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Abstract. The advent of accessible ancient DNA technology now allows the direct ascer-
tainment of allele frequencies in ancestral populations, thereby enabling the use of allele
frequency time series to detect and estimate natural selection. Such direct observations of
allele frequency dynamics are expected to be more powerful than inferences made using
patterns of linked neutral variation obtained from modern individuals. We developed a
Bayesian method to make use of allele frequency time series data and infer the param-
eters of general diploid selection, along with allele age, in non-equilibrium populations.
We introduce a novel path augmentation approach, in which we use Markov chain Monte
Carlo to integrate over the space of allele frequency trajectories consistent with the ob-
served data. Using simulations, we show that this approach has good power to estimate
selection coefficients and allele age. Moreover, when applying our approach to data on
horse coat color, we find that ignoring a relevant demographic history can significantly
bias the results of inference. Our approach is made available in a C++ software package.

1. Introduction4

The ability to obtain high-quality genetic data from ancient samples is revolutionizing5

the way that we understand the evolutionary history of populations. One of the most6

powerful applications of ancient DNA (aDNA) is to study the action of natural selection.7

While methods making use of only modern DNA sequences have successfully identified8

loci evolving subject to natural selection [Nielsen et al., 2005, Voight et al., 2006, Pickrell9

et al., 2009], they are inherently limited because they look indirectly for selection, finding10

its signature in nearby neutral variation. In contrast, by sequencing ancient individuals, it11

is possible to directly track the change in allele frequency that is characteristic of the action12

of natural selection. This approach has been exploited recently using whole genome data13

to identify candidate loci under selection in European humans [Mathieson et al., 2015].14

To infer the action of natural selection rigorously, several methods have been developed15

to explicitly fit a population genetic model to a time series of allele frequencies obtained16

via aDNA. Initially, Bollback et al. [2008] extended an approach devised by Williamson17

and Slatkin [1999] to estimate the population-scaled selection coefficient, α = 2Nes, along18

with the effective size, Ne. To incorporate natural selection, Bollback et al. [2008] used19
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the continuous diffusion approximation to the discrete Wright-Fisher model. This required20

them to use numerical techniques to solve the partial differential equation (PDE) associated21

with transition densities of the diffusion approximation to calculate the probabilities of the22

population allele frequencies at each time point. Ludwig et al. [2009] obtained an aDNA23

time series from 6 coat-color-related loci in horses and applied the method of Bollback24

et al. [2008] to find that 2 of them, ASIP and MC1R, showed evidence of strong positive25

selection.26

Recently, a number of methods have been proposed to extend the generality of the27

Bollback et al. [2008] framework. To define the hidden Markov model they use, Bollback28

et al. [2008] were required to posit a prior distribution on the allele frequency at the first29

time point. They chose to use a uniform prior on the initial frequency; however, in truth30

the initial allele frequency is dictated by the fact that the allele at some point arose as a31

new mutation. Using this information, Malaspinas et al. [2012] developed a method that32

also infers allele age. They also extended the selection model of Bollback et al. [2008] to33

include fully recessive fitness effects. A more general selective model was implemented by34

Steinrücken et al. [2014], who model general diploid selection, and hence they are able to fit35

data where selection acts in an over- or under-dominant fashion; however, Steinrücken et al.36

[2014] assumed a model with recurrent mutation and hence could not estimate allele age.37

The work of Mathieson and McVean [2013] is designed for inference of metapopulations38

over short time scales and so it is computationally feasible for them to use a discrete time,39

finite population Wright-Fisher model. Finally, the approach of Feder et al. [2014] is ideally40

suited to experimental evolution studies because they work in a strong selection, weak drift41

limit that is common in evolving microbial populations.42

One key way that these methods differ from each other is in how they compute the43

probability of the underlying allele frequency changes. For instance, Malaspinas et al.44

[2012] approximated the diffusion with a birth-death type Markov chain, while Steinrücken45

et al. [2014] approximate the likelihood analytically using a spectral representation of46

the diffusion discovered by Song and Steinrücken [2012]. These different computational47

strategies are necessary because of the inherent difficulty in solving the Wright-Fisher48

partial differential equation. A different approach, used by Mathieson and McVean [2013]49

in the context of a densely-sampled discrete Wright-Fisher model, is to instead compute50

the probability of the entire allele frequency trajectory in between sampling times.51

In this work, we develop a novel approach for inference of general diploid selection and52

allele age from allele frequency time series obtained from aDNA. The key innovation of53

our approach is that we impute the allele frequency trajectory between sampled points54

when they are sparsely-sampled. Moreover, by working with a diffusion approximation,55

we are able to easily incorporate general diploid selection and changing population size.56

This approach to inferring parameters from a sparsely-sampled diffusion is known as high-57

frequency path augmentation, and has been successfully applied in a number of contexts58

[Roberts and Stramer, 2001, Golightly and Wilkinson, 2005, 2008, Sørensen, 2009, Fuchs,59

2013]. The diffusion approximation to the Wright-Fisher model, however, has several60

features that are atypical in the context of high-frequency path augmentation, including61

a time-dependent diffusion coefficient and a bounded state-space. We test this approach62
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BAYESIAN INFERENCE OF NATURAL SELECTION FROM ALLELE FREQUENCY TIME SERIES 3

with simulation, showing that it’s important to accurately model demography history, then63

apply it to several datasets and find that we have power to estimate parameters of interest64

from real data.65

2. Model and Methods66

2.1. Overview. We begin by first reviewing the Wright-Fisher model, presenting its dif-67

fusion approximation as a stochastic differential equation (SDE). We then describe our68

inferential strategy using a path augmentation approach, in which we model the under-69

lying allele frequency trajectory as an additional (infinite dimensional) parameter. This70

requires us to derive an expression for the likelihood of an allele frequency trajectory, in-71

cluding accounting for the fact that we model alleles that start from low frequency as new72

mutants. Finally, we describe a Markov chain Monte Carlo algorithm for obtaining a pos-73

terior distribution of the parameters of natural selection, as well as the allele frequency74

trajectory.75

2.2. Generative model. We assume a randomly mating diploid population that is size76

N(t) at time t, where t is measured in units of 2N0 generations for some arbitrary, constant77

N0. At the locus of interest, the ancestral allele, A0, was fixed until some time t0 when the78

derived allele, A1, arose with diploid fitnesses as given in Table 1.79

[Table 1 about here.]80

Given that an allele arises at some finite population frequency 0 < x0 < 1 at some time81

t0, the trajectory of population frequencies of A1 at times t ≥ t0, (Xt)t≥t0 , is modeled82

by the usual diffusion approximation to the Wright-Fisher model (and many other models83

such as the Moran model), which we will henceforth call the Wright-Fisher diffusion. While84

many treatments of the Wright-Fisher diffusion define it in terms of the partial differential85

equation that characterizes its transition densities (e.g. Ewens [2004]), we instead describe86

it as the solution of a stochastic differential equation (SDE). Specifically, (Xt)t≥t0 satisfies87

the SDE88

dXt = Xt(1−Xt)(α1(2Xt − 1)− α2Xt) dt+

√
Xt(1−Xt)

ρ(t)
dBt

Xt0 = x0,

(1)

where B is a standard Brownian motion, α1 = 2N0s1, α2 = 2N0s2, and ρ(t) = N(t)/N0.89

If Xt∗ = 0 (resp. Xt∗ = 1) at some time t∗ > t0, then Xt = 0 (resp. Xt = 1) for all t ≥ t∗.90

In order to make this description of the dynamics of the population allele frequency91

trajectory (Xt)t≥t0 complete, we need to specify an initial condition at time t0. In a finite92

population Wright-Fisher model we would take the allele A1 to have frequency 1
2N(t0) at93

the time t0 when it first arose in a single chromosome. This frequency converges to 0 when94

we pass to the diffusion limit, but we cannot start the Wright-Fisher diffusion at 0 at time95

t0 because the diffusion started at 0 remains at 0. Instead, we take the value of Xt0 to96

be some small, but arbitrary, frequency x0. This arbitrariness in the choice of x0 may97

seem unsatisfactory, but we will see that, in the context of a Bayesian inference procedure,98
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the resulting posterior distribution for the parameters α1, α2, t0 converges as x0 ↓ 0 to a99

limit which can be thought of as the posterior corresponding to a certain improper prior100

distribution, and so, in the end, there is actually no need to specify x0.101

Finally, we require a model for how alleles arise. We assume that mutations at time t102

occur at a rate proportional to 2N(t), and that a mutant allele arises exactly once. Further103

constraining alleles to have arisen more recently than some time, T , in the past, this implies104

that the prior density of allele ages is105

π(t0) =
ρ(t0)∫ 0

T ρ(t0)ds
.

Taking the limit as T ↓ −∞ results in an improper distribution on allele age, which, in the106

context of our Bayesian inference algorithm, implies an improper prior distribution on t0107

that is proportional to ρ. However, we emphasize that this still produces a proper posterior108

distribution on allele age (see also Slatkin [2001]).109

Finally, we model the data assuming that at known times t1, t2, . . . , tk samples of known110

sizes n1, n2, . . . , nk chromosomes are taken and c1, c2, . . . , ck copies of the derived allele are111

found at the successive time points (Figure 1). Note that it is possible that some of the112

sampling times are more ancient than t0, the age of the allele.113

[Figure 1 about here.]114

2.3. Bayesian path augmentation. We are interested in devising a Bayesian method115

to obtain the posterior distribution on the parameters, α1, α2, and t0 given the sampled116

allele frequencies and sample times – data which we denote collectively as D. Because117

we are dealing with objects that don’t necessarily have distributions which have densities118

with respect to canonical reference measures, it will be convenient in the beginning to119

treat priors and posteriors as probability measures rather than as density functions. For120

example, the posterior is the probability measure121

(2) P (dα1, dα2, dt0 |D) =
P (dD |α1, α2, t0)π(dα1, dα2, dt0)

P (dD)
,

where π is a joint prior on the model parameters. However, computing the likelihood122

P (dD |α1, α2, t0) is computationally challenging because, implicitly,123

P (dD |α1, α2, t0) =

∫
P (dD |X)P (dX |α1, α2, t0),

where the integral is over the (unobserved, infinite-dimensional) allele frequency path124

X = (Xt)t≥t0 , P (· |α1, α2, t0) is the distribution of a Wright-Fisher diffusion with selection125

parameters α1, α2 started at time t0 at the small but arbitrary frequency x0, and126

P (dD |X) =
k∏
i=1

(
ni
ci

)
Xci
ti

(1−Xti)
ni−ci

because we assume that sampled allele frequencies at the times t1, . . . , tk are independent127

binomial draws governed by underlying population allele frequencies at the these times.128
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BAYESIAN INFERENCE OF NATURAL SELECTION FROM ALLELE FREQUENCY TIME SERIES 5

Integrating over the infinite-dimensional path (Xt)t≥t0 involves either solving partial dif-129

ferential equations numerically or using Monte Carlo methods to find the joint distribution130

of population allele frequency path at the times t1, . . . , tk.131

To address this computational difficulty, we introduce a path augmentation method that132

treats the underlying allele frequency path (Xt)t≥t0 as an additional parameter. Observe133

that the posterior may be expanded out to134

P (dα1, dα2, dt0 |D) =

∫
P (dD |X ′)P (dX ′ |α1, α2, t0)π(dα1, dα2, dt0)∫
P (dD |X ′)P (dX ′ |α′1, α′2, t′0)π(dα′1, dα

′
2, dt

′
0)
,

where we use primes to designate dummy variables over which we integrate. Thinking of135

the path (Xt)t≥t0 as another parameter and taking the prior distribution for the augmented136

family of parameters to be137

P (dX |α1, α2, t0)π(dα1, dα2, dt0),

the posterior for the augmented family of parameters is138

(3) P (dα1, dα2, dt0; dX |D) =
P (dD |X)P (dX |α1, α2, t0)π(dα1, dα2, dt0)∫
P (dD |X ′)P (dX ′ |α′1, α′2, t′0)π(dα′1, dα

′
2, dt

′
0)
.

We thus see that treating the allele frequency path as a parameter is consistent with139

the initial “naive” Bayesian approach in that if we integrate the path variable out of the140

posterior (3) for the augmented family of parameters, then we recover the posterior (2)141

for the original family of parameters. In practice, this means that marginalizing out the142

path variable from a Monte Carlo approximation of the augmented posterior gives a Monte143

Carlo approximation of the original posterior.144

Implicit in our set-up is the initial frequency x0 at time t0. Under the probability145

measure governing the Wright-Fisher diffusion, any process started from x0 = 0 will stay146

there forever. Thus, we would be forced to make an arbitrary choice of some x0 > 0 as147

the initial frequency of our allele. However, we argue in the Appendix that in the limit148

as x0 ↓ 0, we can achieve an improper prior distribution on the space of allele frequency149

trajectories. We stress that our inference using such an improper prior is not one that arises150

directly from a generative probability model for the allele frequency path. However, it does151

arise as a limit as the initial allele frequency x0 goes to zero of inferential procedures based152

on generative probability models and the limiting posterior distributions are probability153

distributions. Therefore, the parameters α1, α2, t0 retain their meaning, our conclusions154

can be thought of approximations to those that we would arrive at for all sufficiently small155

values of x0, and we are spared the necessity of making an arbitrary choice of x0.156

2.4. Path likelihoods. Most instances of Bayesian inference in population genetics have157

hitherto involved finite-dimensional parameters. Recall that for continuous, finite-dimensional158

parameters, one simply includes the prior density of the parameter value in place of the159

prior probability. Finite dimensional parameters usually have densities defined with respect160

to Lebesgue measure in an appropriate dimension; however, there is no infinite-dimensional161

Lebesgue measure against which to define a density for our infinite-dimensional augmented162

path. We thus require a reference measure on the infinite-dimensional space of paths that163
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6 JOSHUA G. SCHRAIBER, STEVEN N. EVANS, AND MONTGOMERY SLATKIN

will play a role analogous to that of Lebesgue measure in the finite-dimensional case, al-164

lowing us to write down the probability density for each sampled path.165

To see what is involved, suppose we have a diffusion process (Zt)t≥t0 that satisfies the166

SDE167

dZt = a(Zt, t) dt+ dBt

Zt0 = z0,
(4)

where B is a standard Brownian motion (the Wright-Fisher diffusion is not of this form168

but, as we shall soon see, it can be be reduced to it after suitable transformations of time169

and space). Let P be the distribution of (Zt)t≥t0 – this is a probability distribution on the170

space of continuous paths that start from position z0 at time t0. While the probability171

assigned by P to any particular path is zero, we can, under appropriate conditions, make172

sense of the probability of a path under P relative to its probability under the distribution173

of Brownian motion. If we denote by W the distribution of Brownian motion starting from174

position z0 at time t0, then Girsanov’s theorem [Girsanov, 1960] gives the density of the175

path segment (Zs)t0≤s≤t under P relative to W as176

(5)
dP
dW

((Zs)t0≤s≤t) = exp

{∫ t

t0

a(Zs, s) dZs −
1

2

∫ t

t0

a2(Zs, s) ds

}
,

where the first integral in the exponentiand is an Itô integral. In order for (5) to hold, the177

integral
∫ t
t0
a2(Zs, s) ds must be finite, in which case the Itô integral

∫ t
t0
a(Zs, s) dZs is also178

well-defined and finite.179

However, the Wright-Fisher SDE (1) is not of the form (4). In particular, the factor180

multiplying the infinitesimal Brownian increment dBt (the so-called diffusion coefficient)181

depends on both space and time. To deal with this issue, we first apply a well-known time182

transformation (see e.g. Slatkin and Hudson [1991] and Griffiths and Tavare [1994]) and183

consider the process (X̃τ )τ≥0 given by X̃τ = Xf−1(τ), where184

(6) f(t) =

∫ t

t0

1

ρ(s)
ds, t ≥ t0.

It is not hard to see that (X̃τ )τ≥0 satisfies the following SDE with a time-independent185

diffusion coefficient,186

dX̃τ = ρ(f−1(τ))X̃τ (1− X̃τ )(α1(2X̃τ − 1)− α2X̃τ ) dτ +

√
X̃τ (1− X̃τ ) dB̃τ

X̃0 = x0,

where B̃ is a standard Brownian motion. Next, we employ an angular space transformation187

first suggested by Fisher [1922], Yτ = arccos(1 − 2X̃τ ). Applying Itô’s lemma [Itô, 1944]188

shows that (Yτ )τ≥0 is a diffusion that satisfies the SDE189

dYτ =
1

4

(
ρ(f−1(τ)) sin(Yτ )(α2 + (2α1 − α2) cos(Yτ ))− 2 cot(Yτ )

)
dτ + dWτ

Y0 = y0 = arccos(1− 2x0),
(7)
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BAYESIAN INFERENCE OF NATURAL SELECTION FROM ALLELE FREQUENCY TIME SERIES 7

where W is a standard Brownian motion. If the process X hits either of the boundary190

points 0, 1, then it stays there, and the same is true of the time and space transformed191

process Y for its boundary points 0, π.192

The restriction of the distribution of the time and space transformed process Y to some193

set of paths that don’t hit the boundary is absolutely continuous with respect to the dis-194

tribution of standard Brownian motion restricted to the same set; that is, the distribution195

of Y restricted to such a set of paths has a density with respect to the distribution of196

Brownian motion restricted to the same set. However, the infinitesimal mean in (7) (that197

is, the term multiplying dτ) becomes singular as Yτ approaches the boundary points 0 and198

π, corresponding to the boundary points 0 and 1 for allele frequencies. These singularities199

prevent the process Y from re-entering the interior of its state space and ensure that a200

Wright-Fisher path will be absorbed when the allele is either fixed or lost. A consequence201

is that the density of the distribution of Y relative to that of a Brownian motion blows up202

as the path approaches the boundary. We are modeling the appearance of a new mutation203

in terms of a Wright-Fisher diffusion starting at some small initial frequency x0 at time204

t0 and we want to perform our parameter inference in such a way that we get meaning-205

ful answers as x0 ↓ 0. This suggests that rather than working with the distribution W206

of Brownian motion as a reference measure it may be more appropriate to work with a207

tractable diffusion process that exhibits similar behavior near the boundary point 0.208

To start making this idea of matching singularities more precise, consider a diffusion209

process (Z̄t)t≥t0 that satisfies the SDE210

dZ̄t = b(Z̄t, t) dt+ dB̄t

Z̄0 = z0,
(8)

where B̄ is a standard Brownian motion. Write Q for the distribution of the diffusion
process (Z̄t)t≥t0 and recall that P is the distribution of a solution of (4). If (Zs)t0≤s≤t is a

segment of path such that both
∫ t
t0
a2(Zs, s) ds <∞ and

∫ t
t0
b2(Zs, s) ds <∞, then

dP
dQ

((Zs)t0≤s≤t) =
dP
dW

((Zs)t0≤s≤t)
/ dQ
dW

((Zs)t0≤s≤t)

= exp

{∫ t

t0

(a(Zs, s)− b(Zs, s)) dZs −
1

2

∫ t

t0

(
a2(Zs, s)− b2(Zs, s)

)
ds

}
.(9)

Note that the right-hand side will stay bounded if one considers a sequence of paths,211

indexed by η, (Zηs )t0≤s≤t, with
∫ t
t0
a2(Zηs , s) ds < ∞ and

∫ t
t0
b2(Zηs , s) ds < ∞, provided212

that
∫ t
t0

(a2(Zηs , s) − b2(Zηs , s)) ds stays bounded. These manipulations with densities may213

seem somewhat heuristic, but they can be made rigorous and, moreover, the form of dP
dQ214

follows from an extension of Girsanov’s theorem that gives the density of P with respect215

to Q directly without using the densities with respect to W as intermediaries (see, for216

example, [Kallenberg, 2002, Theorem 18.10]).217
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8 JOSHUA G. SCHRAIBER, STEVEN N. EVANS, AND MONTGOMERY SLATKIN

We wish to apply this observation to the time and space transformed Wright-Fisher218

diffusion of (7). Because219

−1

2
cot(y) +

1

4
ρ(f−1(t)) sin(y) ((2α1 − α2) cos(y) + α2) = − 1

2y
+O(y)

when y is small, an appropriate reference process should have infinitesimal mean b(y, t) ≈220

−1/(2y) as y ↓ 0. Following suggestions by Schraiber et al. [2013] and Jenkins [2013], we221

compute path densities relative to the distribution Q of the Bessel(0) process, a process222

which is the solution of the SDE223

dȲt = − 1

2Ȳt
dt+ dB̄t,

Ȳ0 = y0 = arccos(1− 2x0).
(10)

up until the first time that Ȳt hits 0, after which time Ȳt stays at 0 [Revuz and Yor, 1999,224

Chapter XI].225

As we show more explicitly in the Appendix, this choice of dominating measure allows us226

to arrive at a proper posterior distribution as we send the initial frequency of the allele down227

to 0. In brief, if we write Py0 and Qy0 for the respective distributions of the solutions of (7)228

and (10) to emphasize the dependence on y0 (equivalently, on the initial allele frequency229

x0), then there are σ-finite measures P0 and Q0 with infinite total mass such that for each230

ε > 0231

lim
y0↓0

Py0((Yt)t≥ε ∈ · |Yε > 0) = P0((Yt)t≥ε ∈ ·)
/
P0(Yε > 0)

and232

lim
y0↓0

Qy0((Ȳt)t≥ε ∈ · | Ȳε > 0) = Q0((Ȳt)t≥ε ∈ ·)
/
Q0(Ȳε > 0),

where the numerators and denominators in the last two equations are all finite. Moreover,233

P0 has a density with respect to Q0 that arises by naively taking limits as y0 ↓ 0 in the234

functional form of the density of Py0 with respect to Qy0 (we say “naively” because Py0 and235

Qy0 assign all of their mass to paths that start at position y0 = arccos(1− 2x0) at time 0,236

whereas P0 and Q0 assign all of their mass to paths that start at position 0 at time 0, and237

so the set of paths at which it is relevant to compute the density changes as y0 ↓ 0). As238

we have already remarked, the limit of our Bayesian inferential procedure may be thought239

of as Bayesian inference with an improper prior, but we stress that the resulting posterior240

is proper.241

The notion of the infinite measure Q0 may seem somewhat forbidding, but this measure242

is characterized by the following simple properties:243

Q0(Ȳε ∈ dy) =
y2

ε2
exp

{
−y

2

2ε

}
dy, y > 0,

so that Q0(Ȳε > 0) =
√

π
2

1√
ε
, and conditional on the event {Ȳε = y} the evolution of (Ȳt)t≥ε244

is exactly that of the Bessel(0) process started at position y at time ε. In the Appendix,245

we provide a more explicit construction of the measure Q0 as part of our derivation of246

the proposal ratios in our MCMC algorithm. Moreover, conditional on the event {Ȳs =247
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BAYESIAN INFERENCE OF NATURAL SELECTION FROM ALLELE FREQUENCY TIME SERIES 9

a, Ȳu = b} for 0 ≤ s < u and a, b > 0, the evolution of the “bridge” (Ȳu)s≤t≤u is the same248

as that of the corresponding bridge for a Bessel(4) process; a Bessel(4) process satisfies the249

SDE250

dŶt =
3

2Ŷt
dt+ dB̂t.

Very importantly for the sake of simulations, the Bessel(4) process is just the radial part of251

a 4-dimensional standard Brownian motion – in particular, this process started at 0 leaves252

immediately and never returns.253

Note that the Bessel(0) process arises naturally because our space transformation x 7→254

arccos(1 − 2x) =
∫ x

0
1√

w(1−w)
dw is approximately x 7→

∫ x
0

1√
w
dw = 2

√
x when x > 0 is255

small. Interestingly, a multiple of the square of Bessel(0) process, sometimes called Feller’s256

continuous state branching processes, arises naturally as an approximation to the Wright-257

Fisher diffusion for low frequencies and has a long history in population genetics [Haldane,258

1927, Feller, 1951].259

2.5. The joint likelihood of the data and the path. To write down down the full260

likelihood of the observations and the path, we make the assumption that the population261

size function ρ(t) is continuously differentiable except at a finite set of times d1 < d2 <262

. . . < dM . Further, we require that that ρ(d+
i ) = limt↓di ρ(t) exists and is equal to ρ(di)263

while ρ(d−i ) = limt↑di ρ(t) also exists (though it may not necessarily equal ρ(di)).264

We can write the joint likelihood of the data and the path as265

L(D, (Yt)t≥0 |α1, α2, t0) = F(D | (Yt)t≥0, t0)
dP
dQ

((Yt)t≥0;α1, α2, t0)

where F(·) is the binomial sampling probability of the observed allele frequencies, P is the
distribution of transformed Wright-Fisher paths, and Q is the distribution of Bessel(0)
paths. In the Appendix, we show that

L(D, (Ys)0≤s≤tk |α1, α2, t0)

= exp

{
A(Yf(tk), t

−
k ) +A(Yf(dm), d

−
m)− (A(Yf(dK), dK) +A(Yf(t0), t0))

+

K∑
i=m

[
A(Yf(di+1), d

−
i+1)−A(Yf(di), di)

]
−
∫ tk

t0

B(Yf(s), s)ds−
1

2

∫ tk

t0

C(Yf(s), s)ds−
1

2

∫ tk

t0

D(Yf(s), s)ds

}
×

k∏
i=1

(
ni
ci

)(
1− cos(Yf(ti))

2

)ci (1 + cos(Yf(ti))

2

)ni−ci
,

(11)
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10 JOSHUA G. SCHRAIBER, STEVEN N. EVANS, AND MONTGOMERY SLATKIN

where f is as in (6), m = min{i : di > t0} and K = max{i : di > tk}, and

A(y, t) =
log(y)

2
− 1

8
(ρ(t) cos(y)(2α2 + (2α1 − α2) cos(y)) + 4 log(sin(y)))

B(y, t) = −1

8

dρ

dt
(t) cos(y)(2α2 + (2α1 − α2) cos(y))

C(y, t) =
1

2

(
α1 cos(y) +

csc(y)2

ρ(t)

)
− 1

2y2ρ(t)

D(y, t) =
1

16ρ(t)
(ρ(t) sin(y)(α2 + (2α1 − α2) cos(y))− 2 cot(y))2 − 1

4y2ρ(t)
.

While this expression may appear complicated, it has the important feature that, unlike266

the form of the likelihood that would arise by simply applying Girsanov’s theorem, it only267

involves Lebesgue (indeed Riemann) integrals and not Itô integrals, which, as we recall268

in the Appendix, are known from the literature to be potentially difficult to compute269

numerically.270

2.6. Metropolis-Hastings algorithm. We now describe a Markov chain Monte Carlo271

method for Bayesian inference of the parameters α1, α2 and t0, along with the allele272

frequency path (Xt)t≥t0 (equivalently, the transformed path (Yt)t≥0). While updates to273

the selection parameters α1 and α2 do not require updating the path, updating the time t0274

at which the derived allele arose requires proposing updates to the segment of path from t0275

up to the time of the first sample with a non-zero number of derived alleles. Additionally,276

we require proposals to update small sections of the path without updating any parameters277

and proposals to update the allele frequency at the most recent sample time.278

[Figure 2 about here.]279

2.6.1. Interior path updates. To update a section of the allele frequency, we first choose a280

time s1 ∈ (t0, tk) uniformly at random, and then choose a time s2 that is a fixed fraction of281

the path length subsequent to s1. We prefer this approach of updating a fixed fraction of282

the path to an alternative strategy of holding s2−s1 constant because paths for very strong283

selection may be quite short. Recalling the definition of f from (6), we subsequently propose284

a new segment of transformed path between the times f(s1) and f(s2) while keeping the285

values Yf(s1) and Yf(s2) fixed (Figure 2a). Such a path that is conditioned to take specified286

values at both end-points of the interval over which it is defined is called a bridge, and by287

updating small portions of the path instead of the whole path at once, we are able to obtain288

the desirable behavior that our Metropolis-Hastings algorithm is able to stay in regions of289

path space with high posterior probability. If we instead drew the whole path each time,290

we would much less efficiently target the posterior distribution.291

Noting that bridges must be sampled against the transformed time scale, the best bridges292

for the allele frequency path would be realizations of Wright-Fisher bridges themselves.293

However, sampling Wright-Fisher bridges is challenging (but see Schraiber et al. [2013],294

Jenkins and Spano [2015]), so we instead opt to sample bridges for the transformed path295
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BAYESIAN INFERENCE OF NATURAL SELECTION FROM ALLELE FREQUENCY TIME SERIES 11

from the Bessel(0) process. Sampling Bessel(0) bridges can be accomplished by first sam-296

pling Bessel(4) bridges (as described in Schraiber et al. [2013]) and then recognizing that297

a Bessel(4) process is the same as a Bessel(0) process conditioned to never hit 0 and hence298

has the same bridges – in the language of the general theory of Markov processes, the299

Bessel(0) and Bessel(4) processes are Doob h-transforms of each other and it is well-known300

that processes related in this way share the same bridges. We denote by (Y ′τ )τ≥0 the path301

that has the proposed bridge spliced in between times f(s1) and f(s2) and coincides with302

(Yτ )τ≥0 outside the interval [f(s1), f(s2)].303

In the Appendix, we show that the acceptance probability in this case is simply304

(12) min

{
1,
L(D, (Y ′τ )f(s1)≤τ≤f(s2) |α1, α2, t0)

L(D, (Yτ )f(s1)≤τ≤f(s2) |α1, α2, t0)

}
.

Note that we only need to compute the likelihood ratio for the segment of transformed305

path that changed between the times f(s1) and f(s2).306

2.6.2. Allele age updates. The first sample time with a non-zero count of the derived allele307

(Figure 2b) is ts, where s = min{i : ci > 0}. We must have t0 < ts. Along with proposing308

a new value t′0 of the allele age t0 we will propose a new segment of the allele frequency309

path from time t′0 to time ts. Changing the allele age t0 to some new proposed value t′0310

changes the definition of the function f in (6). Write f ′(t) =
∫ t
t′0

1
ρ(s) ds, where we stress311

that the prime does not denote a derivative. The proposed transformed path Y ′ consists312

of a new piece of path that goes from location 0 at time 0 to location Yf(ts) at time f ′(ts)313

and then has Y ′f ′(t) = Yf(t) for t ≥ ts. Recall that we use the improper prior ρ(t0) for t0,314

which reflects the fact that an allele is more likely to arise during times of large population315

size [Slatkin, 2001]. In the Appendix, we show that the acceptance probability is316

(13) min

{
1,
L(D, (Y ′τ )0≤τ≤f ′(ts) |α1, α2, t

′
0)

L(D, (Yτ )0≤τ≤f(ts) |α1, α2, t0)

ψ(Y ′f ′(ts); f
′(ts))

ψ(Yf(ts); f(ts)))

q(t0|t′0)

q(t′0|t0)

ρ(t′0)

ρ(t0)

}
where, in the notation of Subsection 2.4,317

(14) ψ(y; ε) =
y2

ε2
exp

{
−y

2

2ε

}
=

Q0(Ȳε ∈ dy)

dy

is the density of the so-called entrance law for the Bessel(0) process that appears in the318

characterization of the σ-finite measure Q0 and q(t′0|t0) is the proposal distribution of t′0319

(in practice, we use a half-truncated normal distribution centered at t0, with the upper320

truncation occurring at the first time of non-zero observed allele frequency).321

2.6.3. Most recent allele frequency update. While the allele frequency at sample times322

t1, t2, . . . , tk−1 are updated implicitly by the interior path update, we update the allele323

frequency at the most recent sample time tk separately (note that the most recent allele324

frequency is not an additional parameter, but simply a random variable with a distribution325

implied by the Wright-Fisher model on paths). We do this by first proposing a new allele326

frequency Y ′f(tk) and then proposing a new bridge from Yf(tf ) to Y ′f(tk) where tf ∈ (tk−1, tk)327
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12 JOSHUA G. SCHRAIBER, STEVEN N. EVANS, AND MONTGOMERY SLATKIN

is a fixed time (Figure 2c). If q(Y ′f(tk) |Yf(tk)) is the proposal density for Y ′f(tk) given Yf(tk)328

(in practice, we use a truncated normal distribution centered at Yf(tk) and truncated at 0329

and π), then, arguing along the same lines as the interior path update and the allele age330

update, we accept this update with probability331

(15)

min

{
1,
L(D, (Y ′τ )f(tf )≤τ≤f(tk) |α1, α2, t0)

L(D, (Yτ )f(tf )≤τ≤f(tk) |α1, α2, t0)

q(Yf(tk)|Y ′f(tk))

q(Y ′f(tk)|Yf(tk))

Q(Yf(tf ), Yf(tk); f(tk)− f(tf ))

Q(Yf(tf ), Y
′
f(tk); f(tk)− f(tf ))

}
,

where332

(16) Q(x, y; t) =
y

t
exp

{
−x

2 + y2

2t

}
I1

(xy
t

)
is the transition density of the Bessel(0) process (with I1(·) being the Bessel function of333

the first kind with index 1) – see Knight [1981, Section 4.3.6]. Again, it is only necessary334

to compute the likelihood ratio for the segment of transformed path that changed between335

the times f(tf ) and f(tk).336

2.7. Updates to α1 and α2. Updates to α1 and α2 are conventional scalar parameter337

updates. For example, letting q(α′1 |α1) be the proposal density for the new value of α1,338

we accept the new proposal with probability339

min

{
1,
L(D, (Yτ )τ≥0 |α′1, α2, t0)

L(D, (Yτ )τ≥0 |α1, α2, t0)

q(α1 |α′1)

q(α′1 |α1)

π(α′1, α2, t0)

π(α1, α2, t0)

}
.

The acceptance probability for α2 is similar. For both α1 and α2, we use a heavy-tailed340

Cauchy prior with median 0 and scale parameter 100, and we take the parameters α1, α2, t0341

to be independent under the prior distribution. In addition, we use a normal proposal342

distribution, centered around the current value of the parameter. Here, it is necessary to343

compute the likelihood across the whole path.344

3. Results345

We first test our method using simulated data to assess its performance and then apply346

it to two real datasets from horses.347

3.1. Simulation performance. To test the accuracy of our MCMC approach, we per-348

formed two sets of simulations. First, we simulated data under a constant demographic349

history to asses the quality of parameter inference under a simple model. Second, we350

simulated data under the horse demographic history of Der Sarkissian et al. [2015] and351

compared inferences performed with and without accounting for the demographic history.352

In the constant demography simulations, we simulated allele frequency trajectories with353

ages uniformly distributed between 0.1 and 0.3 diffusion time units ago, evolving with α1354

and α2 uniformly distributed between 0 and 100. We simulate allele frequency trajectories355

using an Euler approximation to the Wright-Fisher SDE (1) with ρ(t) ≡ 1. At each time356

point between −0.4 and 0.0 in steps of 0.05, we simulated the sampling of 20 chromosomes.357
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BAYESIAN INFERENCE OF NATURAL SELECTION FROM ALLELE FREQUENCY TIME SERIES 13

We then ran the MCMC algorithm for 1, 000, 000 generations, sampling every 1000358

generations to obtain 1000 MCMC samples for each simulation. After discarding the first359

500 samples from each MCMC run as burn-in, we computed the effective sample size of360

the allele age estimate using the R package coda [Plummer et al., 2006]. For the analysis361

of the simulations, we only included simulations that had an effective sample size greater362

than 150 for the allele age, resulting in retaining 744 out of 1000 simulations.363

Because our MCMC analysis provides a full posterior distribution on parameter val-364

ues, we summarized the results by computing the maximum a posteriori estimate of each365

parameter. We find that across the range of simulated α1 values, estimation is quite ac-366

curate (Figure 3A). There is some downward bias for large true values of α1, indicating367

the influence of the prior. On the other hand, the strength of selection in favor of the ho-368

mozygote, α2, is less well estimated, with a more pronounced downward bias (Figure 3B).369

This is largely because most simulated alleles do not reach sufficiently high frequency for370

homozygotes to be common. Hence, there is very little information regarding the fitness of371

the homozygote. Allele age is estimated accurately, although there is a slight bias toward372

estimating a more recent age than the truth (Figure 3C).373

[Figure 3 about here.]374

When simulating under the horse demographic history, we drew 1000 allele ages with375

probability proportional to ρ(t) for t between 0.1 and 0.3 diffusion time units ago. Similarly376

to the simulations with constant demography, we drew α1 and α2 uniformly between 0 and377

100), and then simulated allele frequency trajectories using an Euler approximation to (1)378

with ρ(t) given by the history inferred by Der Sarkissian et al. [2015]. The sampling scheme379

is identical to the constant demography simulations.380

We ran our simulated data through two separate MCMC pipelines, one accounting for381

the true simulated demographic history, and the other assuming a constant population382

size. All other settings were identical to the analysis of the data simulated under constant383

demography. We retained MCMC runs where the sampling likelihood, path likelihood, α1384

estimate, α2 estimate, and allele age estimate all had effective sample sizes greater than385

50, resulting in 561 analyses retained from the inference with variable demography, 647386

analyses retained from the inference with constant demography, and 454 analyses that were387

retained in both.388

To quantify the overall impact of demographic model misspecification on parameter
inference, we approximated the posterior root mean square error of a parameter (generically
θ) by averaging over the posterior distribution,

RMSE(θ) =

(∫ (
θ̂ − θ

)2
P (θ̂|D)dθ̂

) 1
2

≈

(
1

N

∑
i

(
θ̂i − θ

)2
) 1

2

,

where the sum is over retained MCMC samples.389
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14 JOSHUA G. SCHRAIBER, STEVEN N. EVANS, AND MONTGOMERY SLATKIN

We found substantially smaller RMSE for inference of α1 when demography is properly390

modeled (Figure 4). While inference of α2 was similar between the two models, there is391

somewhat larger RMSE when demography is incorrectly assumed to be constant. Interest-392

ingly, there seem to be two regimes of error in allele age estimation: for the most recent393

allele ages, modeling demography results in higher RMSE, while for more ancient ages,394

inferences with constant population size result in larger RMSE. These are likely caused by395

a particular feature of this demographic model, which is a very strong bottleneck inferred396

in the recent past. Because alleles are more likely to arise during periods of larger popula-397

tion size, accounting for demographic history extends the tail of the posterior distribution398

further into the past, when the population was larger.399

[Figure 4 about here.]400

3.2. Application to ancient DNA. We applied our approach to real data by reanalyzing401

the MC1R and ASIP data from Ludwig et al. [2009]. In contrast to earlier analyses of these402

data, we explicitly incorporated the demography of the domesticated horse, as inferred403

by Der Sarkissian et al. [2015], using a generation time of 8 years. Table 2 shows the404

sample configurations and sampling times corresponding to each locus, where diffusion405

units are scaled to 2N0, with N0 = 16000 being the most recent effective size reported406

by Der Sarkissian et al. [2015]. For comparison, we also analyzed the data assuming the407

population size has been constant at N0.408

[Table 2 about here.]409

[Figure 5 about here.]410

With the MC1R locus, we found that posterior inferences about selection coefficients411

can be strongly influenced by whether or not demographic information is included in the412

analysis (Figure 5). Marginally, we see that incorporating demographic information results413

in an inference that α1 is larger than the constant-size model (MAP estimates of 267.6 and414

74.1, with and without demography, respectively; Figure 5A), while α2 is inferred to be415

smaller (MAP estimates of 59.1 and 176.2, with and without demography, respectively;416

Figure 5B). This has very interesting implications for the mode of selection inferred on the417

MC1R locus. Recall that α2 > α1 > 0 is direction selection, in which the derived allele418

is always beneficial, α2 < α1 > 0 is overdominant selection, in which the heterozygote419

is favored, and α2 > α1 < 0 is underdominant selection, in which the heterozygote is420

disfavored. With constant demography, the trajectory of the allele is estimated to be shaped421

by positive directional selection (joint MAP, α1 = 87.6, α2 = 394.8; Figure 5C), while when422

demographic information is included, selection is inferred to act in an overdominant fashion423

(joint MAP, α1 = 262.5, α2 = 128.1; Figure 5D).424

[Figure 6 about here.]425

Incorporation of demographic history also has substantial impacts on the inferred distri-426

bution of allele ages (Figure 6). Most notably, the distribution of the allele age for MC1R427

is significantly truncated when demography is incorporated, in a way that correlates to428

the demographic events (Figure S1). While both the constant-size history and the more429

complicated history result in a posterior mode at approximately the same value of the430
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allele age, the domestication bottleneck inferred by Der Sarkissian et al. [2015] makes it431

far less likely that the allele rose more anciently than the recent population expansion.432

Because the allele is inferred to be younger under the model incorporating demography,433

the strength of selection in favor of the homozygote must be higher to allow it to escape434

low frequency quickly and reach the observed allele frequencies. Hence, α1 is inferred to435

be much higher when demographic history is explicitly modeled.436

[Figure 7 about here.]437

Incorporation of demographic history has an even more significant impact on inferences438

made about the ASIP locus (Figure 7). Most strikingly, while α1 is inferred to be very439

large without demography, it is inferred to be close to 0 when demography is incorporated440

(MAP estimates of 16.3 and 159.9 with and without demography, respectively; Figure441

7A). On the other hand, inference of α2 is largely unaffected (MAP estimates of 34.7442

and 39.8 with and without demography, respectively; Figure 7B). Interestingly, this has443

an opposite implication for the mode of selection compared to the results for the MC1R444

locus. With a constant-size demographic history, the allele is inferred to have evolved445

under overdominance (joint MAP, α1 = 153.3, α2 = 47; Figure 7C), but when the more446

complicated demography is modeled, the allele frequency trajectory is inferred to be shaped447

by positive, nearly additive, selection (joint MAP, α1 = 16.4, α2 = 46.8; Figure 7D).448

[Figure 8 about here.]449

Incorporating demography has a similarly opposite effect on inference of allele age (Fig-450

ure 8). In particular, the allele is inferred to be much older when demography is modeled,451

and features a multi-modal posterior distribution on allele age, with each mode corre-452

sponding to a period of historically larger population size (Figure S2). Because the allele453

is inferred to be substantially older when demography is modeled, selection in favor of the454

heterozygote must have been weaker than would be inferred with the much younger age.455

Hence, the mode of selection switches from one of overdominance in a constant demography456

to one in which the homozygote is more fit than the heterozygote.457

4. Discussion458

Using DNA from ancient specimens, we have obtained a number of insights into evolu-459

tionary processes that were previously inaccessible. One of the most interesting aspects of460

ancient DNA is that it can provide a temporal component to evolution that has long been461

impossible to study. In particular, instead of making inferences about the allele frequencies,462

we can directly measure these quantities. To take advantage of this new data, we developed463

a novel Bayesian method for inferring the intensity and direction of natural selection from464

allele frequency time series. In order to circumvent the difficulties inherent in calculat-465

ing the transition probabilities under the standard Wright-Fisher process of selection and466

drift, we used a data augmentation approach in which we learn the posterior distribution467

on allele frequency paths. Doing this not only allows us to efficiently calculate likelihoods,468

but provides an unprecedented glimpse at the historical allele frequency dynamics.469

The key innovation of our method is to apply high-frequency path augmentation meth-470

ods [Roberts and Stramer, 2001] to analyze genetic time series. The logic of the method is471
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16 JOSHUA G. SCHRAIBER, STEVEN N. EVANS, AND MONTGOMERY SLATKIN

similar to the logic of a path integral, in which we average over all possible allele frequency472

trajectories that are consistent with the data [Schraiber, 2014]. By choosing a suitable473

reference probability distribution against which to compute likelihood ratios, we were able474

to adapt these methods to infer the age of alleles and properly account for variable popu-475

lation sizes through time. Moreover, because of the computational advantages of the path476

augmentation approach, we were able to infer a model of general diploid selection. To477

our knowledge, ours is the first work that can estimate both allele age and general diploid478

selection while accounting for demography.479

Using simulations, we showed that our method performs well for strong selection and480

densely sampled time series. However, it is worth considering the work of Watterson [1979],481

who showed that even knowledge of the full trajectory results in very flat likelihood surfaces482

when selection is not strong. This is because for weak selection, the trajectory is extremely483

stochastic and it is difficult to disentangle the effects of drift and selection [Schraiber et al.,484

2013].485

We also used simulations to test how misspecification of demographic history impacts486

inference. We saw substantially increased posterior root mean square error in inference487

of selection parameters if demographic history is misspecified. To examine the impact of488

demographic history in the context of real data, we then applied our method to a classic489

dataset from horses. We found that our inference of both the strength and mode of natural490

selection depended strongly on whether or not we incorporated demography. For the MC1R491

locus, a constant-size demographic model results in an inference of positive selection, while492

the more complicated demographic model inferred by Der Sarkissian et al. [2015] causes the493

inference to tilt toward overdominance, as well as a much younger allele age. In contrast,494

the ASIP locus is inferred to be overdominant under a constant-size demography, but the495

complicated demographic history results in an inference of positive selection, and a much496

older allele age.497

These results stand in contrast to those of Steinrücken et al. [2014], who found that498

the most likely mode of evolution for both loci under a constant demographic history499

is one of overdominance. There are a several reasons for this discrepancy. First, we500

computed the diffusion time units differently, using N0 = 16000 and a generation time of501

8 years, as inferred by Der Sarkissian et al. [2015], while Steinrücken et al. [2014] used502

N0 = 2500 (consistent with the bottleneck size found by Der Sarkissian et al. [2015]) and503

a generation time of 5 years. Hence, our constant-size model has far less genetic drift504

than the constant-size model assumed by Steinrücken et al. [2014]. This emphasizes the505

importance of inferring appropriate demographic scaling parameters, even when a constant506

population size is assumed. Secondly, we use MCMC to integrate over the distribution of507

allele ages, which can have a very long tail going into the past, while Steinrücken et al.508

[2014] assume a fixed allele age.509

One key limitation of this method is that it assumes that the aDNA samples all come510

from the same, continuous population. If there is in fact a discontinuity in the populations511

from which alleles have been sampled, this could cause rapid allele frequency change and512

create spurious signals of natural selection. Several methods have been devised to test this513

hypothesis [Sjödin et al., 2014], and one possibility would be to apply these methods to514
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putatively neutral loci sampled from the same individuals, thus determining which samples515

form a continuous population. Alternatively, if our method is applied to a number of loci516

throughout the genome and an extremely large portion of the genome is determined to517

be evolving under selection, this could be evidence for model misspecification and suggest518

that the samples do not come from a continuous population.519

An advantage of the method that we introduced is that it may be possible to extend it to520

incorporate information from linked neutral diversity. In general, computing the likelihood521

of neutral diversity linked to a selected site is difficult and many have used Monte Carlo522

simulation and importance sampling [Slatkin, 2001, Coop and Griffiths, 2004, Chen and523

Slatkin, 2013]. These approaches average over allele frequency trajectories in much same524

way as our method; however, each trajectory is drawn completely independently of the525

previous trajectories. Using a Markov chain Monte Carlo approach, as we do here, has the526

potential to ensure that only trajectories with a high posterior probability are explored527

and hence greatly increase the efficiency of such approaches.528
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7. Appendix537

7.1. A proper posterior in the limit as the initial allele frequency approaches 0.538

For reasons that we explain in Subsection 2.4, we re-parametrize our model by replacing539

the path variable (Xt)t≥t0 with a deterministic time and space transformation of it (Yt)t≥0540

that takes values in the interval [0, π] with the boundary point 0 (resp. π) for (Yt)t≥0541

corresponding to the boundary point 0 (resp. 1) for (Xt)t≥t0 . The transformation producing542

(Yt)t≥0 is such that (Xt)t≥t0 can be recovered from (Yt)t≥0 and t0.543

Implicit in our set-up is the initial frequency x0 at time t0 which corresponds to an544

initial value y0 at time 0 of the transformed process (Yt)t≥0. For the moment, let us make545

the dependence on y0 explicit by including it in relevant notation as a superscript. For546

example, Py0(· |α1, α2, t0) is the prior distribution of (Yt)t≥0 given the specified values of the547

other parameters α1, α2, t0. We will construct a tractable “reference” process (Ȳt)t≥0 with548

distribution Qy0(·) such that the probability distribution Py0(· |α1, α2, t0) has a density549

with respect to Qy0(·) – explicitly, Qy0(·) is the distribution of a Bessel(0) process started550

at location y0 at time 0. That is, there is a function Φy0(·;α1, α2, t0) on path space such551

that552

(17) Py0(dy |α1, α2, t0) = Φy0(y;α1, α2, t0)Qy0(dy)
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for a path (yt)t≥0. Assuming that π has a density with respect to Lebesgue measure which,553

with a slight abuse of notation, we also denote by π, the outcome of our Bayesian inferential554

procedure is determined by the ratios555

(18)
P(dD | y∗∗, t∗∗0 )Φy0(y∗∗;α∗∗1 , α

∗∗
2 , t

∗∗
0 )π(α∗∗1 , α

∗∗
2 , t

∗∗
0 )

P(dD | y∗, t∗0)Φy0(y∗;α∗1, α
∗
2, t
∗
0)π(α∗1, α

∗
2, t
∗
0)

for pairs of augmented parameter values (y∗, α∗1, α
∗
2, t
∗
0) and (y∗∗, α∗∗1 , α

∗∗
2 , t

∗∗
0 ) (i.e. the556

Metropolis-Hastings ratio).557

Under the probability measure Py0(· |α1, α2, t0), the process (Yt)t≥0 converges in distri-558

bution as y0 ↓ 0 (equivalently, x0 ↓ 0) to the trivial process that starts at location 0 at time559

0 and stays there. However, for all ε > 0 the conditional distribution of (Yt)t≥ε under the560

probability measure Py0(· |α1, α2, t0) given the event {Yε > 0} converges to a non-trivial561

probability measure as y0 ↓ 0. Similarly, the conditional distribution of the reference562

diffusion process (Ȳt)t≥ε under the probability measure Qy0(·) given the event {Ȳε > 0}563

converges as y0 ↓ 0 to a non-trivial limit. There are σ-finite measures P0(· |α1, α2, t0) and564

Q0(·) on path space that both have infinite total mass, are such that for any ε > 0 both of565

these measures assign finite, non-zero mass to the set of paths that are strictly positive at566

the time ε, and the corresponding conditional probability measures are the limits as y0 ↓ 0567

of the conditional probability measures described above. Moreover, there is a function568

Φ0(·;α1, α2, t0) on path space such that569

(19) P0(dy |α1, α2, t0) = Φ0(y;α1, α2, t0)Q0(dy).

The posterior distribution (3) converges to570

(20) P0(dα1, dα2, dt0; dY |D) =
P(dD |Y, t0)P0(dY |α1, α2, t0)π(dα1, dα2, dt0)∫
P(dD |Y ′)P0(dY ′ |α′1, α′2, t′0)π(dα′1, dα

′
2, dt

′
0)
.

Thus, the limit as y0 ↓ 0 of a Bayesian inferential procedure for the augmented set of571

parameters can be viewed as a Bayesian inferential procedure with the improper prior572

P0(dY |α1, α2, t0)π(dα1, dα2, dt0) for the parameters Y, α1, α2, t0. In particular, the limit-573

ing Bayesian inferential procedure is determined by the ratios574

(21)
P(dD | y∗∗, t∗∗0 )Φ0(h∗∗;α∗∗1 , α

∗∗
2 , t

∗∗
0 )π(α∗∗1 , α

∗∗
2 , t

∗∗
0 )

P(dD | y∗, t∗0)Φ0(y∗;α∗1, α
∗
2, t
∗
0)π(α∗1, α

∗
2, t
∗
0)

for pairs of augmented parameter values (y∗, α∗1, α
∗
2, t
∗
0) and (y∗∗, α∗∗1 , α

∗∗
2 , t

∗∗
0 ).575

7.2. The likelihood of the data and the path. Write τi = f(ti). Note that τ0 =576

f(t0) = 0. Using equation (9), the density of the distribution of the transformed allele577

frequency process (Yt)0≤s≤τk against the reference distribution of the Bessel(0) process578

(Ȳs)0≤s≤τk when Y0 = Ȳ0 = y0 can be written579

(22) exp

{∫ τk

0
(a(Yr, r)− b(Yr)) dYr −

1

2

∫ τk

0

(
a2(Yr, r)− b2(Yr)

)
dr

}
where580

a(y, τ) = −1

2
cot(Yτ ) +

1

4

(
ρ(f−1(τ)) sin(y)(α2 + (2α1 − α2) cos(y))

)
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is the infinitesimal mean of the transformed Wright-Fisher process and581

b(y) = − 1

2y

is the infinitesimal mean of the Bessel(0) process. However, as shown by Sermaidis et al.
[2013], attempting to approximate the Itô integral in (22) using a discrete representation
of the path can lead to biased estimates of the posterior distribution. Instead, consider the
potential functions

H1(y, τ) =

∫ y

a(ξ, τ) dξ

= −1

8

(
ρ(f−1(τ)) cos2(y)(2α1 − α2) + 4 log(sin(y))

)
and

H2(y) =

∫ y

b(ξ, τ) dξ

= − log(y)

2
.

If we assume that ρ is continuous (not merely right continuous with left limits), then Itô’s
lemma shows that we can write∫ τk

0
(a(Yr, r)− b(Yr)) dYr = H1(Yτk , τk)−H2(Yτk)− (H1(Y0, 0)−H2(Y0))

−
∫ τk

0

(
∂H1

∂τ
(Yr, r)−

∂H2

∂τ
(Yr)

)
dr

−
∫ τk

0

(
∂2H1

∂y2
(Yr, r)−

∂2H2

∂y2
(Yr)

)
dr.

To generalize this to the case where ρ is right continuous with left limits, write582 ∫ τk

0
(a(Yr, r)− b(Yr)) dYr = I0 +

K∑
i=m

Ii,

where m and K are defined in the main text,583

I0 = lim
τ↑f(dm)

∫ τ

0
(a(Yr, r)− b(Yr)) dYr,

for m < i < K,584

Ii = lim
τ↑f(di+1)

∫ τ

f(di)
(a(Yr, r)− b(Yr)) dYr,

and585

IK = lim
τ↑τk

∫ τ

f(dK)
(a(Yr, r)− b(Yr)) dYr.
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Itô’s lemma can then be applied to each segment in turn. Following the conversion of the586

Itô integrals into ordinary Lebesgue integrals, making the substitution s = f−1(r) results587

in the path likelihood displayed in (11).588

7.3. Acceptance probability for an interior path update. When we propose a new589

path (y′t)0≤t≤τk to update the current path (yt)0≤t≤τk which doesn’t hit the boundary, the590

new path agrees with the existing path outside some time interval [v1, v2], and has a new591

segment spliced in that goes from yv1 at time v1 to yv2 at time v2. The proposed new path592

segment comes from a Bessel(0) process over the time interval [v1, v2] that is pinned to593

take the values yv1 and yv2 at the end-points; that is, the proposed new piece of path is a594

bridge.595

The ratio that determines the probability of accepting the proposed path is596

(23)
P (dD | y′, t0)

P (dD | y, t0)
× P(dy′)κ(dy | y′)

P(dy)κ(dy′ | y),

where P (· | y′, t0) and P (· | y, t0) give the probability of the observed allele counts given597

the transformed allele frequency paths and initial time t0, P(·) is the distribution of the598

transformed Wright-Fisher diffusion starting from y0 > 0 at time 0 (that is, the distribution599

we have sometimes denoted by Py0), the probability kernel κ(· | y) gives the distribution of600

the proposed path when the current path is y, and κ(· | y′) is similar. To be completely601

rigorous, the second term in the product in (23) should be interpreted as the Radon-602

Nikodym derivative of two probability measures on the product of path space with itself.603

Consider a finite set of times 0 ≡ τ0 ≡ u0 < u1 < . . . < u` ≡ τk. Suppose that604

{v1, v2} ∈ {u0, . . . , u`}, v1 = um and v2 = un for some m < n. Let (yt)0≤t≤τk and (y′t)0≤t≤τk605

be two paths that coincide on [0, v1] ∪ [v2, τk] = [u0, um] ∪ [un, u`]. Write P (x, y; s, t) for606

the transition density (with respect to Lebesgue measure) of the transformed Wright-607

Fisher diffusion from time s to time t and Q(x, y; t) for the transition density (with respect608

to Lebesgue measure) of the Bessel(0) process. Suppose that (ξ, ζ) is a pair of random609

paths with P ((ξ, ζ) ∈ (dy, dy′)) = P(dy)κ(dy′ | y). Then, writing zt = yt = y′t for t ∈610

[0, v1] ∪ [v2, τk] = [u0, um] ∪ [un, u`], we have611

P (ξu1 ∈ dyu1 , . . . , ξu` ∈ dyu` , ζu1 ∈ dy
′
u1 , . . . , ζu` ∈ dy

′
u`

)

= P (zu0 , zu1 ;u0, u1)dzu1 × · · · × P (zum−1 , zum ;um−1, um)dzum

× P (zum , yum+1 ;um, um+1)dyum+1 × · · · × P (yun−1 , zun ;un−1, un)dzun

× P (zun , zun+1 ;un, un+1)dzum+1 × · · · × P (zu`−1
, zu` ;u`−1, u`)dzu`

×Q(zum , y
′
um+1

;um+1 − um)dyum+1 × · · · ×Q(yun−1 , zun ;un − un−1)/
Q(zum , zun ;un − um),

where the factor in the denominator arises because we are proposing bridges and hence612

conditioning on going from a fixed location at v1 = um to another fixed location at v2 = un.613
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Thus,614

P (ξu1 ∈ dy′u1 , . . . , ξu` ∈ dy
′
u`
, ζu1 ∈ dyu1 , . . . , ζu` ∈ dyu`)

P (ξu1 ∈ dyu1 , . . . , ξu` ∈ dyu` , ζu1 ∈ dy′u1 , . . . , ζu` ∈ dy′u`)

=

∏n−1
j=m P (y′uj , y

′
uj+1

;uj , uj+1)/Q(y′uj , y
′
uj+1

;uj+1 − uj)∏n−1
j=m P (yuj , yuj+1 ;uj , uj+1)/Q(yuj , yuj+1 ;uj+1 − uj)

.

Therefore, the Radon-Nikodym derivative appearing in (23) is the ratio of Radon-Nikodym615

derivatives616

dP̃
dQ̃(y′)

dP̃
dQ̃(y)

,

where P̃ (resp. Q̃) is the distribution of the transformed Wright-Fisher diffusion (resp. the617

Bessel(0) process) started at location yv1 = y′v1 at time v1 and run until time v2. The618

formula (12) for the acceptance probability associated with an interior path update follows619

immediately.620

The above argument was carried out under the assumption that the transformed initial621

allele frequency y0 was strictly positive and so all the measures involved were probabil-622

ity measures. However, taking y0 ↓ 0 we see that the formula (12) continues to hold.623

Alternatively, we could have worked directly with the measure P0 in place of Py0 . The624

only difference is that we would have to replace P (y0, y; 0, s) by the density φ(y; 0, s) of an625

entrance law for P0. That is, φ(y; 0, s) has the property that626

lim
y0↓0

P (y0, y
′; 0, s′)

P (y0, y′′; 0, s′′)
=

φ(y′; 0, s′)

φ(y′′; 0, s′′)

for all y′, y′′ > 0 and s′, s′′ > 0 so that627 ∫
φ(y; 0, s)P (y, z; s, t) dy = φ(z; 0, t)

for 0 < s < t. Such a density, and hence the corresponding entrance law, is unique up to628

a multiplicative constant. In any case, it is clear that the choice of entrance law in the629

definition of P0 does not affect the formula (12) as the entrance law densities “cancels out”.630

7.4. Acceptance probability for an allele age update. The argument justifying the631

formula (13) for the probability of accepting a proposed update to the allele age t0 is similar632

to the one just given for interior path updates. Now, however, we have to consider replacing633

a path y that starts from y0 at time 0 and runs until time f(tk) with a path y′ that starts634

from y0 at time 0 and runs until time f ′(tk). Instead of removing an internal segment of635

path and replacing it by one of the same length with the same values at the endpoints, we636

replace the initial segment of path that runs from time 0 to f(ts) =
∫ ts
t0

1
ρ(s) ds by one that637

runs from time 0 to time f ′(ts) =
∫ ts
t′0

1
ρ(s) ds, with y′f ′(ts) = yf(ts).638
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By analogy with the previous subsection, we need to consider639

P (ξ ∈ dy′, T ξ0 ∈ dt′, ζ ∈ dy, T
ζ
0 ∈ dt)

P (ξ ∈ dy, T ξ0 ∈ dt, ζ ∈ dy′, T
ζ
0 ∈ dt′)

,

where ξ is a transformed Wright-Fisher process starting at y0 at time 0 and run to time640

F ξ =
∫ ts
T ξ0

1
ρ(s) ds, where P (T ξ0 ∈ dt) = ρ(t) dt, and conditional on ξ, ζ is a Bessel(0)641

bridge run from y0 at time 0 to ξF ξ at time F ζ =
∫ ts
T ζ0

1
ρ(s) ds, where P (T ζ0 ∈ dt) = ρ(t)dt642

independent of ξ and T ξ0 .643
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Suppose that 0 = u0 < u1 < . . . < um =
∫ ts
t′

1
ρ(s) ds and 0 = v0 < v1 < . . . < vn =644 ∫ ts

t
1
ρ(s) ds. We have for y′0, . . . y

′
m and y0, . . . , yn with y0 = y′0 and y′m = yn that645

P (ξui ∈ dy′i, 1 ≤ i ≤ m− 1, T ξ0 ∈ dt′, ζvj ∈ dyj , 1 ≤ j ≤ n, T
ζ
0 ∈ dt)

P (ξvj ∈ dyj , 1 ≤ j ≤ n− 1, T ξ0 ∈ dt, ζui ∈ dy′i, 1 ≤ i ≤ m,T
ζ
0 ∈ dt′)

=

{
m−1∏
i=0

P (y′j , y
′
j+1;ui, ui+1) dy′i+1 × ρ(t′) dt′

×

n−2∏
j=0

Q(yj , yj+1; vj+1 − vj) dyj+1 ×Q(yn−1, yn; vn − vn−1)

/
Q(y0, yn; vn)

× dt}
/{

n−1∏
j=0

P (yj , yj+1; vj , vj+1) dyj+1)× ρ(t) dt

×

[
m−2∏
i=0

Q(y′i, y
′
i+1;ui+1 − ui) dy′i+1 ×Q(y

′
m−1, y

′
m;um − um−1)

/
Q(y

′
0, y
′
m;um)

]
× dt′

}

=

{
m−1∏
i=0

P (y′j , y
′
j+1;ui, ui+1) dy′i+1 × ρ(t′) dt′

×

n−1∏
j=0

Q(yj , yj+1; vj+1 − vj) dyj+1

/
Q(y0, yn; vn)

× dt}
/{

n−1∏
j=0

P (yj , yj+1; vj , vj+1) dyj+1)× ρ(t) dt

×

[
m−1∏
i=0

Q(y′i, y
′
i+1;ui+1 − ui) dy′i+1

/
Q(y

′
0, y
′
m;um)

]
× dt′

}

=

∏m−1
i=0 P (y′j , y

′
j+1;ui, ui+1) dy′i+1

/[∏m−1
i=0 Q(y′i, y

′
i+1;ui+1 − ui) dy′i+1

]
∏n−1
j=0 P (yj , yj+1; vj , vj+1) dyj+1)

/[∏n−1
j=0 Q(yj , yj+1; vj+1 − vj) dyj+1

]
×
Q(y

′
0, y
′
m;um)

Q(y0, yn; vn)
× ρ(t′)

ρ(t)
,

where the second equality follows from the fact that yn = y′m.646
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Thus,647

P (ξ ∈ dy′, T ξ0 ∈ dt′, ζ ∈ dy, T
ζ
0 ∈ dt)

P (ξ ∈ dy, T ξ0 ∈ dt, ζ ∈ dy′, T
ζ
0 ∈ dt′)

=

dP̌
dQ̌(y′)

dP̂
dQ̂

(y)
×
Q(y0, y

′
T ′ ;T

′)

Q(y0, yT ;T )
× ρ(t′)

ρ(t)
,

where T =
∫ ts
t

1
ρ(s) ds and T ′ =

∫ ts
t′

1
ρ(s) ds, P̂ (resp. P̌) is the distribution of the transformed648

Wright-Fisher diffusion starting at location y0 at time 0 and run until time T (resp. T ′),649

and Q̂ (resp. Q̌) is the distribution of the Bessel(0) process starting at location y0 at time650

0 and run until time T (resp. T ′).651

We have thusfar assumed that y0 is strictly positive. As in the previous subsection,652

we can let y0 ↓ 0 to get an expression in terms of Radon-Nikodym derivatives of σ-finite653

measures and the density ψ(y; s) of an entrance law for Q0. That is, ψ(y; s) has the property654

that655

lim
y0↓0

Q(y0, y
′; s′)

Q(y0, y′′; s′′)
=

ψ(y′; s′)

ψ(y′′; s′′)

for all y′, y′′ > 0 and s′, s′′ > 0, so that656 ∫
ψ(y; s)Q(y, z; t) dy = ψ(z; s+ t)

for s, t > 0. Up to an irrelevant multiplicative constant, ψ is given by the expression (14),657

and the formula (13) for the acceptance probability follows immediately.658

7.5. Acceptance probability for a most recent allele frequency update. The deriva-659

tion of formula (15) for the probability of accepting a proposed update to the most recent660

allele frequency is similar to those for the other acceptance probabilities (12) and (13), so661

we omit the details.662
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Figure 1. Taking samples from an allele frequency trajectory. An allele
frequency trajectory is simulated from the Wright-Fisher diffusion (solid
line). At each time, ti, a sample of size ni chromosomes is taken and ci
copies of the derived allele are observed. Each point corresponds to the
observed allele frequency of sample i. Note that t1 is more ancient than the
allele age, t0.
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Figure 2. Illustration of path updates. Filled circles correspond to the
same sample frequencies as in Figure 1. The solid gray line in each panel
is the current allele frequency trajectory and the dashed black lines are
the proposed updates. In panel a, an interior section of path is proposed
between points s1 and s2. In panel b, a new allele age, t′0 is proposed and a
new path is drawn between t′0 and ts. In panel c, a new most recent allele
frequency Y ′tk is proposed and a new path is drawn between tf and tk.
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Figure 3. Maximum a posterior estimates of different parameters. Each
panel shows the true value of a parameter on the x-axis, while the inferred
value is on the y-axis. Dashed line is y = x.
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Figure 4. Comparison of root mean square error (RSME) when inference
in performed with the proper (variable) demographic model on the x-axis
compared to a misspecified constant demography model on the y-axis. Each
point represents a single simulation, and points are colored according to
simulated parameter value (scale on the right of each panel). Solid line is
y = x.
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Figure 5. Posterior distributions of selection coefficients for the MC1R lo-
cus. Panels A and B show marginal distributions of α1 and α2, respectively,
with the solid line indicating the posterior obtained from an analysis includ-
ing the full demographic history, and the dotted line showing what would
be inferred in a constant size population. Panels C and D show contour
plots of the joint distribution of α1 and α2 without and with demography,
respectively.
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Figure 6. Posterior distribution on allele frequency paths for the MC1R
locus. Each panel shows the sampled allele frequency data (filled circles),
the point-wise median (black), 25 and 75% quantiles (red), and 5 and 95%
quantiles (green) of the posterior distribution on paths, and the posterior
distribution on allele age (blue). Panel A reports inference with constant
demography, while panel B shows the result of inference with the full de-
mographic history.
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Figure 7. Posterior distributions of selection coefficients for the ASIP lo-
cus. Panels as in Figure 5
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Figure 8. Posterior distribution on allele frequency paths for the ASIP
locus. Panels are as in Figure 6.
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Tables 33

Genotype A1A1 A1A0 A0A0

Fitness 1 + s2 1 + s1 1
Table 1. Fitness scheme assumed in the text.
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34 Tables

Sample time (years BCE) 20,000 13,100 3,700 2,800 1,100 500
Sample time (diffusion units) 0.078 0.051 0.014 0.011 0.004 0.002

Sample size 10 22 20 20 36 38
Count of ASIP alleles 0 1 15 12 15 18
Count of MC1R alleles 0 0 1 6 13 24

Table 2. Sample information for horse data. Diffusion time units are cal-
culated assuming N0 = 2500 and a generation time of 5 years.
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Tables 35

8. Supplementary Figures663

[Figure S1 about here.]664

[Figure S2 about here.]665
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Figure S1. Influence of population size on age estimates of the MC1R
locus. The solid and dashed lines show the posterior distribution on allele
age with and without demography, respectively. In red, the demographic
history inferred by Der Sarkissian et al. [2015].
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Figure S2. Influence of population size on age estimates of the ASIP locus.
Data presented is as in Figure S1
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