthma.	213	

Additionally,	they	had	to	have	experienced	2	or	more	asthma	related	symptoms	in	the	previous	2	214	

years	at	the	time	of	recruitment[37].	In	the	Mexicans	and	Puerto	Ricans	there	were	548	and	797	215	

cases,	respectively.	In	our	analysis,	we	also	included	BMI,	age,	and	sex	as	additional	covariates.	We	216	

observed	well-calibrated	statistics	with	a	𝜆:E 	equal	to	1.00	and	0.98	in	the	Mexicans	and	Puerto	217	

Ricans,	respectively	(see	Supplementary	Figure	S5).	In	contrast	to	the	molecular	phenotype	data,	218	

searches	for	interactions	in	these	phenotypes	did	not	yield	any	findings	passing	genome-wide	219	

significance.	This	is	consistent	with	previous	disease	studies	that	have	failed	to	find	many	replicable	220	

interactions	in	disease	studies[28].	In	the	data	here,	the	lack	of	any	findings	may	be	due	to	the	221	

relatively	small	sample	size	or	because	the	effects	of	the	interactions	are	extremely	small	(if	they	222	

exist	for	covariates	correlated	with	𝜃;FG).		223	

	224	

GALA	II	Methylation	Results	225	

We	searched	for	interactions	in	methylation	data	derived	from	a	study	of	GALA	II	asthmatic	226	

Latino	individuals[36].	The	methylation	data	is	composed	of	141	Mexicans	and	184	Puerto	Ricans.	As	227	

the	phenotype,	we	used	DNA	methylation	measurements	on	~300,000	markers	from	peripheral	228	

blood.	As	we	had	done	with	gene	expression,	we	tested	for	interaction	between	a	given	SNP	and	𝜃;FG 	229	

using	AITL.	All	SNPs	within	a	1	MB	window	centered	around	the	methylation	probe	were	tested.	We	230	

used	the	European	component	of	ancestry	because	it	is	the	component	shared	most	between	231	

Mexicans	and	Puerto	Ricans	(see	Table	1).	We	observed	well-calibrated	test-statistics	with	𝜆:E 	equal	232	

to	1.06	in	the	Mexicans	and	0.96	in	the	Puerto	Ricans	(see	Supplementary	Figure	S6).	We	tested	233	

128,794,325	methylation-SNP	pairs,	which	result	in	a	Bonferroni	corrected	p-value	cutoff	of	234	

3.88×10'8U.	However,	this	cutoff	is	extremely	conservative	given	the	tests	are	not	independent.	We	235	

therefore	report	all	results	that	are	significant	at	5×10'(	in	either	set	as	an	initial	filter.	We	found	5	236	
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interactions	in	the	Mexicans	and	3	in	the	Puerto	Ricans	that	are	significant	at	this	threshold	(see	237	

Table	2).		238	

Unlike	the	Coriell	individuals,	who	are	2-way	admixed,	the	GALA	II	Latinos	are	3-way	239	

admixed	and	derive	their	ancestries	from	European,	African,	and	Native	American	ancestral	groups.	240	

Consequently,	to	confirm	that	incomplete	modeling	or	better	tagging	on	one	of	the	non-European	241	

ancestries	was	not	driving	the	results,	we	retested	all	significant	interactions	including	a	second	242	

component	of	ancestry	for	AITL.	In	the	case	of	the	Mexicans,	we	included	African	and	European	243	

ancestry,	and	in	the	case	of	the	Puerto	Ricans,	we	included	European	and	Native	American	ancestry.	244	

Even	after	adjusting	for	the	second	ancestry	the	interactions	between	SNP	and	𝜃;FG 	remained	highly	245	

significant	(see	Supplementary	Table	1).		246	

As	we	did	for	the	gene	expression	data,	we	attempted	to	identify	pairwise	interactions	247	

involved	in	the	methylation	data	results.	For	each	genome-wide	significant	result,	we	performed	a	248	

standard	pairwise	interaction	test	of	all	SNPs	with	the	original	SNP	found	to	be	significant	with	AITL.	249	

We	were	unable	to	identify	any	significant	interactions	after	applying	genomic	control	to	the	results.	250	

For	all	tests,	we	included	the	significant	SNP	by	𝜃	term	(see	Methods)	in	the	null.	For	this	dataset,	251	

unlike	the	gene	expression	data,	we	observed	substantial	remaining	departure	from	the	null	(see	252	

Supplementary	Table	S2)	even	after	including	the	original	significant	SNP	by	𝜃	term,	suggesting	there	253	

may	be	other	factors	that	need	to	be	accounted	for	when	testing	for	interactions	in	admixed	254	

populations.	The	results	from	our	pairwise	scan	are	what	we	would	anticipate,	given	that	in	255	

simulations	only	AITL	(not	the	standard	pairwise	interaction	test)	was	able	to	identify	the	main	locus	256	

involved	in	the	multi-way	interaction.	257	

We	then	performed	a	replication	study	of	the	significant	Puerto	Rican	associations	in	the	258	

Mexican	cohort	and	vice	versa.	To	account	for	the	fact	that	we	are	replicating	eight	total	results	259	

across	both	populations,	we	used	a	Bonferroni	corrected	p-value	threshold	equal	to	. 05/8 =260	

6.25×10'W.	The	interaction	of	rs4312379	and	rs4312379	with	ancestry	in	the	Puerto	Ricans	261	

replicated	in	the	Mexicans.	Furthermore,	there	was	a	highly	significant	enrichment	of	low	p-values	in	262	

the	replication	study	among	the	discovery	results	(permutation	𝑝 < 1×10'X).	Furthermore,	5	out	of	263	

the	6	non-replicating	results	have	a	p-value	less	than	0.05	(binomial	test		𝑝 < 1.8×10'+).	The	results	264	
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of	the	permutation	and	binomial	test	suggests	that	the	interactions	that	did	not	replicate	are	likely	to	265	

do	so	with	bigger	sample	sizes.	It	is	important	to	note	that	replicated	interactions	and	the	enrichment	266	

for	low	p-values	do	not	necessarily	indicate	that	the	same	genetic	or	environmental	covariates	are	267	

interacting	with	the	genetic	locus	in	both	populations.	The	covariates	correlated	with	𝜃;FG 	in	one	268	

population	are	not	necessarily	those	correlated	with	𝜃;FG 	in	the	other	population.	There	may	be	269	

correlations	which	exist	in	both	populations	but		𝜃;FG 		serves	as	a	proxy	for	all	such	correlated	270	

covariates	and	therefore	should	not	be	necessarily	viewed	as	a	proxy	for	any	specific	one.	Overall,	271	

our	results	from	the	GALA	II	(methylation)	cohort	suggest	there	are	both	genetic	and	environmental	272	

variables	contributing	to	epistasis	that	have	yet	to	be	discovered	in	admixed	individuals.		273	

	274	

IV. Discussion	and	Conclusions	275	

For	many	disease	architectures,	interactions	are	believed	to	be	a	major	component	of	276	

missing	heritability[38].	Finding	new	interactions	has	proven	to	be	difficult	for	logistical,	statistical,	277	

biological,	and	computational	reasons.	In	this	study,	we	have	demonstrated	that	in	admixed	278	

populations,	testing	for	𝐺×𝜃	interactions	can	be	leveraged	to	overcome	some	of	the	difficulties	279	

typically	encountered	when	searching	for	interactions.	The	computational	cost	is	minimal	and	has	280	

the	same	order	as	running	a	standard	GWAS.		281	

One	drawback	of	our	method	is	that	it	does	not	identify	which	covariate	is	interacting	with	a	282	

genetic	locus.	Nevertheless,	the	approach	can	show	whether	an	interaction	effect	exists	in	a	given	283	

dataset	and	if	it	does	exist,	our	method	ensures	that	an	underlying	genetic	or	environmental	284	

covariate(s)	is	correlated	with	ancestry.	Additionally,	in	the	case	where	there	is	no	marginal	effect,	285	

our	approach	identifies	new	loci	and	shows	that	the	genetic	locus	influences	the	phenotype	and	286	

exerts	its	effects	through	interactions,	which	has	important	implications	for	the	genetic	architecture	287	

of	the	phenotype.	The	relative	contribution	of	additive	and	non-additive	genetic	effects	to	variability	288	

in	molecular	phenotypes	and	disease	risk	is	an	important	area	of	investigation,	and	our	approach	289	

provides	a	direct	test	for	detecting	non-additive	contributions[39].		290	

Environmental	covariates	are	often	not	consistently	measured	across	cohorts	whereas	291	

genetic	ancestry	is	nearly	perfectly	replicable.	Testing	for	the	presence	of	interaction	using	a	nearly	292	
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perfectly	reproducible	covariate	may	enhance	our	understanding	of	the	genetic	basis	of	disease	and	293	

other	traits.	Our	method	also	provides	the	additional	benefit	of	not	being	confounded	by	interactions	294	

between	unaccounted-for	covariates[40].	295	

Association	testing	for	interaction	effects	involving	continuous	environmental	exposures	in	296	

the	context	of	mixed-models	remains	an	open	problem.	For	binary	environmental	exposures,	it	has	297	

been	shown	that	mixed-models	control	for	population	structure	nominally	better	than	including	298	

genetic	ancestry	(or	principal	components)	as	a	covariate[41].	Because	it	is	unclear	how	mixed-299	

models	perform	with	continuous	environmental	exposures,	especially	those	correlated	with	300	

ancestry,	in	our	analyses	we	took	the	standard	approach	of	filtering	related	individuals	and	including	301	

ancestry	as	a	covariate.		302	

It	has	been	shown	that	2-step	analyses	may	be	more	powerful	for	detecting	interactions	303	

when	exposures	are	binary	[42-44].	However,	these	studies	have	primarily	been	done	in	a	single	304	

homogeneous	population,	and	the	correct	null	distribution	for	the	interaction	effect	must	assume	305	

that	the	2nd	stage	procedure	is	independent	of	the	marginal	effect	test-statistic.	In	real	data,	using	a	2-306	

step	approach	in	conjunction	with	AITL	to	test	for	interactions	may	be	problematic	because	the	307	

interaction	effect	size	will	not	necessarily	be	independent	of	the	marginal	effect	size,	as	the	allele	308	

frequency	at	any	SNP	will	be	a	function	of	ancestry	in	an	admixed	population.	Additionally,	only	1	of	309	

the	interaction	results	that	we	report	here	had	a	marginal	effect	(p<	0.05)	and	thus	would	have	been	310	

missed	by	a	2-step	approach.	Thus,	our	approach	can	serve	to	complement	or	extend	the	frequently	311	

used	2-step	procedure	for	detecting	interaction	effects.	312	

Results	from	our	multi-way	epistasis	simulation	analyses	and	empirical	data	in	cell	lines	313	

suggest	that	genetic	ancestry	is	a	good	proxy	for	genetic	background,	since	all	highly	differentiated	314	

SNPs	across	the	genome	will	be	correlated	with	genetic	ancestry.	Our	simulations	also	demonstrated	315	

that	genetic	ancestry	can	be	a	good	proxy	for	an	environmental	covariate	depending	on	the	316	

correlation	between	the	two.	However,	it	may	be	the	case	that	there	are	multiple	environmental	317	

factors	interacting	with	a	genetic	locus,	all	of	which	are	correlated	with	θ	in	differing	degrees	and	318	

effect	sizes.	Such	a	situation	would	mirror	what	we	saw	in	our	multi-way	𝐺×𝐺	simulations	where	a	319	

single	interaction	may	not	be	detectable	by	using	a	traditional	𝐺×𝐸	test,	but	because	θ	aggregates	the	320	
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effects	of	all	interacting	covariates,	AITL	would	be	able	to	detect	it.	There	are	also	other	contexts	in	321	

which	modeling	SNP	by	θ	may	be	useful,	such	as	using	variance	components.	For	example,	SNP	by	θ	322	

interaction	terms	can	be	used	in	a	mixed-model	framework	to	test	for	interaction	effects	because	323	

genetic	ancestry	is	correlated	with	many	genetic	markers	and	environmental	covariates[45].		324	

For	some	traits,	there	may	be	systematic	differences	between	ancestral	populations	in	the	325	

genetic	effects	on	the	trait.	In	admixed	individuals	with	these	ancestral	populations,	the	effect	of	326	

genetic	variation	on	phenotype	will	be	reflected	in	the	correlation	between	phenotype	and	θ,	thereby	327	

affecting	epistatic	and	𝐺×𝐸	interactions.	It	will	be	interesting	to	see	how	much	of	the	phenotype-328	

ancestry	correlations	are	due	to	epistatic	and	𝐺×𝐸	interactions.	329	

In	our	analysis	of	real	data,	we	discovered	gene	by	θ	interactions	associated	with	genes	that	330	

have	known	interactions.	In	the	GALA	II	Mexicans,	the	interaction	of	rs925736	with	ancestry	was	331	

associated	with	the	methylation	of	HDAC4,	a	known	histone	deaceytlase	(HDAC).		In	concert	with	332	

DNA	methylases,	HDACs	function	to	regulate	gene	expression	by	altering	chromatin	state[46].	In	333	

Europeans,	HDACs	have	been	shown	to	be	associated	with	lung	function	through	direct	genetic	334	

effects	and	through	environmental	interactions[47,48].	For	the	GALA	II	Puerto	Ricans,	rs17091085	335	

showed	an	interaction	associated	with	the	methylation	state	of	SERPINA6.	Of	note,	interaction	336	

between	birth	weight	and	SERPINA6	has	been	previously	associated	with	Hypothalamic-Pituitary-337	

Adrenal	axis	function[49].	Further	investigations	of	our	interaction	findings	are	thus	warranted.		338	

In	the	GALA	II	(methylation)	dataset,	two	of	the	eight	significant	associations	replicated	and,	339	

in	general,	the	results	had	an	enrichment	of	low	p-values	in	the	replication	dataset.	However,	we	note	340	

that	if	the	interactions	detected	by	AITL	are	multi-way	epistasis	it	is	more	likely	that	the	results	will	341	

replicate.	This	is	because	most	SNPs	differentiated	in	the	Mexicans	will	still	be	differentiated	in	the	342	

Puerto	Ricans,	and	thus	still	be	correlated	with	θ.	If	the	interactions	detected	by	AITL	are	𝐺×𝐸	343	

interactions,	then	the	interactions	are	less	likely	to	replicate	because	the	same	environmental	344	

covariate(s)	will	need	to	be	correlated	with	ancestry	in	both	groups.	345	

	Another	caveat	is	that	the	Mexicans	and	Puerto	Ricans,	though	independent,	are	part	of	the	346	

same	study	and	occasionally	technical	artifacts,	such	as	issues	with	genotyping	or	measuring	347	

methylation,	can	affect	downstream	analyses	of	both	populations.	For	our	analyses,	we	have	taken	348	
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careful	quality-control	steps	to	ensure	that	this	is	not	the	case	and	there	is	no	apparent	inflation	of	349	

test-statistics	as	demonstrated	by	our	values	for	genomic	control.	Future	research	of	interactions	350	

using	AITL	should	keep	such	caveats	in	mind.		351	

We	investigated	in	detail	the	potential	of	single	SNP-SNP	interactions	driving	the	results	that	352	

were	found	both	in	the	gene	expression	and	methylation	datasets.	As	demonstrated	by	the	wide	353	

range	of	𝜆:E 	values,	we	observed	that	non-linear	effects	can	cause	substantial	departure	from	the	null	354	

when	testing	for	pairwise	SNP-SNP	interactions.	This	is	especially	true	when	testing	for	interaction	355	

between	SNPs	s	and	j,	where	s	has	a	significant	interaction	with	𝜃	and	j	is	correlated	covariates	that	356	

are	also	correlated	with	𝜃.	As	we	saw	in	the	gene	expression	data,	including	the	significant	SNP	by	θ	357	

term	can	properly	control	for	such	situations,	but	its	use	in	standard	pairwise	interaction	tests	358	

warrants	further	investigation.	359	

Our	analysis	revealed	the	existence	of	interactions	but	does	not	provide	a	direct	way	to	360	

determine	the	covariate	that	is	interacting	with	a	SNP.	Further	methodological	work	is	required	to	361	

uncover	the	exact	environmental	exposures	or	genetic	loci	with	which	SNPs	are	interacting.	The	362	

existence	of	gene	by	θ	interactions	in	GALA	II	underscores	why	modeling	interactions	should	be	363	

considered	for	future	association	studies	and	for	heritability	estimation	in	admixed	populations.	364	

	365	

V. Materials	and	Methods	366	

Our	approach	is	best	illustrated	with	an	example.	First	consider	testing	a	SNP	s	for	367	

interaction	with	an	environmental	covariate	E.	θ	can	serve	as	a	proxy	for	E	if	the	two	are	correlated,	368	

even	if	E	is	unknown	or	unmeasured	(see	Figure	4a).	Now	consider	testing	s	for	interaction	with	a	369	

SNP	j≠	s	that	is	highly	differentiated	in	terms	of	ancestral	allele	frequencies.	For	example,	a	SNP	that	370	

has	a	high	allele	frequency	in	one	ancestral	population	and	a	low	allele	frequency	in	the	other	371	

ancestral	population.	θ	can	be	used	as	a	proxy	for	j	because	θ	and	the	genotypes	of	SNP	j	will	be	372	

correlated.	Consider	the	case	where	j	has	a	frequency	of	0.9	in	population	1	and	frequency	of	0.1	in	373	

population	2.	Individuals	with	large	values	of	θ1	are	more	likely	to	have	derived	j	from	population	1	374	

and	on	average	have	greater	genotype	values	at	j.	Similarly,	individuals	with	small	values	of	θ1	are	375	
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more	likely	to	have	derived	j	from	population	2	and	on	average	have	smaller	genotype	values.	Thus,	θ	376	

will	be	correlated	with	the	genotypes	of	the	individuals	for	highly	differentiated	SNPs	and	can	serve	377	

as	a	proxy	for	detecting	interactions	(see	Figure	4b).	378	

Consider	an	admixed	individual	i	who	derives	his	or	her	genome	from	k	ancestral	379	

populations.	We	denote	individual	i’s	global	ancestry	proportion	as	𝜃Y =380	

𝜃Y8, 𝜃Y@,

…

, 𝜃Y[ , where 	𝜃Y[ = 1[ .	The	local	ancestry	of	individual	i	at	a	SNP	s	is	denoted	as	𝛾_Y` ∈381	

{0, 1, 2}	and	is	equal	to	the	number	of	alleles	from	ancestry	𝑎 ∈ {1… 𝑘}	inherited	at	SNP	s.	Current	382	

methods	allow	us	to	estimate	ancestry	directly	from	genotype	data	both	globally	and	at	specific	383	

SNPs[9,50,51].	We	denote	the	genotype	of	an	individual	i	at	SNP	s	as	𝑔Y` ∈ 0, 1, 2 	and	the	384	

corresponding	phenotype	as	yi.	385	

In	this	work,	we	model	continuous	phenotypes	in	an	additive	linear	regression	framework.	386	

Assuming	n	(unrelated)	individuals,	define	𝑦	to	be	the	vector	of	all	individuals’	phenotypes.	The	387	

model	for	the	phenotype	is	then		388	

𝑦 = 	𝑿𝛽 +	𝜀	389	

where	𝜀	~	𝒩 0, 𝜎 		is	a	n×1	vector	of	error	terms,	X	is	a	n×v	matrix	of	v	covariates,	and	𝛽	is	a	v×1	390	

vector	of	the	covariate	effect	sizes.	We	note	that	in	our	notation	𝑣@ = 𝑣o𝑣	for	a	vector	𝑣.	Assuming	391	

independence,	the	likelihood	under	this	model	is:	392	

𝐿 = 	
1

𝜎 2𝜋

r

	𝑒𝑥𝑝 −
1
2𝜎@

𝑦 − 𝑿𝛽 @ 	393	

We	can	compute	the	log-likelihood	ratio	statistic	(D)	using	a	maximum	likelihood	approach:	394	

𝐷 = −2	 log 𝐿8 − log 𝐿U = −2 𝑛 log 𝜎yz +
𝑦 − 𝑿𝛽yz

@

2𝜎yz
@ + 2 𝑛 log 𝜎y{ +

𝑦 − 𝑿𝛽y{
@

2𝜎y{
@ 	395	

We	note	that	for	a	case-control	phenotype	we	would	use	the	following	likelihood	and	log-likelihood	396	

ratio	statistic:		397	
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𝐿 = 	
1

1 + 𝑒'|}~
�}
1 −

1
1 + 𝑒'|}~

8'�}r

Y�8

	398	

𝐷 = −2	 log 𝐿8 − log 𝐿U399	

= −2 − log 1 + 𝑒'|}~�z
r

Y�8

+ 𝑦Y 𝑋Y𝛽yz

r

Y�8

400	

+ 2 − log 1 + 𝑒'|}~�{
r

Y�8

+ 𝑦Y 𝑋Y𝛽y{

r

Y�8

	401	

	402	

where	𝑋Yis	the	i-th	row	of	the	matrix	X,	which	correspond	to	the	covariates	of	individual	i.	403	

For	linear	regression,	the	maximum	likelihood	estimator	(MLE)	of	the	effect	sizes	is	𝛽 =404	

(𝑿o𝑿)'8𝑿o𝑦,	and	the	MLE	of	the	error	variance	is	𝜎@ = 8
r
𝑦 − 𝑿𝛽

@
.	Here,	𝐿8	is	the	likelihood	under	405	

the	alternative	and	𝐿U	is	the	likelihood	under	the	null.	(𝛽yz, 𝜎yz
@ )	and	(𝛽y{, 𝜎y{

@ )	are	the	effect	sizes	and	406	

error	variance	estimates	that	maximize	the	respective	likelihoods.	D	is	distributed	as	𝜒@	with	k	407	

degrees	of	freedom	(df),	where	k	is	the	number	of	parameters	constrained	under	the	null.	408	

	409	

1-df	Ancestry	Interaction	Test	(AIT)	410	

The	first	test	we	present	is	the	standard	direct	test	of	interaction.	We	test	for	a	SNP’s	411	

interaction	with	θ	instead	of	an	environmental	covariate	or	another	genotype.	Let	𝑔` = 𝑔8` … 𝑔r` 	be	412	

the	vector	of	the	individuals’	genotypes	at	SNP	s,	𝜃_ = 𝜃8_ … 𝜃r_ 	be	the	vector	of	their	global	413	

ancestries	for	ancestry	a,	and	𝑔`×𝜃_	be	the	vector	of	interaction	terms	which	result	from	the	414	

component-wise	multiplication	of	the	genotype	and	global	ancestry	vectors.	We	test	the	alternative	415	

hypothesis	 𝛽:×� ≠ 0 	against	the	null	hypothesis	 𝛽:×� = 0 .	416	

	417	

𝐻8: 𝑦 = 	𝑔` + 𝑔`×𝜃_ + 𝜃_	418	

𝐻U: 𝑦 = 	𝑔` + 𝜃_	419	
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	420	

In	this	test	of	interaction,	we	test	a	single	ancestry	versus	the	other	ancestries	that	may	be	present	in	421	

the	population	of	interest.	One	parameter	is	constrained	under	the	null	which	results	in	a	statistic	422	

with	k=1	df.	Let	𝛽y{{,z} ` 	,	𝛽y{{,z} :×� 	,	and	𝛽y{{,z}(�)	denote	the	effect	sizes	of	genotype,	interaction,	and	423	

global	ancestry	under	a	given	hypothesis	respectively.	The	statistic	is	given	below.	424	

	425	

𝐷 = −2 𝑛 log 𝜎yz +
𝑦 − 𝑿 𝛽yz ` 	, 𝛽yz :×� 	, 𝛽yz � 	

@

2𝜎yz
@ + 2 𝑛 log 𝜎y{ +

𝑦 − 𝑿 𝛽y{ ` 	, 0, 𝛽y{(�)
@

2𝜎y{
@ 	426	

where	𝑿	is	an	𝑛×3	matrix	composed	of	𝑔`,	𝜃_ ,	and	𝑔`×𝜃_	as	columns.	427	

	428	

1-df	Ancestry	Interaction	Test	with	Local	Ancestry	(AITL)	429	

Given	that	the	individuals	we	analyze	in	this	work	are	assumed	to	be	admixed,	there	is	430	

potential	for	confounding	due	to	differential	LD.	An	interaction	that	is	not	driven	by	biology	could	431	

occur	due	to	the	possibility	that	a	causal	variant	may	be	better	tagged	by	a	SNP	being	tested	on	one	432	

ancestral	background	versus	another	(See	Figure	4c).	We	account	for	the	different	LD	patterns	on	433	

varying	ancestral	backgrounds	by	including	local	ancestry	as	an	additional	covariate	in	AITL.	By	434	

including	local	ancestry,	we	assume	that	the	SNP	being	tested	is	on	the	same	local	ancestry	block	as	435	

the	causal	SNP	that	it	may	be	tagging.	Such	an	assumption	is	reasonable	because	admixture	in	436	

populations	such	as	Latinos	and	African	Americans	are	relatively	recent	events	and	their	genomes	437	

have	not	undergone	many	recombination	events.	As	a	result,	local	ancestry	blocks	on	average	stretch	438	

for	several	hundred	kilobases[52,53].		439	

Let	𝛾_` = 𝛾_8` … 𝛾_8` 	be	the	vector	of	local	ancestry	calls	for	all	individuals	for	ancestry	a	440	

and	let	𝑔`×𝛾_`	be	the	interaction	terms	from	piecewise	multiplication	of	the	two	vectors.	We	use	the	441	

following	alternative	and	null	hypotheses:	442	

	443	

𝐻8: 𝑦 = 	𝑔` + 𝑔`×𝜃_ + 𝜃_ + 𝛾_` + 𝑔`×𝛾_`		444	

𝐻U: 𝑦 = 	𝑔` + 𝜃_ + 𝛾_` + 𝑔`×𝛾_`		445	
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	446	

Here	we	are	testing	for	an	interaction	effect,	i.e.	𝛽:×� ≠ 0,	and	constrain	one	parameter	under	the	447	

null	resulting	in	a	statistic	with	k=1	df.	Let	𝛽y{{,z} :×� 		and	𝛽y{{,z} � 		denote	the	effect	sizes	of	the	448	

interaction	between	genotype	and	local	ancestry	and	just	local	ancestry,	respectively.	The	log	449	

likelihood	ratio	statistic	is	given	by	450	

	451	

𝐷 = −2 𝑛 log 𝜎yz +
𝑦 − 𝑿 𝛽yz ` 	, 𝛽yz :×� 	, 𝛽yz � , 𝛽yz � , 𝛽yz :×� 	

@

2𝜎yz
@452	

+ 2 𝑛 log 𝜎y{ +
𝑦 − 𝑿 𝛽y{ ` 	, 0, 𝛽y{ � , 𝛽y{(�), 𝛽y{(:×�) 	

@

2𝜎y{
@ 	453	

where	𝑿	is	an	𝑛×5	matrix	composed	of	𝑔`,	𝜃_ ,	𝑔`×𝜃_ ,	𝛾_`,	and	𝑔`×𝛾_`	as	columns.	All	of	these	test-454	

statistics	are	straightforwardly	modified	to	jointly	incorporate	several	ancestries	in	the	case	of	multi-455	

way	admixed	populations.	456	

	457	

Standard	Pairwise	Test	of	Interaction	and	Controlling	Confounding	in	Admixed	Populations	458	

	 Here	we	present	the	standard	approach	for	testing	for	interaction	between	two	SNPs.	We	459	

use	the	following	alternative	and	null	hypotheses.	460	

𝐻8: 𝑦 = 		 𝑔8 + 𝑔@ + 𝑔8×𝑔@ + 𝜃_		461	

𝐻U: 𝑦 = 	𝑔8 + 𝑔@ + 𝜃_		462	

If	AITL	is	significant	for	a	given	SNP	s,	then	any	SNP	j	tested	for	interaction	with	s	may	be	biased	if	j	is	463	

correlated	with	covariates	that	are	also	correlated	with	𝜃.	Furthermore,	if	the	effects	of	the	covariates	464	

correlated	with	𝜃	are	non-linear	then	controlling	for	the	main	effects	of	the	SNPs	and	ancestry	will	465	

account	for	the	non-linear	effects.	We	thus,	propose	the	use	of	the	following	alternative	and	null	466	

hypotheses.	467	

𝐻8: 𝑦 = 		 𝑔` + 𝑔� + 𝑔`×𝑔� + 𝜃_ +	𝑔`×𝜃_		468	

𝐻U: 𝑦 = 	𝑔` + 𝑔� + 𝜃_ +	𝑔`×𝜃_		469	

We	note	that	the	utility	of	this	test	will	require	further	investigation	(see	Discussion).	470	
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	471	

	472	

Simulation	Framework	473	

For	all	our	simulations,	we	simulated	2-way	admixed	individuals.	Global	ancestry	for	474	

ancestral	population	1	(𝜃8)	was	drawn	from	a	normal	distribution	with	𝜇 = 0.7	and	𝜎 = 0.2.	475	

Individuals	with	𝜃8 > 1	or	𝜃8 < 0	were	assigned	a	value	of	1	or	0,	respectively.	We	simulated	476	

phenotypes	of	individuals	to	investigate	our	method	in	four	different	scenarios:	𝐺×𝐸	interactions,	477	

pairwise	epistatic	interactions,	multi-way	epistatic	interactions,	and	false	positive	interactions	due	to	478	

local	differential	tagging.	479	

	480	

To	simulate	phenotypes	under	the	situation	of	a	𝐺×𝐸	interaction,	we	simulated	a	single	SNP.	481	

For	each	individual	i,	we	assigned	the	local	ancestry	or	the	number	of	alleles	derived	from	population	482	

1	 𝛾_Y 	for	each	haplotype	by	performing	two	binomial	trials	with	the	probability	of	success	equal	to	483	

𝜃Y8.	We	then	drew	ancestry	specific	allele	frequencies	following	the	Balding-Nichols	model	by	484	

assuming	a	𝐹�o = 0.16	and	drawing	two	ancestral	frequencies,	p1	and	p2,	from	the	following	beta	485	

distribution[54].	486	

	487	

𝑝8, 𝑝@	~𝐵𝑒𝑡𝑎
𝑝 1 − 𝐹�o

𝐹�o
,
1 − 𝑝 1 − 𝐹�o

𝐹�o
	488	

	489	

where	p	is	the	underlying	MAF	in	the	entire	population	and	is	set	to	0.2.	Genotypes	were	drawn	using	490	

a	binomial	trial	for	each	local	ancestry	haplotype	with	the	probability	of	success	equal	to	p1	or	p2	for	491	

values	of	𝛾_Y = 0	or	1,	respectively.	Environmental	covariates	correlated	with	𝜃8,	Ei,	were	generated	492	

for	each	individual	i	by	drawing	from	a	normal	distribution	𝒩 𝜇 = 𝜃Y8, 𝜎; ,	where		𝜎; 	is	the	standard	493	

deviation	of	the	environmental	covariates.	𝜎; 	was	varied	from	0	to	5	in	increments	of	0.005	to	create	494	

Ei’s	that	were	correlated	with	individuals’	global	ancestries	in	varying	degrees.	We	generated	495	

phenotypes	for	individuals	assuming	only	an	interaction	effect	by	drawing	from	a	normal	496	

distribution,	𝒩 𝜇 = 𝛽:×;×	𝑔Y8×𝐸Y, 𝜎 = 1 	for	a	given	interaction	effect	size	 𝛽:×; .	497	
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	498	

To	simulate	phenotypes	based	on	pairwise	epistatic	interactions,	we	simulated	two	SNPs.	At	499	

both	SNPs,	we	assigned	the	local	ancestry	values	as	described	for	the	𝐺×𝐸	case.	We	assigned	500	

genotypes	for	individuals	at	the	first	SNP	assuming	an	allele	frequency	of	0.5	for	both	populations	501	

and	drawing	from	two	binomial	trials.	We	assigned	genotypes	at	the	second	SNP	over	a	wide	range	of	502	

ancestry	specific	allele	frequencies	to	simulate	different	levels	of	SNP	differentiation.	Ancestry	503	

specific	allele	frequencies	were	initially	𝑝8 = 𝑝@ = 0.5	and	iteratively	increasing	p1	by	0.005	while	504	

simultaneously	decreasing	p2	by	0.005	until	p1	=	0.05	and	p2	=	0.95.	Genotypes	at	the	second	SNP	505	

were	drawn	using	the	same	approach	described	for	𝐺×𝐸.	Using	the	simulated	genotypes,	phenotypes	506	

were	drawn	from	a	normal	distribution,	𝒩 𝜇 = 𝛽:×:×	𝑔Y8×𝑔Y@, 𝜎 = 1 ,	where	𝑔Y`	is	the	genotype	for	507	

individual	i	at	the	simulated	SNP	s.		508	

To	simulate	phenotypes	based	on	multi-way	epistatic	interactions,	we	simulated	a	SNP	z	and	509	

m	(independent)	SNPs	with	pairwise	interactions	with	z.	Genotypes	for	individuals	at	SNP	z	were	510	

assigned	assuming	an	allele	frequency	of	0.5	for	both	populations	and	drawing	from	two	binomial	511	

trials.	Genotypes	at	the	m	interacting	SNPs	were	assigned	in	the	same	manner	as	the	2nd	SNP	in	the	512	

pairwise	interaction	simulations.	Using	the	simulated	genotypes,	phenotypes	were	drawn	from	a	513	

normal	distribution,	𝒩 𝜇 = 𝛽:×:×	𝑔Y�×𝑔��
��8 , 𝜎 = 1 	where	𝑔Y`	is	the	genotype	for	individual	i	at	514	

the	simulated	SNP	s.	515	

To	simulate	the	scenario	of	differential	LD	on	different	ancestral	backgrounds	leading	to	516	

false	positives,	we	simulated	phenotypes	based	on	a	single	causal	SNP	that	was	tagged	by	another	517	

SNP.	At	both	SNPs,	local	ancestries	were	assigned	as	described	previously	and	genotypes	were	drawn	518	

using	ancestry	specific	allele	frequencies.	Ancestral	allele	frequencies	were	assigned	such	that	the	519	

average	r2	between	the	causal	and	tag	SNP	was	0.272	on	the	background	of	ancestral	population	1	520	

and	0.024	on	the	background	of	ancestral	population	2.	Thus,	the	tag	SNP	was	only	a	tag	on	the	521	

population1	background	and	not	on	the	population	2	background.	Phenotypes	were	drawn	from	a	522	

normal	distribution,	𝒩(𝜇 = 𝛽E_�`_�×𝑔Y�, 𝜎 = 1),	assuming	no	interaction	and	𝛽E_�`_� = 0.7,	where	523	

𝑔Y� 	is	the	genotype	of	individual	i	at	the	causal	variant.		524	

	525	
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We	implemented	our	approach	in	an	R	package	(GxTheta),	which	is	available	for	download	526	

at	http://www.scandb.org/newinterface/GxTheta.html	527	

	528	

	529	

Ancestry	Inference	530	

Global	ancestry	inference	was	done	using	ADMIXTURE	[9]	and	local	ancestry	inference	was	531	

done	using	LAMP-LD	[55].	CEU	and	YRI	from	1000	Genomes	Phase	3	[56]	were	used	as	the	European	532	

and	African	reference	panels.	For	the	Native	American	reference	panels,	95	Native	Americans	533	

genotyped	on	the	Axiom	LAT1	array	were	used[57].	534	

Filtering	for	Related	Individuals	535	

All	analyses	in	real	data	were	filtered	for	related	individuals	due	to	the	possibility	of	cryptic	536	

relatedness	causing	false	positives.	To	filter	for	related	individuals,	we	estimated	kinship	coefficients	537	

between	all	pairs	of	individuals	using	REAP	[58].	We	defined	two	individuals	as	related	if	they	had	a	538	

kinship	coefficient	greater	than	0.025.	For	a	pair	of	related	individuals,	we	removed	the	one	with	a	539	

greater	number	of	other	individuals	to	whom	he	or	she	was	related.	In	the	case	of	a	tie,	we	removed	540	

one	of	the	pair	at	random.	541	

Data	Normalization	542	

Gene	Expression	Normalization	543	

Gene	expression	data	(see	Results)	were	first	standardized	for	each	gene	such	that	mean	544	

expression	was	0	and	variance	was	1.	We	then	computed	a	covariance	matrix	of	individual’s	545	

expression	values	and	performed	PCA	on	the	covariance	matrix.	Residuals	were	computed	for	all	546	

expression	values	by	adjusting	for	the	top	10	principal	components	and	the	mean	for	each	gene	was	547	

added	back	to	the	residuals.	Due	to	the	high	dynamic	range	of	gene	expression	compared	to	548	

methylation	we	conservatively	chose	to	additionally	perform	quantile	normalization.	We	then	sorted	549	

the	gene	expression	residuals	and	used	the	quantiles	of	their	rank	order	to	draw	new	expression	550	

values	from	a	normal	distribution,	𝒩 𝜇 = 0, 𝜎 = 1 ,	by	using	the	inverse	cumulative	density	551	

function24,25.		552	

	553	
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Methylation	Data	Normalization	554	

Raw	methylation	values	(see	Results)	were	first	normalized	using	Illumina’s	control	probe	555	

scaling	procedures.	All	probes	with	median	methylation	less	than	1%	or	greater	than	99%	were	556	

removed	and	the	remaining	probes	were	logit-transformed	as	previously	described[59].	To	control	557	

for	extreme	outliers,	we	truncated	the	distribution	of	methylation	values.	For	a	given	probe,	we	first	558	

computed	the	mean	and	standard	deviation	of	the	methylation	values.	We	then	set	any	methylation	559	

values	deviating	more	than	2.58	standard	deviations	from	the	mean	to	the	methylation	value	560	

corresponding	to	the	99.5th	quantile.	561	
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Figure	Legends		758	
Figure	1.	Power	Plots	for	Pairwise	Interaction	Simulations.	759	
Power	of	testing	𝐺×𝜃	(a)	versus	testing	pairwise	SNPs	directly	(b)	as	a	function	of	the	difference	in	760	
the	ancestral	allele	frequencies	at	a	differentiated	SNP.	761	
	762	
Figure	2.	Power	Plots	for	Multi-way	Pairwise	Interaction	Simulations	763	
Power	of	testing	𝐺×𝜃	as	a	function	of	the	difference	in	the	ancestral	allele	frequencies	for	multiple	764	
interacting	SNPs.	765	
	766	
Figure	3.	Power	Plots	for	𝐺×𝐸	Interaction	Simulations.	767	
Power	of	testing	𝐺×𝜃	as	a	function	of	the	correlation	between	an	environmental	covariate	and	768	
genetic	ancestry.	769	
	770	
Figure	4.	Examples	of	How	Genetic	Ancestry	Can	Be	A	Proxy	for	Interacting	Covariates.	771	
(a)	Model	of	how	genetic	ancestry	𝜃	can	be	correlated	with	various	environmental	exposures,	some	772	
of	which	affect	a	phenotype.	(b)	Example	of	how	the	correlation	between	the	probability	of	an	AA	773	
genotype	(bars	2-4)	and	values	of	𝜃	(bar	1)	increase	with	higher	levels	of	SNP	allele	frequency	774	
differentiation.	In	this	plot	p1	and	p2	denote	the	allele	frequency	of	allele	A	in	ancestral	populations	1	775	
and	2	respectively.	(c)	Example	of	how	effect	sizes	at	a	tag-SNP	may	differ	due	to	differential	LD	on	776	
distinct	ancestral	backgrounds	(here,	EUR	and	AFR).	777	
	778	
	 	779	
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Tables	780	
	781	
Table	1.	Distribution	of	Ancestry	in	Coriell	and	GALA	II.	782	
Dataset	 θEUR	 θAFR	 θNAM	

Coriell	 μ=0.212,	
σ=0.021	

μ=0.788,	
σ=0.021	

NA	

GALA	II	MX	 μ=0.396,	
σ=0.149	

μ=0.043,	
σ=0.025	

μ=0.561,	
σ=0.159	

GALA	II	PR	 μ=0.641,	
σ=0.094	

μ=0.246,	
σ=0.101	

μ=0.113	
σ=0.024	

Mean	and	variance	of	the	global	ancestry	distributions	for	each	dataset.	783	
	784	
Table	2.	GALA	II	DNA	Methylation	Analysis	Results.	785	
GALA	II	

Population	
Probe	
Gene	

Probe	ID	 rsid	 Distance	
of	SNP	to	
Probe	

Marginal	
p-value	

AITL		
p-value	

AITL	
Replication	
p-value	

MX	 CNFN	 cg14327995	 rs16975986	 280795	 2.49E-09	 5.69E-09	 9.27E-03	

MX	 C11orf95	 cg16678159	 rs7106153	 249768	 2.58E-01	 2.52E-08	 9.39E-02	

MX	 NA	 cg05697734	 rs1560919	 13711	 1.14E-01	 2.21E-08	 8.18E-03	

MX	 TNK2	 cg01792640	 rs67217828	 278866	 4.49E-01	 6.38E-09	 1.43E-02	

MX	 HDAC4	 cg06533788	 rs925736	 9548	 4.51E-01	 3.09E-09	 2.80E-02	

PR	 NA	 cg07436864*	 rs8117083	 31813	 7.46E-02	 1.34E-09	 5.34E-03	

PR	 NA	 cg16803083*	 rs4312379	 63847	 3.69E-01	 2.29E-08	 2.31E-04	

PR	 SERPINA6	 cg10025865	 rs17091085	 247796	 6.83E-01	 2.97E-08	 8.05E-03	

P-values	for	AITL	applied	to	the	methylation	data	in	the	GALA	II	Latinos.	MX	and	PR	denote	Mexicans	786	
and	Puerto	Ricans	respectively	in	the	GALA	II	population	columns.	The	probe	gene	column	shows	the	787	
gene	that	the	methylation	probe	lies	in.	The	marginal	column	is	the	p-value	for	standard	linear	788	
regression	of	methylation	on	genotype	while	controlling	for	population	structure.	*	indicates	results	789	
that	replicated	between	the	Mexicans	and	Puerto	Ricans.	790	
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