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ABSTRACT12

Most neurons have complex morphologies with long processes and dynamic, nonuniform spatial expression
patterns of subcellular organelles and macromolecules. It is thought that trafficking and delivery of this subcellular
cargo depends on purely local signals, rather than a global addressing system. Yet it remains unclear how such a
decentralized system performs in complex morphologies. We mathematically formalize a previously proposed
“sushi belt” model of microtubule transport (Doyle and Kiebler, 2011) and show how arbitrarily complex spatial
distributions of cargo can be achieved by local signaling mechanisms. We reveal that this model predicts an
unavoidable and physiologically critical tradeoff between speed and precision of cargo delivery that can be tested
experimentally. More sophisticated variants of the sushi belt model can provide both fast and precise transport;
however, these require global tuning of trafficking kinetics, and their performance is fragile to changes in the
required spatial distribution of cargo.
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INTRODUCTION15

The axonal and dendritic trees of most neurons are stunningly complex. The logistical task of distributing biomolec-16

ular components within these morphologies is therefore considerable, especially for components that are synthesized17

in locations that are distal from their site of use. Although the molecular machinery responsible for active transport18

has been characterized in detail (Doyle and Kiebler, 2011; Buxbaum et al., 2014a; Hancock, 2014), there have been19

few attempts to understand how these mechanisms can be orchestrated to distribute cargo accurately and efficiently20

in realistic neuron morphologies.21

Not all aspects of neurite metabolism depend on continual delivery of cargo from the soma. For example,22

some forms of long-term potentiation (LTP) use local protein synthesis and can function in isolated dendrites23

(Kang and Schuman, 1996; Aakalu et al., 2001; Vickers et al., 2005; Sutton and Schuman, 2006). Similarly,24

constitutive maintenance of cytoskeletal, membrane and signalling pathways is achieved in part by locally recycling25
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or synthesizing components (Park et al., 2004, 2006; Grant and Donaldson, 2009; Zheng et al., 2015). Nonetheless,26

many long-lasting forms of synaptic plasticity are known to depend on anterograde transport of mRNAs (Kandel,27

2001; Puthanveettil et al., 2008) and specific mRNAs are known to be selectively transported to regions of heightened28

synaptic activity (Steward et al., 1998; Steward and Worley, 2001; Moga et al., 2004) or to developing synaptic29

contacts (Lyles et al., 2006). These observations fit with the well-known synaptic tagging hypothesis (Frey and30

Morris, 1997, 1998; Redondo and Morris, 2011), which proposes that synapses produce a biochemical ‘tag’ that31

signals a requirement for synaptic building blocks as part of the plasticity process. More generally, any site or32

region of a dendrite that requires specific biochemical components presumably needs to signal demand for these33

components and sequester them as they are delivered.34

Kinesin and dyenin motor proteins mediate transport along microtubules at rates that far exceed passive diffusion35

(Block et al., 1990; Smith and Simmons, 2001; Hirokawa et al., 2010; Gagnon and Mowry, 2011; Park et al., 2014).36

The movement of individual cargoes is often stochastic and bidirectional (Hancock, 2014), motivating the hypothesis37

that motor proteins search the dendritic tree for dropoff locations, instead of following a pre-determined path (Welte,38

2004; Bressloff and Newby, 2009; Doyle and Kiebler, 2011). Thus, the local rate of transport and the decision to39

release cargo are thought to be predominantly controlled by localized signaling pathways, rather than a centralized40

addressing system. These localized mechanisms are not fully understood, but are believed to involve transient41

elevations in second-messengers like [Ca2+] and ADP (Mironov, 2007; Wang and Schwarz, 2009; Buxbaum et al.,42

2014b), and changes in microtubule-associate proteins (Soundararajan and Bullock, 2014). These pathways can be43

activated by the spatial pattern of synaptic activity, the spontaneous release of calcium from internal stores, or by44

released factors from other cells (Wong and Ghosh, 2002; Parrish et al., 2007; Park and Poo, 2013; Zagrebelsky and45

Korte, 2014).46

Based on these observations, a number of reviews have advanced a conceptual model of molecular transport,47

in which cargo searches the dendritic arbor via a noisy walk before its eventual release or capture (Welte, 2004;48

Buxbaum et al., 2014a, 2015). Doyle and Kiebler (2011) refer to this as the “sushi belt model”. In this analogy,49

molecular cargoes are represented by sushi plates that are distributed on a conveyor belt, as is typical in certain50

restaurants. Customers sitting alongside the belt (representing specific locations or synapses along a dendrite) each51

have specific and potentially time-varying demands for the amount and type of sushi they consume, but they can52

only choose from nearby plates as they pass.53

While the sushi belt model is intuitively plausible, a number of open questions remain. How can a trafficking54

system based on localized signals be engineered to accurately generate spatial distributions of cargo? How can55

two spatially separated regions of the neuron avoid interfering with each other, even though they can’t directly56

communicate? Within this family of models, are there multiple sets of trafficking parameters capable of producing57

the same distribution of cargo, and do they use qualitatively different strategies to produce it? Finally, how quickly58

and how accurately can cargo be delivered by this class of models, and do these measures of performance depend on59

morphology and the specific spatial pattern of demand?60

Here, we formulate the sushi belt model in a minimal, biophysically plausible set of equations, and show that it61

can reliably produce complex spatial distributions of cargo. However, we also reveal several logistical constraints on62

this family of models. In particular, we show that fast cargo delivery is error-prone, in the sense that the amount63

of cargo delivered is disproportionate to the local demand for cargo. We outline experimental predictions to test64

whether this tradeoff is present in real neurons, or if more complex models beyond the sushi belt are required.65
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RESULTS66

Model description67

Transport along microtubules is mediated by kinesin and dynein motors, which are responsible for anterograde and68

retrograde transport, respectively (Hirokawa et al., 2010; Gagnon and Mowry, 2011). Cargo is often simultaneously69

bound to both forms of motor protein, resulting in stochastic back-and-forth movements with a net direction70

determined by the balance of opposing movements (Welte, 2004; Hancock, 2014; Buxbaum et al., 2014a) (Fig. 1A).71

To obtain a general model that can accommodate variations in the biophysical details, we interpreted microtubule-72

based transport as a biased random walk along a one-dimensional cable (Bressloff, 2006; Bressloff and Newby,73

2009; Newby and Bressloff, 2010; Bressloff and Newby, 2013). For each time step (1 s), the cargo moves 1 µm74

forwards, 1 µm backwards, or remains in the same place, each with different probabilities. These parameters75

produce a qualitative fit to a more detailed biophysical model (Muller et al., 2008). In the simplest model, the76

probabilities associated with each movement are fixed and independent across each time step, with the forward jump77

more probable than a reverse jump, leading to a biased random walk (Fig. 1B, top panel). Existing biophysical78

models of single-cargo transport include mechanisms for extended unidirectional runs Muller et al. (2008); Hancock79

(2014). To account for these runs, we made a second version of the model in which the movement probabilities80

at each time step depend on the previous position of the particle (see Methods); the resulting trajectories change81

direction less frequently, resulting in a larger variance in cargo position over time (Fig. 1B, bottom panel).82

While the position of individual cargoes is highly stochastic and dependent on the specific sequence of micro-83

scopic steps, the net movement of a population of cargoes (Fig. 1C) is predictable. This is seen in Figure 1D, which84

shows the distribution of 1000 molecules over time with (top panel) and without (bottom panel) unidirectional runs.85

Thus, bulk trafficking of cargo can be modeled as a deterministic process, which we refer to as the “mass-action86

model” of transport. The model discretizes the dendritic tree into small compartments, and describes the transfer of87

cargo between neighboring compartments as reactions with first order kinetics. In a cable with N compartments, the88

mass-action model is (Fig. 1E):89

u1
a1−⇀↽−
b1

u2
a2−⇀↽−
b2

u3
a3−⇀↽−
b3

...
aN−1−−⇀↽−−
bN−1

uN (1)

where ui is the amount of cargo in each compartment, and ai and bi respectively denote local rate constants for90

anterograde and retrograde transport. For now, we assume that these rate constants are spatially homogeneous, since91

the stochastic movements of our single-particle simulations do not depend on position. In this case, the mass-action92

model maps onto the well-known drift-diffusion equation (Fig. 1E) that can be used to estimate plausible parameter93

ranges from experimental data. The drift and diffusion coefficients are respectively proportional to the rate of change94

of the mean and variance of the ensemble distribution (see Methods); thus, measurements of these two quantities on95

a specific stretch of dendrite provide local estimates of the trafficking parameters.96

Figure 1F shows two mass-action models with 1 µm compartments. The trafficking rate constants were chosen97

to reproduce the mean and variance of the ensemble simulations in figure 1D. This resulted in a ≈ 0.42 s−1 and98

b≈ 0.17 s−1 for the simulation without runs (top panel) and a≈ 0.79 s−1 and b≈ 0.54 s−1 with runs (bottom panel).99

These parameters produce mean particle velocities of 15 µm per minute for both simulations, which is within the100

range of experimental observations for microtubule transport (Rogers and Gelfand, 1998; Dynes and Steward, 2007;101

Muller et al., 2008). The variances of the particle distributions grow at a rate of 35 and 80 µm2 per minute for the102

top and bottom panel, respectively.103
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Figure 1. Model of microtubular transport. (A) Molecular cargo, u, undergoes stochastic back-and-forth
movements driven by opposing motor proteins. (B) Three example random walks on a cable representing the
movement of individual cargoes. In a simple random walk, each movement is independent of previous movements
(top panel); longer unidirectional run result from adding history-dependence to the model, such that each movement
is likely to continue in the same direction as the previous step (bottom panel). (C) An ensemble of synaptic cargoes
transported along the length of a neurite. (D) The concentration profile of transported cargo along a cable over time,
simulated as 1,000 independent random walks. Simulations with (bottom) and without (top) history-dependence.
(E) In the limit of many individual particles, the concentration of u is described by a mass-action model (equation 1).
The parameters a and b respectively scale the anterograde and retrograde rate of transport. (F) The mass-action
model provides a good fit for the simulations in panel D.

The mass-action model is based on two important assumptions. First, we assumed that the net movement104

of molecules between neighboring compartments is a stochastic and memoryless process. This assumption is105

reasonable for cargoes that change direction often; specifically, on a length scale comparable to the size of the106

compartments. This appears to be the case under many (Muller et al., 2008; Verbrugge et al., 2009), though not107

necessarily all (Dynes and Steward, 2007; Soundararajan and Bullock, 2014) circumstances. However, we observed108

that the mass-action model could still be well-fit to simulated data where this assumption was violated (Fig. 1F, lower109

panel). In fact, the mass-action model only breaks down in the limit of very large run lengths (i.e. unidirectional,110

non-stochastic transport; see Methods).111

The second assumption of the mass-action model is that there are many transported particles distributed112

throughout the dendritic tree. Many types of dendritic cargo are present in high numbers (Cajigas et al., 2012),113

and a deterministic model can provide a good approximation in this regime (Fig. 1D). The model also provides114

insight into the stochastic dynamics of transport for cargoes with fewer copy numbers. Instead of interpreting u115

as the amount of cargo in each compartment, this variable (when appropriately normalized) can be interpreted as116
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the probability that a single particle lies within a particular compartment. Thus, for a small number of transported117

cargoes, the mass-action model describes the average, or expected, distribution of the ensemble, with noise inversely118

proportional to the square root of the number of copies of cargo (see Methods).119

A simple transport mechanism distributes cargo according to demand120

We used the mass-action model for our simulations because it is easy to extend it to branched morphologies (Fig.121

2A), and to cases where the trafficking rate constants (ai and bi) are spatially non-uniform. This situation corresponds122

to the kinetics of motor proteins being dependent on local biochemical signals (Mironov, 2007; Wang and Schwarz,123

2009; Soundararajan and Bullock, 2014).124

In the model, the exchange of cargo between compartments approaches a steady-state (ss), distribution over time125

(see Methods). The steady-state occurs when no net movement of cargo occurs between connected compartments.126

Mathematically, this occurs when:127

up

uc

∣∣∣∣∣
ss

=
b
a

(2)

where up is the level in the “parent” compartment (closer to soma) and uc is the level in the “child” compartment128

(closer to periphery); b and a refer to the trafficking rate constants between this pair of compartments.129

Intuitively, in the mass-action model, the rate of cargo transfer is proportional to the concentration of cargo130

and the trafficking rate constant. Thus, the flow of cargo is equal and opposite when the ratio of cargo matches the131

reciprocal ratio of the rate constants between a pair of connected compartments.132

The above result means that a specific spatial distribution of cargo can be achieved at steady state by modulating133

local trafficking rates. We denote the steady-state level of cargo in each compartment by ũ (we will soon show how134

this quantity can be encoded by a localized biochemical signal). If we interpret the steady state as being a specific135

“target concentration” (determined by local demand), we see that the ratio of local trafficking rates must satisfy:136

b
a
=

ũp

ũc
(3)

For example, we produced a linear expression gradient (Magee, 1998; Hoffman et al., 1997) by setting ũ directly137

proportional to the distance from the soma. The trafficking rate constants in this case satisfy bi/ai = i/i+1 (where i138

indexes on increasing distance to the soma). Figure 2B-C shows that this rule produced the expected profile, with139

the slope of the linear gradient controlled by tuning the total amount of cargo in the cable (Fig. 2C).140

Together, this analysis shows that by manipulating local trafficking rates, arbitrary distributions of cargo can141

be achieved over time. We next incorporated a biologically plausible mechanism for controlling these rates. It is142

reasonable to assume that local trafficking rates can be modulated by a biochemical signal resulting from synaptic143

activation or local release of a growth factor. An experimentally characterized signal is provided by transient144

fluctuations in cytoplasmic calcium concentration, [Ca]i, because increases in [Ca]i are known to simultaneously145

arrest anterograde and retrograde microtubular transport for certain cargoes (Wang and Schwarz, 2009). We therefore146

assume, for any pair of compartments, the anterograde rate constant is determined by calcium concentration in the147

parent compartment, a = f ([Ca]p), and the retrograde rate constant is determined by calcium concentration in the148

child compartment, b = f ([Ca]c), where f is a function that describes how calcium concentration alters the transport149
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Figure 2. Local trafficking parameters determine the spatial distribution of biomolecules by a simple rule. (A)
Diagram of the mass action transport model for a simple branched morphology. (B) A simulation of a nine
compartment cable, with trafficking rate constants set to produce a linear gradient using the steady-state relation
shown in panel A. (C) The slope of the linear gradient shown in panel B is directly proportional to the total amount
of cargo in the model (∑i ui); the slope increases with increasing cargo levels, but the linear profile is preserved. (D)
A model of a CA1 pyramidal cell with 742 compartments adapted from Migliore and Migliore (2012); excitatory
synapses were added at the locations marked by red dots. (E) The average membrane potential in each compartment
of the CA1 model determined ũ, which was used to determine values for the trafficking rate constants by equation
(3). Over time, the spatial distribution of cargo evolved to match local demand. (F) The steady-state profile of cargo
for each compartment in the simulation shown in panel E is precisely matched to local demand.

rates. This results in:150
b
a
=

f ([Ca]c)
f ([Ca]p)

=
ũp

ũc
(4)

where ũi = 1/ f ([Ca]i).151

Thus, in principle, local calcium transients that serve to arrest transport could provide a mechanism for152

distributing cargo to an arbitrary target profile. We note that other potential signalling pathways could achieve the153

same effect, so while there is direct evidence that [Ca]i as a key signal, the model can be interpreted broadly, with154

[Ca]i serving as a placeholder for any local signal identified experimentally. To test the global behavior of this model155

in a complex morphology, we extended an existing multi-compartment model of a CA1 pyramidal neuron (Migliore156

and Migliore, 2012). Excitatory synaptic input was delivered to 120 locations within three dendritic regions (red157

dots, Fig. 2D), and the average membrane potential in each electrical compartment determined the target level158

(ũi) in each compartment (Methods). This models how molecular cargo could be selectively trafficked to active159

synaptic sites (Fig. 2E, Supp. Video 1). Figure 2F confirms that the spatial distribution of u approaches the desired160

steady-state exactly in the absence of noise.161

Convergence rate162

Biochemical processes are time-sensitive. For example, newly synthesized proteins must be delivered to synapses163

within ∼1 hour to support long-term potentiation in CA1 pyramidal cells (Frey and Morris, 1997, 1998; Redondo164
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and Morris, 2011). More generally, biochemical components whose abundance and localization are regulated by165

cellular feedback signals need to be distributed within a time interval that keeps pace with demand, within reasonable166

bounds. We therefore examined how quickly the spatial pattern of cargo converged to its target distribution.167

In equations (3) and (4), we implicitly required each ũi > 0 in order to avoid division by zero. Intuitively,168

if ũi = 0 for some compartment, then no cargo can flow through that compartment, cutting of more peripheral169

compartments from the transport system. Similarly, if certain ũi are nearly equal to zero, then transport through170

these compartments will act as a bottleneck for transport, and convergence to the desired distribution will be slow.171

Figure 3A-C illustrates and analyzes a bottleneck in a simple three compartment model. The two compartments172

on the end of the cable have the same desired level, ũ1 = ũ3; the middle compartment acts as a bottleneck when173

ũ2 is very small (Fig. 3A). We can achieve this distribution with a simple mass-action model with only one free174

parameter, ε , which is the rate constant of trafficking into the middle compartment from either end; we fix the rate175

constant of trafficking out of the middle compartment to be 1 without loss of generality:176

u1
ε



1

u2
1


ε

u3 (5)

We assume that u begins at one end of the cable, and examine the how taking ε to zero affects the convergence rate.177

Figure 3B shows that the convergence rate slows dramatically as ε decreases. The convergence rate is determined by178

the smallest magnitude, non-zero eigenvalue of the system (see Methods), which can be thought of as a rate-limiting179

step or process for the system. Simulations confirmed this analysis and showed that the convergence rate diverges to180

infinity as ε approaches zero (Fig. 3C).181

We then asked whether the intuition from this three-compartment model extended to a cell with realistic182

morphology. We obtained qualitatively similar results. The CA1 model converged to a uniform target distribution183

more quickly than to a “bottleneck” target distribution, in which the middle third of the apical dendrite had low184

steady-state levels of cargo (Fig. 3D). Each pair of anterograde and retrograde rate constants was normalized to sum185

to one; thus, differences in convergence were not due to the scale of the trafficking rate constants.186

In addition to this global view of convergence (Fig. 3D), we considered how the transport bottleneck affected187

transport to individual dendritic compartments. Consider a scenario where transported cargo produces a local188

chemical reaction after a certain quantity of cargo accumulates; for example, a recently potentiated synapse might be189

stabilized after enough plasticity-related factors are delivered from the soma. Figure 3E plots the duration of time190

it took for ui to reach a pre-defined threshold for each compartment as a measure of the local transport delay. As191

expected, introducing a bottleneck caused much longer delays to compartments distal to that bottleneck (Fig. 3E,192

upper right portion of plot). The presence of a bottleneck shortens the transport delay to proximal compartments,193

compared to the uniform target distribution (Fig. 3E, lower left portion of plot). This occurs because cargo delayed194

by the bottleneck spreads throughout the proximal compartments, reaching higher levels earlier in the simulation.195

We observed qualitatively similar results for different local threshold values (data not shown).196

The model predicts that transport to distal compartments will converge to steady-state at a faster rate when the197

steady-state level of cargo in the proximal compartments increases (Fig. 3D-E). This might be experimentally tested198

by measuring the convergence time of a retrogradely transported molecule that aggregates at recently activated199

synapses, such as Arc mRNA (Steward et al. (1998), see discussion). To illustrate this in the model CA1 cell, we200

characterized the time course of transport to the distal apical dendrite (stimulating stratum lacunosum/moleculare),201

proximal apical dendrite (stimulating stratum radiatum), entire apical dendrite (stimulating both layers), and entire202
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Figure 3. Convergence to steady-state is slow when molecules must be transported across bottlenecks
—compartments with low target levels. (A) A three-compartment transport model, with the middle compartment
acting as a bottleneck. The vertical bars represent the desired steady-state level of cargo in each compartment. The
rate of transport into the middle compartment is small (ε , dashed harpoons) relative to transport out of the middle
compartment. (B) As ε decreases, the model converges more slowly and the steady-state level decreases in the
middle compartment. (C) Simulations (black dots) confirm that the time to convergence is given by the smallest
non-zero eigenvalue of the system (analytically calculated line). This eigenvalue can be thought of as the
rate-limiting step of the system. (D) Convergence (L1 distance) to a uniform target distribution (red line) is faster
than a target distribution containing a bottleneck (blue line) in the CA1 model. (E) For all compartments that reach a
threshold level (ui = 0.001), the simulated time it takes to reach threshold is plotted against the distance of that
compartment to the soma. (F) Predicted convergence times for various target distributions (str. rad., stratum
radiatum; str. lac., stratum lacunosum/moleculare) in the CA1 model.

cell (seizure). Notably, the model converges more slowly to distal input alone, than to paired distal and proximal203

input, or to an entirely uniform input distribution (Fig. 3F).204

Microtubular trafficking, detachment and degradation on separated time scales205

We have so far considered how a target distribution of cargo can be generated by modulating the local rates206

of molecular motors. However, while certain types of molecular cargo stay on the microtubule network (e.g.207

mitochondria), many kinds of cargo must detach from the microtubules in order to be used at their final location. For208

example, dendritic mRNAs are transported along microtubules within densely-packed granules, and are released209

following granule disassembly (Krichevsky and Kosik, 2001; Buxbaum et al., 2014b). In this case, and in other210

cases where the cargo is disassembled or sequestered, it is reasonable to model detachment from the microtubule as211
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Figure 4. Multiple strategies for transport in a model including nonuniform microtubular detachment/activation.
(A) Schematic of microtubular transport model with irreversible detachment in a branched morphology. The
localized degradation reactions (u?i

di−→∅) are omitted for clarity. (B) Multiple strategies for producing a desired
distribution of detached cargo (ũ?). When the timescale of detachment/delivery is sufficiently slow, the distribution
of cargo on the microtubules approaches a quasi-steady-state (transport step). This known distribution can then be
transformed into the desired distribution for ũ (detachment step). As long as these two steps are appropriately
matched (blends of blue), then the desired distribution will be achieved (CA1 cell, right). (C-E) Quasi-steady-state
distributions of u (red), u? (blue), and ũ? (black) for the various strategies diagrammed in panel B (see circled red
numbers).

an irreversible process, followed by an eventual degradation.212

This conceptual picture has been called the sushi belt model of transport (Doyle and Kiebler, 2011). This idea213

can be formalized as the following mass-action scheme:214

u1
a1


b1

u2
a2


b2

u3
a3


b3

u4
a4


b4

...

c1

y c2

y c3

y c4

y
u?1 u?2 u?3 u?4

d1

y d2

y d3

y d4

y
∅ ∅ ∅ ∅

(6)

As before, a molecule u is transported along a network of microtubules (top row, in equation 6). In each compartment,215

molecules can irreversibly detach from the microtubules in a reaction ui
ci−→ u?i , where u? denotes the biochemically216

active or released form of cargo. The final reaction, u?i
di−→∅, models degradation in each compartment. Note that217

only u? is subject to degradation; the molecule is assumed to be protected from degradation during transport. This218

model can be extended to branched morphologies (Fig. 3A).219
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To analyze this system we first assume that these three processes — trafficking, detachment, and degradation220

— occur on separated timescales. If trafficking is sufficiently faster than detachment (a,b� c), then u approaches221

a quasi-steady state distribution defined by our previous analysis (equation 3). We then choose detachment rate222

constants that transform the microtubular distribution into our desired distribution for u?:223

ci ∝
ũ?i
ũi

(7)

Here, ũ and ũ? respectively denote the quasi-steady state distributions for u and u?, respectively. As long as224

degradation is sufficiently slow (c� d) the desired distribution is transiently achieved.225

The addition of spatially varied detachment rates (ci) produces a spectrum of strategies for achieving a desired226

distribution of cargo (Fig. 4B). We can reproduce the essential strategy used in figure 2 by choosing the transport227

rates (ai,bi) to match the target distribution of cargo during the trafficking phase of transport (using equation 3).228

Then, since the distribution is achieved at quasi-steady-state, the cargo can be detached uniformly (ci = constant,229

with c� a,b). Figure 4C shows simulated data confirming that the desired spatial distribution is first achieved along230

the microtubules (red line, Fig. 4C) and then maintained after cargo is uniformly detached (blue line, Fig. 4C).231

A second strategy begins by choosing uniform transport rates (ai = bi), which evenly distributes cargo throughout232

the dendritic tree. The desired distribution is then achieved by locally delivering cargo at a rate proportional to the233

desired level (ci ∝ ũ?i ; Fig 4D). Unlike the first solution, this strategy avoids the transport bottlenecks examined in234

Figure 3, and can achieve target patterns with ũ? equal to zero in certain compartments by setting ci = 0.235

We refer to the first strategy (Fig. 4C) as the specific trafficking model, because cargo is selectively transported236

to target sites. We refer to the second strategy (Fig. 4D) as the uniform trafficking model, because cargo is uniformly237

distributed throughout the dendrite. These two strategies represent extremes on a spectrum of possible models (Fig.238

4B). Figure 4E shows the behavior of an intermediate model, whose parameters are a linear interpolation between239

the extreme strategies shown in Figure 4C and 4D. Thus, effective trafficking systems can be described as a spectrum240

of strategies that may be suited to different situations and purposes (see Discussion).241

Non-specific cargo delivery occurs when trafficking and detachment occur on similar timescales242

We have demonstrated possible strategies for neurons to achieve precise and flexible transport of cargo by assuming243

that cargo detachment is sufficiently slow relative to trafficking. However, biological neurons are unlikely to require244

perfect matching between demand and distribution of cargo and may therefore tolerate loss of precision in order245

to speed up delivery globally. We therefore examined the consequences of relaxing the separation of time scales246

between transport and detachment.247

Returning to the model of Figure 4, we consider a scenario where distal synaptic inputs on the apical tuft are248

stimulated (Fig. 5A). If the average detachment rate constants are sufficiently slow, then, as before, cargo is delivered249

selectively to the stimulated region (Fig. 5A, left). If we increase the detachment rates by a uniformly scaling,250

some cargo “leaks off” the microtubule path on its way to the distal synapses (Fig. 5A, right). We refer to this as a251

“non-specific” delivery of cargo, since cargo is not selectively delivered to the stimulated sites. Thus, speeding up252

detachment relative to transport improves the overall rate at which cargoes are delivered to synapses, but this comes253

at the cost of decreased accuracy of delivery.254

Tradeoff curves between the average detachment rate constant and the non-specificity of transport for this255

stimulation pattern are shown in figure 5B. Importantly, this tradeoff exists for both trafficking strategies we256
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Figure 5. Proximal synapses capture more cargo at the expense of distal synapses when detachment rates are
naı̈vely increased. (A) Delivery of cargo to the distal apical zone with slow (left) and fast detachment rates (right).
The achieved pattern does not match the target distribution when detachment is fast, since some cargo is erroneously
delivered to proximal sites. (B) Tradeoff curves between non-specificity and convergence rate for two trafficking
strategies (blue line, see Fig 4D; red line, see Fig 4C). (C-D) Same as (A-B) but for intended cargo delivery to the
entire apical tuft.

examined in figure 4 — the selective transport strategy (see Fig 4D) and uniform transport strategy (see Fig. 4C).257

For this stimulation pattern, the uniform trafficking strategy (Fig. 5B, blue line) outperforms the specific trafficking258

strategy (Fig. 5B, red line) since the latter suffers from bottleneck in the proximal apical zone.259

The pattern of non-specific delivery is stimulation-dependent. When the entire apical tree is stimulated, fast260

detachment can result in a complete occlusion of cargo delivery to distal synaptic sites (Fig. 5C). As before, a261

tradeoff between specificity and delivery speed is present for both transport strategies (Fig. 5D). Interestingly, the262

specific trafficking strategy outperforms the uniform trafficking strategy in this case (in contrast to Fig. 5A-B). This263

is due to the lack of a bottleneck, and the fact that the uniform trafficking strategy initially sends cargo to the basal264

dendrites where it is not released.265

Together, these results show that an increase in the efficiency of synaptic cargo delivery comes at the cost of loss266

of specificity and that the final destination of mis-trafficked cargo depends on the pattern of stimulation. We next267

asked whether we can tune the kinetic parameters of the transport mechanism to find an ideal compromise between268
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precision and trafficking efficiency.269

Transport speed and precision can be optimized for specific spatial patterns of demand270

In figure 5, we showed that scaling the detachment rates (ci), while leaving the transport rates (ai, bi) fixed produces271

a proximal bias in cargo delivery. That is, synapses closer to the soma are more likely to capture cargo at the expense272

of distal synapses. We reasoned that increasing the anterograde transport rate of cargo could correct for this bias,273

producing transport rules that are both fast and precise.274

We examined this possibility in a reduced model — an unbranched cable — so that we could develop simple275

heuristics that precisely achieve a desired distribution of cargo while minimizing the convergence time. In this276

model, cargo begins on the left end of the cable and is transported to a number of synaptic delivery sites, each of277

which is modeled as a double-exponential curve. We also restricted ourselves to investigating the uniform trafficking278

strategy (Fig. 4D); a similar analysis could in principle be done for the specific trafficking strategy.279

As before, cargo can be precisely delivered to a variety of stimulation patterns when the detachment rate is280

sufficiently slow (Fig. 6A, Supp. Video 2); when the detachment rate is naı̈vely increased to speed up the rate of281

delivery, a proximal bias develops for all stimulation patterns (Fig. 6B, Supp. Video 3).282

We then hand-tuned the transport rate constants to deliver equal cargo to six evenly spaced synaptic sites (top283

row of Fig. 6C, Supp. Video 4). Specifically, we increased the anterograde rate constants (ai) and decreased the284

retrograde rate constants (bi) by a decreasing linear function of position so that aN−1 = bN−1 at the right side of285

the cable. On the left end of the cable, we set a1 = 0.5+β and b1 = 0.5−β , where β is the parameter controlling286

anterograde bias. Intuitively, the profile of the proximal delivery bias is roughly exponential (Fig. 6B, top pattern),287

and therefore the anterograde rates need to be tuned more aggressively near the soma (where the bias is most288

pronounced), and more gently tuned as the distance to the soma increases.289

However, this tuned model does not precisely deliver cargo for other stimulation patterns. For example, when290

the number of synapses on the cable is decreased, a distal delivery bias develops because too little cargo is released291

on the proximal portion of the cable (middle row, Fig. 6C; Supp. Video 5). Even when the number of synapses is292

held constant, changing the position of the synapses can disrupt equitable delivery of cargo to synapses. This is293

shown in the bottom row of figure 6C, where a distal bias again develops after the majority of activated synapses are294

positioned proximally. Thus, within the simple framework we’ve developed, the delivery of cargo can be tuned to295

achieve both precision and speed for a specified target distribution. However, non-specific cargo delivery occurs296

when different stimulation patterns are applied (assuming the transport parameters are not re-tuned).297

Conservative estimates of trafficking parameters suggest that the tradeoff between speed and298

specificity is severe299

To examine these observations over a larger range of stimulation patterns and transport parameters, we plotted300

tradeoff curves between delivery precision and speed. We first examined a cable with six evenly spaced delivery301

sites (same as top row of Fig. 6A-C). As before, a hard tradeoff between specifity and delivery speed exists for the302

rationally designed model, which assumes separated time scales of transport and detachment (blue line in Fig. 6D).303

To get a rough estimate of how severe this tradeoff might be in real neurons, we set the length of the cable to 800304

µm (roughly the length of an apical dendrite in a CA1 cell) and the diffusion coefficient to 4 µm2/s (an estimate305

on the upper end of what might be biologically achieved, see e.g. Caspi et al. (2000); Soundararajan and Bullock306

(2014)). Despite the optimistic estimate of the diffusion coefficient, the model predicts a severe tradeoff. It takes307
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Figure 6. Tuning the model for speed and specificity is sensitive to the target distribution of cargo. (A-C) Cargo
begins on the left end of an unbranched cable, and is ideally distributed equally amongst a number recently
stimulated synaptic sites (black arrows). Steady-state cargo profiles (red) for three stimulation patterns (black
arrows) along an unbranched cable. The dotted black line corresponds to the ‘target’ steady-state level at each
delivery site. (A) When the timescale of detachment is sufficiently slow, cargo can be evenly distributed to the
synapses regardless of their number and position. Transport parameters were set according to the procedure shown
in figure 4D. (B) When detachment is näively increased (all rates multiplicatively scaled) a proximal bias in the
steady-state distribution of cargo across all stimulation patterns. (C) Transport rate constants, ai and bi, were tuned
to optimize the distribution of cargo to six equally spaced synapses (top row); detachment rate constants were the
same as in panel B. Changing the number of synapses (middle row) or the position of the synapses (bottom row)
causes the unequal distribution of cargo to synapses. (D) Tradeoff curves between non-specificity and convergence
rate for six evenly spaced synapses (top row of A-C). Trafficking parameters were chosen so that the anterograde
velocity decreased linearly over the length of the cable; the color of the lines shows the maximum velocity at the
soma. The tradeoff curves shift to the left and becomes non-monotonic as the anterograde velocity increases. (E)
Tradeoff curves for six randomly positioned synapses drawn uniformly across the cable. Ten simulations are shown
for two levels of anterograde velocity (blue lines, 0 µm/min; red lines 30 µm/min); as before, the velocity linearly
decreased across the length of the cable.

roughly 1 day to deliver cargo to match local demand with 10% average error, and roughly a week to deliver within308

1% average error.309

As the anterograde transport bias is introduced and increased (other line colors), the optimal points along the310

tradeoff curve move to the left, representing faster transport times. The tradeoff curves also become nonmonotonic:311

the error (non-specificity) initially decreases as the detachment rate decreases, but begins to increase after a certain312

well-matched point. Points on the descending left branch of the curve represent cargo distributions with proximal313
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bias (detachment is too fast); points on the ascending right branch correspond to distal bias (detachment is too slow).314

As suggested by the simulations shown in Fig. 6A-C, changing the pattern of cargo demand changes the tradeoff315

curves. Thus, we performed simulations to calculate tradeoff curves for randomizing the number (between 3 and316

9) and position of cargo demand hotspots (Fig. 6E). Notably, the untuned transport model (blue curves) always317

converge to zero error as the detachment rate decreases. In contrast, the model with anterograde bias (red curves)318

exhibit greater variability across demand patterns. Thus, for this model, it appears that the only way to achieve very319

precise, reliable and flexible transport is to have a slow detachment rate.320

DISCUSSION321

A microscope image of a typical dendritic tree hints at the complex logistical task that the neuron must solve in322

order to distribute its biomolecular components. While this problem is relevant to all aspects of cellular physiology323

in dendrites, synapses in particular are known to signal demand for specific kinds of molecules dynamically and can324

initiate distal metabolic events including transcription (Kandel, 2001; Deisseroth et al., 2003; Greer and Greenberg,325

2008; Ch’ng and Martin, 2011). This generates complex fluctuations in demand for specific kinds of molecular326

cargo that are involved in structural and physiological remodelling during plasticity and development. For example,327

excitatory synapses in the mammalian nervous system comprise hundreds of different proteins, including receptors,328

structural and anchoring proteins, and cytosolic signaling enzymes (Liu et al., 2014; Laßek et al., 2015). How do329

these components find their way to their final destination?330

We formalized a well-known, parsimonious and plausible conceptual model of molecular transport, the sushi331

belt model (Doyle and Kiebler, 2011), to address this general question. We formulated this model as a simple332

mass-action system that has a direct biological interpretation and permits analysis and simulation. From this we333

developed a family of models based on the assumption that sequestration of cargo from a microtubule occurs on a334

slower timescale than trafficking along it. Intuitively, a consequence of this assumption is that the cargo has sufficient335

time to sample the dendritic tree for potential delivery sites (Welte, 2004). We showed that the same distribution336

of cargo could be achieved by a family of trafficking and release regimes: location-dependent trafficking followed337

by uniform release, uniform trafficking followed by location-dependent release, or a combination of these extreme338

cases (Fig. 4). Experimental findings appear to span these possibilities. Kim and Martin (2015) identified three339

mRNAs that were uniformly distributed throughout cultured Aplysia sensory neurons, but were targeted to synapses340

at the level of protein expression by localized translation. In contrast, the nonuniform expression of Arc mRNA341

is closely matched to the pattern of Arc protein in granule cells of the dentate gyrus (Steward et al., 1998; Farris342

et al., 2014; Steward et al., 2015). Even the same type of molecular cargo can show diverse movement statistics343

in single-particle tracking experiments (Dynes and Steward, 2007). Thus, our work places disparate experimental344

findings into a common conceptual framework and shows that a simple sushi belt model of transport can, in principle,345

maintain a specific distribution of cargo throughout a neuron and that this capacity is relatively independent of346

whether trafficking or cargo sequestration (or both) are controlled by local signals.347

The model has a straightforward interpretation as a drift-diffusion process and the parameters describing drift348

rate and diffusion rate map directly to parameters in an equivalent mass-action scheme. This allowed us to estimate349

realistic rate parameters in the model from experimental data and then determine the consequences for distributing350

cargo throughout a typical dendritic arbor under a variety of assumptions and conditions. An inherent feature of the351

model is a trade-off between the rate at which cargo is distributed and the specificity, or accuracy with which its352
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distribution matches the spatial profile of demand.353

We first asked whether the model could maintain precise delivery while relaxing the restriction of slow detachment354

relative to transport along a microtubule. We found that increasing the rate of detachment produces a proximal355

bias in the delivery of cargo, leading to a mismatch between supply and demand across a population of synapses.356

Intuitively, a fast microtubule detachment rate increases the chances for cargo to be delivered prematurely, without357

sufficiently searching for an appropriate delivery site.358

When transport and sequestration are solely controlled by local signals the model predicts that the speed-359

specificity tradeoff is severe. In this version of the model, explored in Figures 4, 5 and 6, the timescale of cargo360

dissociation needs to be roughly an order of magnitude slower than the timescale of cargo distribution/trafficking.361

Thus, if it takes roughly 100 minutes to distribute cargo throughout the dendrites, it will take roughly 1000 minutes362

(∼16-17 hours) before the cargo dissociates and is delivered to the synapses.363

This unfavourable scaling has a number of implications. First, it might explain in part why local protein synthesis364

is observed in neurites across many species and neuron types. Long delays caused by microtubule transport from the365

soma would make rapid plasticity and metabolic responses impossible, severely limiting the regulatory capacity of366

neurons (Frey and Morris, 1997, 1998; Redondo and Morris, 2011). This may place fundamental limits on what can367

be achieved with synapse-to-nucleus signaling, which is widely thought to be an essential mechanism of neuronal368

plasticity. However, evidently not all dendritically expressed proteins are locally synthesized, and transcriptional369

blockade is known to interfere with regulation of synaptic and dendritic function (Nguyen et al., 1994; Bading,370

2000). This raises the question of whether delays for some kinds of proteins simply do not matter, or whether more371

sophisticated transport mechanisms might exist to mitigate delays.372

We then asked whether the speed-specificity tradeoff could be circumvented by globally tuning basal anterograde373

and retrograde movement rates as a function of distance from the soma. Studies show that a directional bias in374

transport can be induced by changing the complement of motor proteins (Kanai et al., 2004; Amrute-Nayak and375

Bullock, 2012), and that such a change might be induced at the soma in response to synaptic activity (Puthanveettil376

et al., 2008). We were able to tune the transport rates to circumvent the speed-specificity tradeoff (Fig. 6C, top).377

Even when locations for cargo demand were uniformly placed across the cable, we found the trafficking rate378

constants needed to be tuned non-uniformly along a dendrite; in the cases we examined this could be achieved379

with a linearly decreasing profile (see Methods). However, biologically, it is unclear whether neurons are capable380

of globally tuning their trafficking rates in a non-uniform manner. Simply changing the composition of motor381

proteins (Amrute-Nayak and Bullock, 2012) is unlikely induce a spatial profile in transport bias. On the other382

hand, non-uniform modulation of the microtubule network or expression of microtubule-associated proteins provide383

potential mechanisms (Kwan et al., 2008; Soundararajan and Bullock, 2014), but this leaves open the question of384

how such non-uniform modifications arise to begin with. It would therefore be intriguing to experimentally test the385

existence of spatial gradients in anterograde movement bias, for example, using single-particle tracking in living386

neurons.387

Furthermore, although tuning transport bias can provide fast and rapid cargo delivery for a specific arrangement388

of synapses along a dendrite, tuned solutions are very sensitive to changes in densities and spatial distributions389

of demand, as seen in Figure 6. This indicates that significant alterations in synaptic input or connectivity along390

a dendrite would preclude a tuned transport mechanism of this kind. In addition, the morphology of the neurites391

would affect the tuning, as introducing an anterograde bias can cause the accumulation of cargo at the tips of short392
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branches, proximal to the soma (data not shown). However, other mechanisms, not modeled in this study, might393

prevent this accumulation; for example, upon reaching the end of a neurite, a unit of cargo could undergo retrograde394

transport for long distances (Soundararajan and Bullock, 2014).395

Certain neuron types may nonetheless have morphology and synaptic connectivity that is sufficiently stereotyped396

to allow transport mechanisms to be globally tuned to some degree. In these cases the qualitative prediction that397

anterograde bias should decrease as a function of distance to the soma can be tested experimentally. Such tuning,398

while providing improved efficiency in trafficking intracellular cargo, would also constitute a site of vulnerability399

because alterations in the kinetics of transport or the spatial distribution of demand easily lead to mismatch between400

supply and demand of cargo. Molecular transport is disrupted in a number of neurodegenerative disorders (Tang et al.,401

2012). One obvious potential explanation for this is that temporal delays in cargo distribution impair time-sensitive402

physiological processes. Our results highlight a less obvious kind of pathology: due to the broad requirement to403

appropriately match detachment and transport rates in the model, disruption of trafficking speed could additionally404

lead to spatially inaccurate cargo delivery. It would therefore be intriguing to examine whether pathologies caused405

by active transport defects are also associated with aberrant or ectopic localization of important cellular components.406

What further experiments should be done to interrogate the model and test the predicted tradeoffs in speed,407

precision, and flexibility of transport? Our results suggest that the timescale of cargo dissociation from the408

microtubules is a critical parameter that merits careful examination. Local release of mRNA cargo can be induced409

by strong experimental manipulations, such as chemically-induced LTP and proteolytic digestion (Buxbaum et al.,410

2014a). Developing experimental tools that elicit more subtle effects on dissociation rate, as well as protocols to411

accurately observe and characterize dissociation in more naturalistic settings, would constrain the set of models we412

examined in this study. For example, our work predicts that decreasing the dissociation rate should produce minimal413

effects on the spatial distribution of cargo if dissociation occurs on a slower time scale than trafficking, whereas414

fine-tuned strategies (Fig. 6) are more sensitive to these manipulations.415

It is possible that active transport in biological neurons will be more robust and flexible than our predictions,416

which are based on a simple, but widely invoked conceptual model. In particular, we modeled the dissociation of417

cargo from the microtubules as a single, irreversible chemical reaction. In reality, the capture of cargo may be more418

complex and involve regulated re-attachment. Similarly, the over-accumulation of cargo at a subset of synapses419

might be ameliorated if the dissociation process exhibited saturation or adaptation. Incorporating these details would420

change the behaviour of the model but would also need more detailed experiments to motivate them. Nonetheless,421

the minimal models we examined provide a basis for designing and interpreting future experiments, and serve as a422

rigorous exploration of an important and popular conceptual model.423

METHODS424

All simulation code is available on: https://github.com/ahwillia/Williams-etal-Synaptic-Transport425

Model of single-particle transport426

Let xn denote the position of a particle along a 1-dimensional cable at timestep n. Let vn denote the velocity of427

the particle at timestep n; for simplicity, we assume the velocity can take on three discrete values, vn = {−1,0,1},428

corresponding to a retrograde movement, pause, or anterograde movement. As a result, xn is constrained to take on429

integer values. In the memoryless transport model (top plots in Fig. 1B, 1D, and 1F), we assume that vn is drawn430
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with fixed probabilities on each step. The update rule for position is:431

xn+1 = xn + vn

432

vn+1 =


−1 with probability p−
0 with probability p0

1 with probability p+

We chose p− = 0.2, p0 = 0.35 and p+ = 0.45 for the illustration shown in Figure 1. For the model with433

history-dependence (bottom plots in Fig. 1B, 1D, and 1F), the movement probabilites at each step depend on the434

previous movement. For example, if the motor was moving in an anterograde direction on the previous timestep,435

then it is more likely to continue to moving in that direction in the next time step. In this case the update rule utilizes436

conditional probabilities:437

vn+1 =


−1 with probability p(−|vn)

0 with probability p(0|vn)

1 with probability p(+|vn)

In the extreme case of history-dependence, the particle always steps in the same direction as the previous time438

step.439

vn =−1 vn = 0 vn = 1

p(vn+1 =−1) 1 0 0

p(vn+1 = 0) 0 1 0

p(vn+1 = 1) 0 0 1

We introduce a parameter k ∈ [0,1] to linearly interpolate between this extreme case and the memoryless model.440

The bottom plots of figure 1B, 1D were simulated with k = 0.5; in the bottom plot of figure 1F, a mass-action model441

was fit to these simulations.442

Relationship of single-particle transport to the mass-action model443

The mass-action model (equation 1, in the Results) simulates the bulk movement of cargo u across discrete444

compartments. The rate of cargo transfer is modeled as elementary chemical reactions (Keener and Sneyd, 1998).445

For an unbranched cable, the change in cargo in compartment i is given by:446

u̇i = aui−1 +bui+1− (a+b)ui (8)

For now, we assume that the anterograde and retrograde trafficking rate constants (a and b, respectively) are spatially447

uniform.448

The mass-action model approximates the drift-diffusion partial differential equation (Fig. 1E) by discretizing u

into spatial compartments. This can be seen by Taylor expanding around some position u(x):

u̇(x)≈ a
[

u(x)−∆
∂u
∂x

+
∆2

2
∂ 2u
∂x2

]
+b
[

u(x)+∆
∂u
∂x

+
∆2

2
∂ 2u
∂x2

]
− (a+b) u(x) (9)

= a
[
−∆

∂u
∂x

+
∆2

2
∂ 2u
∂x2

]
+b
[

∆
∂u
∂x

+
∆2

2
∂ 2u
∂x2

]
(10)
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where ∆ is the compartment size. We keep the first two terms of the Taylor expansion, due to the classic result that449

dx2 ∼ dt for a diffusion process (Gardiner, 2009). In the limit ∆→ 0, we arrive at the drift-diffusion equation.450

u̇(x) =
∂u
∂ t

= (b−a)︸ ︷︷ ︸
drift coefficient

∂u
∂x

+

(
a+b

2

)
︸ ︷︷ ︸

diffusion coefficient

∂ 2u
∂x2

When all cargo starts in one location (i.e. the initial condition is a delta function), then the distribution after some451

elapsed time will be a Gaussian function. The mean of this Gaussian function changes in direct proportion to the452

drift coefficient over time, while the variance is inversely proportional to the diffusion coefficient.453

How does this equation relate to the model of single-particle transport (Fig. 1A-B)? For a memoryless biased454

random walk, the expected position of a particle after n time steps is E[xn] = n(p+− p−) and the variance in position455

after n steps is n
(

p++ p−− (p+− p−)2
)
. For large numbers of independently moving particles (i.e. assuming456

ergodicity), the ensemble of cargo will approach a Gaussian distribution by the Central Limit Theorem. This means457

that the mean and variance calculations for a single particle can be directly related to the ensemble statistics outlined458

in the previous paragraph. We find:459

a =
2p+− (p+− p−)2

2
460

b =
2p−− (p+− p−)2

2

The above analysis changes slightly when the single-particle trajectories contain long, unidirectional runs. The461

expected position for any particle is the same E[xn] = n(p+− p−); the variance, in contrast, increases as run lengths462

increase. However, the mass-action model can often provide a good fit in this regime with appropriately re-fit463

parameters (see Fig. 1F). As long as the single-particles have stochastic and identically distributed behavior, the464

ensemble will be well-described by a normal distribution by the central limit theorem. This only breaks down in the465

limit of very long unidirectional runs, as the system is no longer stochastic.466

Fitting local parameters of the mass-action model467

The parameters of the mass-action model we study can be experimentally fit by estimating the drift and diffusion468

coefficients of particles over the length of a neurite. A simple, and well-known, approach to doing this is to plot the469

mean displacement and mean squared displacement of particles as a function of time. The slopes of the best-fit lines470

in these cases respectively estimate the drift and diffusion coefficient. Diffusion might not accurately model particle471

movements over short time scales, because unidirectional cargo runs result in superdiffusive motion, evidenced by472

superlinear increases in mean squared-displacement (Caspi et al., 2000). Diffusion appropriately models particle473

motion over longer time scales with stochastic changes in direction (Soundararajan and Bullock, 2014).474

The mass-action model can also be fit by tracking the positions of a population of particles with photoactivatable475

GFP (Roy et al., 2012). In this case, the distribution of fluorescence at each point in time could be fit by Gaussian476

distributions; the drift and diffusion coefficients are respectively proportional to the rate at which the mean and477

variance of this distribution changes.478
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Steady-state analysis479

The steady-state ratio of trafficked cargo in neighboring compartments equals the ratio of trafficking rate constants480

(equation 2). Consider a unbranched neurite with non-uniform anterograde and retrograde rate constants (equation481

1). It is easy to verify the steady-state relationship in the first two compartments, by setting u̇1 = 0 and solving:482

−a1u1 +b1u2 = 0 ⇒ u1

u2

∣∣∣∣∣
ss

=
b1

a1

Successively applying the same logic down the cable confirms the condition in equation 2 holds globally. A similar483

procedure (starting at the tips and moving in) can be applied to branched morphologies to prove the more general484

condition.485

It is helpful to re-express the mass-action trafficking model as a matrix differential equation, u̇ = Au, where486

u = [u1,u2, ...uN ]
T is the state vector, and A is the state-transition matrix. For a general branched morphology, A will487

be nearly tridiagonal, with off-diagonal elements corresponding to branch points; matrices in this form are called488

Hines matrices (Hines, 1984). For the simpler case of an unbranched cable, A is tridiagonal:489

A =



−a1 b1 0 ... 0

a1 −b1−a2 b2 0

0 a2 −b2−a3 b3
. . .

...
... 0 a3

. . . 0
. . . −bN−2−aN−1 bN−1

0 ... 0 aN−1 −bN−1


For both branched and unbranched morphologies, each column of A sums to zero, which reflects conservation of490

mass within the system. The rank of A is exactly N−1 (this can be seen by taking the sum of the first N−1 rows,491

which results in −1 times the final row). Thus, the nullspace of A is one-dimensional (red lines in Supp. Fig. 1).492

The desired steady-state distribution, ũ, is an eigenvector that spans the nullspace of A. It is simple to show that493

all other eigenvalues A are negative using the Gershgorin circle theorem; thus, the fixed point described by equation494

2 is stable. The convergence rate is determined by the non-zero eigenvalue with smallest magnitude of A.495

CA1 pyramidal cell model496

We obtained a model published by Migliore and Migliore (2012) from the online repository ModelDB497

(https://senselab.med.yale.edu/modeldb/), accession number 144541. We utilized this model to illustrate that our498

analysis holds for complex, branched morphologies. Similar results can be achieved for different morphologies and499

for different compartmental discretizations of the same morphology. We used the same spatial compartments used500

by Migliore and Migliore (2012) and set the trafficking and dissociation parameters of the mass-action transport501

model without reference to the geometry of the compartments. The mass-action model was simulated in Python; any502

simulations of the electrical activity of the model (see Fig. 2) were performed using the Python API to NEURON503

(Hines et al., 2009). We used a custom-written Python library to generate movies and figures for NEURON504

simulations (Williams, 2016), which is available at: https://github.com/ahwillia/PyNeuron-Toolbox.505
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Stochastic interpretation of the mass-action model506

The mass-action approximation holds in the limit of having a large number of transported particles. Cargoes with507

small copy numbers (e.g. mitochondria) will operate in a stochastic regime. Intuitively, when each compartment508

contains many particles, then small fluctuations in particle number don’t appreciably change concentration. However,509

these fluctuations can be functionally significant when the number of particles is small — for example, even a very510

energetically favorable reaction cannot occur with zero particles, but may occur with reasonable probability when a511

few particles are present.512

The mass-action model nevertheless provides insight into these systems if we shift our perspective. Instead of513

interpreting ui as the amount of cargo in compartment i, we can interpret ui as the probability of a particle occupying514

compartment i at a particular time. This perspective evokes a standard technical assumption that the system is515

ergodic, meaning that position of one particle averaged over very long time intervals is the same as the ensemble516

steady-state distribution.517

Thus, in addition to modeling how the spatial distribution of cargo changes over time, the mass-action model518

equivalently models a spatial probability distribution. That is, imagine we track a single cargo and ask its position519

after a long period of transport. The probability ratio between of finding this particle in any parent-child pair of520

compartments converges to:521

pp

pc

∣∣∣∣
ss
=

b
a

which mirrors our steady-state analysis of the deterministic model.522

In the stochastic model, the number of molecules in each compartment follows a binomial distribution at523

steady-state; the coefficient of variation in each compartment is given by:524 √√√√1− p(ss)
i

n p(ss)
i

This suggests that there are two ways of decreasing noise in the system. First, increasing the total number of525

transported molecules, n, decreases the noise by a factor of 1/
√

n. Additionally, transport is more reliable to526

compartments with a high steady-state occupation probability.527

Incorporating detachment and degradation into the mass-action model528

Introducing detachment and degradation reactions into the transport model is straightforward. For an arbitrary529

compartment in a cable, the differential equations become:530

u̇i = ai−1ui−1− (ai +bi−1 + ci)ui +biui+1

u̇?i = ciui−diu?i

When ai,bi� ci� di, then the variables ui and u?i approach a quasi-steady-state, which we denote ũi and ũ?i .531

For simplicity we assume di = 0 in our simulations. We present two strategies for achieving a desired distribution532

for ũ?i in figure 4C and 4D. To interpolate between these strategies, let F be a scalar between 0 and 1, and let ũ? be533

normalized to sum to one. We choose ai and bi to achieve:534

ũi = F ũ?i +(1−F)/N
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along the microtubular network and choose ci to satisfy535

ci ∝
ũ?i

F ũ?i +(1−F)/N

Here, N is the number of compartments in the model. Setting F = 1 results in the simulation in the “specific”536

trafficking model (Fig. 4C), while setting F = 0 results in the “uniform” trafficking model (Fig. 4D). An interpolated537

strategy is shown in figure 4E (F = 0.3).538

Globally tuning transport rates to circumvent the speed-specificity tradeoff539

We investigated the uniform trafficking model with fast detachment rates in an unbranched cable with equally spaced540

synapses and N = 100 compartments. Multiplicatively increasing the detachment rates across the cable produced a541

proximal bias in cargo delivery which could be corrected by setting the anterograde and retrograde trafficking rates542

to be:543

ai = 0.5+β · N−1− i
N−2

544

bi = 0.5−β · N−1− i
N−2

where i = {1,2, ...N−1} indexes the trafficking rates from the soma (i = 1) to the other end of the cable (i = N−1).545

Faster detachment rates require larger values for the parameter β ; note that β < 0.5 is a constraint to prevent bi from546

becoming negative. This heuristic qualitatively improved, but did not precisely correct for, fast detachment rates in547

the specific trafficking model (data not shown).548
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