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Abstract	1	

The	epigenetic	modifications	are	organized	 in	patterns	determining	the	 functional	properties	of	 the	2	

underlying	genome.	Such	patterns,	typically	measured	by	ChIP-seq	assays	of	histone	modifications,	can	3	

be	combined	and	translated	into	musical	scores,	summarizing	multiple	signals	into	a	single	waveform.	4	

As	 music	 is	 recognized	 as	 a	 universal	 way	 to	 convey	 meaningful	 information	 (1),	 we	 wanted	 to	5	

investigate	properties	 of	music	 obtained	by	 sonification	of	 ChIP-seq	data.	We	 show	 that	 the	music	6	

produced	 by	 such	 quantitative	 signals	 is	 perceived	 by	 human	 listener	 as	 more	 pleasant	 than	 that	7	

produced	from	randomized	signals.	Moreover,	the	waveform	can	be	analyzed	to	predict	phenotypic	8	

properties,	such	as	differential	gene	expression.		9	

	10	

Significance	Statement	11	

Music	 is	 recognized	 as	 universal	 way	 to	 communicate	 emotions	 and,	more	 in	 general,	 meaningful	12	

information.	 Various	 sources	 of	 information	 can	 be	 translated	 into	 music	 or	 sounds,	 mostly	 for	13	

recreational	purposes.	It	has	been	shown	that	human	ear	can	classify	information	encoded	into	sounds.	14	

Quantitative	genomic	features,	and	in	particular	epigenetic	marks,	do	represent	functional	information	15	

that	is	exploited	by	cells	to	drive	biological	processes.	We	test	a	method	to	translate	such	information	16	

into	music	and	we	study	some	properties	of	the	sonificated	chromatin	marks.	We	show	that	not	only	17	

musical	representation	of	epigenetic	marks	has	intrinsic	musicality,	but	also	that	differences	in	musical	18	

representation	of	genomic	loci	reflect	differences	of	the	RNA	levels	of	the	underlying	genes.	19	

	20	

Introduction	21	

Sonification	is	the	process	of	converting	data	into	sound.	Sonification	itself	has	a	long,	yet	punctuated,	22	

story	of	applications	in	molecular	biology,	several	algorithms	to	translate	DNA	(2)	or	protein	sequences	23	

(3,	 4)	 to	musical	 scores	 have	 been	 proposed.	 The	 same	principles	 have	 also	 been	 extended	 to	 the	24	

analysis	of	complex	data	(5)	showing	that,	all	 in	all,	sonification	can	be	used	to	describe	and	classify	25	

data.	Indeed,	the	very	same	procedures	may	also	be	applied	for	recreational	purposes.	26	

	27	

One	of	the	limitations	of	sonification	of	actual	DNA	and	protein	sequences	is	their	intrinsic	conservative	28	

nature.	Assuming	 the	differences	 in	 two	 individual	 genomes	 are,	 on	 average,	 one	nucleotide	every	29	

kilobase	(6),	the	corresponding	musical	scores	would	have	little	differences.	30	
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	On	the	contrary,	dynamic	ranges	typical	of	transcriptomic	and	epigenomic	data		may	provide	a	richer	1	

source	for	sonification.	2	

	3	

In	 this	work	we	describe	an	approach	 to	convert	ChIP-seq	signals,	and	 in	principle	any	quantitative	4	

genomic	feature,	into	a	musical	score.	We	started	working	on	our	approach	for	amusement	mainly,	and	5	

we	realized	that	the	sonificated	chromatin	signal	were	surprisingly	harmonious.	We	then	tried	to	assess	6	

some	properties	of	the	music	tracks	we	were	able	to	generate.	We	show	that	the	emerging	sounds	are	7	

not	random	and	instead	appear	more	melodious	and	tuneful	than	music	generated	from	randomized	8	

notes.	We	also	show	that	different	ChIP-seq	signals	can	be	combined	into	a	single	musical	track	and	9	

that	 tracks	 representing	 different	 conditions	 can	 be	 compared	 allowing	 for	 the	 prediction	 of	10	

differentially	expressed	genes.	11	

Examples	 of	 sonification	 for	 various	 genomic	 loci	 are	 available	 at	 https://soundcloud.com/davide-12	

cittaro/sets/k562	13	

	14	

Definitions	15	

MIDI:	 MIDI	 (Musical	 Instrument	 Digital	 Interface)	 is	 a	 standard	 that	 describes	 protocols	 for	 data	16	

exchange	among	a	variety	of	digital	musical	instruments,	computers	and	related	devices.	MIDI	format	17	

encodes	 information	 about	 note	 notation,	 pitch,	 velocity	 and	 other	 parameters	 controlling	 note	18	

execution	(e.g.	volume	and	signals	for	synchronization).		19	

MIDI	file	format:	a	binary	format	representing	MIDI	data	in	a	hierarchical	set	of	objects.	At	the	top	of	20	

hierarchy	there	is	a	Pattern,	which	contains	a	list	of	Tracks.	A	Track	is	a	list	of	MIDI	events,	encoding	for	21	

note	properties.	MIDI	events	happen	at	specific	time,	which	is	always	relative	to	the	start	of	the	track.	22	

MIDI	Resolution:	resolution	sets	the	number	of	times	the	status	byte	is	sent	for	a	quarter	note.	The	23	

higher	the	resolution,	the	more	natural	the	sound	is	perceived.	Resolution	is	the	number	of	Ticks	per	24	

quarter	note.	At	a	specific	resolution	R,	Tick	duration	in	microseconds	T	is	related	to	tempo	(expressed	25	

in	Beats	per	Minute,	BPM)	by	the	following	equation	26	

	27	

! = 60%
&'(	28	

	29	

	30	
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Results	1	

Approach	2	

In	order	to	translate	a	single	ChIP-seq	signal	track	to	music	we	bin	the	signal	over	a	specified	genomic	3	

interval	 (i.e.	 chrom:start-end)	 into	 fixed-size	 windows	 (e.g.	 300	 bp)	 and	 note	 duration	 will	 be	4	

proportional	to	the	size	of	such	windows.	As	we	are	dealing	with	MIDI	standard,	we	let	the	user	specify	5	

track	 resolution	 and	 the	 number	 of	 ticks	 per	 window	 (see	 definitions);	 the	 combination	 of	 these	6	

parameters	defines	the	duration	of	a	single	note.	The	default	parameters	associate	a	bin	of	300	bp	with	7	

one	quaver	(1/8	note).	8	

	9	

In	order	to	define	the	note	pitch,	we	take	the	logarithm	of	the	average	intensity	of	the	ChIP-seq	signal	10	

in	 a	 genomic	bin.	 The	 sounding	 range	of	 the	whole	 signal	 is	 discretized	 in	 a	predefined	number	of	11	

semitones.	At	default	parameters,	the	range	is	binned	into	52	semitones,	covering	four	octaves.	In	order	12	

to	introduce	pauses,	the	lowest	bin	of	the	signal	range	represents	a	rest.	If	two	consecutive	notes	or	13	

rests	fall	in	the	same	bin,	we	merge	them	in	one	note	doubling	its	duration.	14	

	15	

Using	this	approach,	any	ChIP-seq	signal	can	be	mapped	to	a	chromatic	scale.	We	implemented	the	16	

possibility	to	map	a	signal	on	a	different	scale	(major,	minor,	pentatonic…);	to	this	end,	intensity	bin	17	

boundaries	are	merged	according	to	the	definition	of	a	specific	scale	(Figure	1).	MIDI	tracks	produced	18	

in	 this	way	 can	be	 then	 imported	 into	a	 sequencer	 software	where	 they	 can	be	 further	processed,	19	

setting	tempo	and	time	signature.	20	

	21	

Music	produced	from	chromatin	marks	is	not	perceived	as	a	random	pattern	22	

In	order	to	test	whether	sonification	of	chromatin	marks	are	perceived	as	random	patterns,	we	selected	23	

ten	genomic	regions	and	generated	corresponding	tracks	based	on	the	following	histone	modifications:	24	

H3K27me3,	H3K27ac,	H3K9ac,	H3K36me3,	H3K4me1,	H3K4me2,	H3K4me3,	H3K9me3	25	

	(Supporting	Audio	files	S1.1	to	S10.1).	For	the	same	regions,	we	randomized	genomic	signal	at	base	26	

and	 bin	 level	 (Supporting	 Audio	 files	 S1.2	 to	 S10.2).	When	 data	 are	 randomized	 at	 base	 level,	 the	27	

average	 intensity	 is	uniforms	across	 the	bins,	 resulting	 in	a	 repeated	note	 (data	not	 shown);	 this	 is	28	

largely	expected	as	ChIP-seq	signals	are	distributed	on	the	genome	according	to	a	Poisson	law	(7)	or,	29	

more	precisely,	to	a	Negative	Binomial	law	(8).	30	
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	1	

Randomization	at	bin	level,	instead,	equals	to	shuffling	notes	during	the	execution.	We	administrated	2	

a	questionnaire	to	a	set	of	volunteers	(n=8)	not	previously	tested	for	education	in	music.	Volunteers	3	

were	asked	to	listen	to	each	pair	of	original/random	track	and	choose	which	track	they	felt	was	more	4	

appealing.	Track	order	was	randomized	when	testing	different	volunteers.	Notably,	in	the	majority	of	5	

the	cases	(62/80)	the	music	generated	from	genomic	signal	without	randomization	was	judged	more	6	

appealing.	Results	are	significant	 to	a	Fisher-exact	 test	 (p=1.95e-3),	 suggesting	 that	genomic	 signals	7	

contain	 information	that	can	be	recognized	by	human	ear.	The	number	of	correct	answers	for	each	8	

volunteer	ranged	from	5	to	10,	with	a	median	value	of	8.		9	

	10	

Differences	in	musical	tracks	reflect	differences	in	gene	expression	11	

Once	we	assessed	the	existence	of	musical	pattern	in	genomics	signals,	we	were	keen	to	explore	if	this	12	

kind	of	information	could	be	exploited	to	identify	biological	features	of	samples.	Since	the	epigenetic	13	

DNA	modifications	reflected	by	histone	marks	influence	gene	expression	(9),	we	tested	if	differences	in	14	

musical	tracks	generated	from	various	ChIP-seq	signals	reflects	differences	in	gene	expression	of	the	15	

corresponding	 loci.	 To	 this	 end,	 we	 downloaded	 ChIP-seq	 marks	 (H3K27me3,	 H3K27ac,	 H3K9ac,	16	

H3K36me3,	H3K4me1,	H3K4me2,	H3K4me3,	H3K9me3,	Pol2b)	and	RNA-seq	data	for	K562	and	NHEK	17	

cell	lines	from	the	ENCODE	project	(10).	For	each	RefSeq	locus	we	converted	ChIP-seq	signals	to	music	18	

with	fixed	parameters	(see	methods).	RNA-seq	data	were	used	to	identify	genes	that	are	differentially	19	

expressed	between	the	two	cell	lines,	under	a	p-value	<	0.01	and	|logFC|>1,	according	to	recent	SEQC	20	

recommendations	(11).	21	

	22	

A	common	way	to	classify	music	is	based	on	summarization	of	track	features	after	spectral	analysis	(12,	23	

13).	Such	approach	involves	the	summarization	of	track	as	Mel-Frequency	Cepstral	Coefficients	(MFCC)	24	

that	are	subsequently	clustered	using	Gaussian	Mixture	Models	(GMM).	A	distance	between	tracks	can	25	

then	be	defined	as	described	in	(14),	who	used	it	as	a	classifier	for	musical	genres.	26	

	27	

We	tested	if	a	similar	approach	could	be	used	to	develop	a	predictor	of	differential	expression	based	28	

on	the	distance	between	musical	tracks	generated	from	two	cell	lines.		29	
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We	defined	a	distance	between	songs	as	described	in	methods	and	we	optimized	the	parameters	using	1	

as	a	training	set	the	250	genes	with	the	most	significant	differential	expression	p-value	and	as	many	2	

genes	 with	 the	 least	 significant	 p-value	 according	 to	 RNA-seq	 (Figure	 2).	 We	 found	 that	 optimal	3	

performance	is	at	MFCC=30	and	GMM=10,	with	an	AUC=0.609.	4	

	5	

We	 summarized	 tracks	 representing	 all	 RefSeq	 genes	 using	 such	 parameters,	 we	 then	 compared	6	

distances	with	differential	expression	performing	a	ROC	analysis.	Our	results	indicate	that	differences	7	

in	information	contained	in	musical	representation	of	chromatin	signals	may	be	linked	to	differential	8	

expression,	although	power	of	prediction	is	limited	(AUC=0.5184,	p=1.4597e-03).		9	

	10	

Similarity	between	musical	tracks	overlaps	similar	biological	properties	11	

As	additional	 issue	we	wanted	to	assess	 if	similarities	between	musical	representation	of	chromatin	12	

status	 may	 be	 linked	 to	 the	 biology	 of	 the	 underlying	 genes.	 To	 this	 end,	 we	 calculated	 pairwise	13	

distances	for	all	regions	using	parameters	identified	above	on	K562	cell	line.	Hierarchical	clustering	of	14	

the	 distance	 matrix	 identifies	 eight	 major	 clusters	 (Figure	 3,	 left).	 We	 performed	 Gene	 Ontology	15	

Enrichment	analysis	on	each	cluster,	here	 represented	as	word	cloud	of	 significant	 terms	 (Figure	3,	16	

center,	supplementary	Table	S2);	we	found	that	different	clusters	are	linked	to	genes	showing	different	17	

biological	properties.	For	example,	some	clusters	(6,	7	and	8)	were	linked	to	regulation	of	cell	cycle,	18	

others	were	linked	to	metabolic	processes	(2	and	5)	or	vesicle	transport	(3	and	4).	We	also	evaluated	19	

the	distribution	of	expression	(expressed	as	log(RPKM))	of	the	underlying	genes	(Figure	3,	right);	we	20	

found	that	regions	clustered	by	the	distance	between	musical	tracks	broadly	reflects	groups	of	genes	21	

with	different	level	of	expression,	spotting	clusters	of	higher	expression	(cluster	5)	or	lower	expression	22	

(clusers	2	and	3);	assessment	of	statistical	significance	of	differences	in	distribution	of	gene	expression	23	

values	among	clusters	is	presented	in	Table	1.	24	

	25	

Discussion	26	

Chromatin	 shape	 and	 genome	 function	 are	 governed,	 among	 several	 factors,	 by	 the	 coordinated	27	

organization	of	epigenetic	marks	 (15).	Modifications	of	 such	marks	are	dynamic	and	are	 fine-tuned	28	

during	the	life	of	a	cell	or	an	organism.	Analysis	of	histone	modifications,	as	well	as	transcription	factors	29	

and	other	proteins	binding	DNA,	by	ChIP-seq	already	described	patterns	of	enrichment	that	are	specific	30	
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to	their	relative	function	(16,	17).	Analysis	of	combinatorial	patterns	of	histone	modifications	already	1	

unveiled	its	potential	in	understanding	functional	properties	of	the	genome	(18,	19)	and	the	cross-talk	2	

among	multiple	chromatin	marks	(20).		3	

	4	

We	show,	in	this	work,	that	the	information	carried	by	multiple	histone	modifications	can	be	caught	in	5	

a	human-friendly	way	by	translating	ChIP-seq	signals	into	musical	scores.	Although	the	investigation		of	6	

the	psychological	factors	that	underlie	tuneful	perception	of	sonificated	genomic	signals	is	out	of	the	7	

scope	of	this	manuscript,	our	results	suggest	that	human	hearing	is	able	to	perceive	patterns	conveying	8	

information	encoded	in	ChIP-seq	data	analyzed	and	to	distinguish	from	random	noise.	9	

	10	

We	automated	the	analysis	of	differences	between	musical	tracks	using	an	established	method	based	11	

on	 summarization	 of	 spectral	 data.	 By	 this	 approach,	 we	 investigated	 the	 possible	 link	 between	12	

differences	in	ways	chromatin	sounds	and	phenotypic	features.	Our	results	suggest	that	differences	in	13	

transcript	 levels	 can	 be	 predicted	 by	 the	 differences	 of	 sonificated	 genomic	 regions,	 although	14	

performances	of	such	approach	are	 limited.	We	reasoned	that	many	 factors	may	explain	such	poor	15	

results:	first	of	all	there	is	a	vast	space	of	parameters	that	can	be	tuned	to	create	a	single	musical	track	16	

and	we	still	lack	methods	to	explore	it	efficiently.	In	addition,	the	Mel	scale	used	to	summarize	audio	17	

signal	has	been	developed	to	match	human	capabilities	to	perceive	sound	(21),	hence	it	may	not	be	18	

optimal	for	the	comparison	of	the	tracks	generated	in	this	work.		19	

	20	

It	has	already	been	shown	that	it	is	possible	to	predict	levels	of	gene	expression	starting	from	chromatin	21	

states,	 although	 the	method	 used	 to	 perform	 chromatin	 segmentation	 has	 a	 large	 impact	 on	 such	22	

predictions	(22).	In	this	work	we	found	that	differences	in	chromatin-derived	music	reflects,	to	some	23	

extent,	differences	in	level	of	expression	of	underlying	genes	and	their	related	biology.	24	

	25	

To	conclude,	although	we	cannot	advocate	the	usage	of	musical	analysis	as	universal	tool	to	analyze	26	

biological	data	yet,	we	confirm	that	quantitative	features	on	the	genome	are	patterned	and	contain	27	

information,	hence	can	be	converted	into	sounds	that	are	perceived	as	musical.	We	limited	our	analysis	28	

on	specific	chromatin	modifications,	but	in	principle	any	quantitative	genomic	feature	can	be	converted	29	

and	integrated	into	a	musical	track.	The	choice	of	parameters	and	instruments	has	been	standardized	30	
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for	the	analysis	presented,	for	illustrative	purpose	we	show	that	different	signals	from	the	same	region	1	

can	be	combined	using	different	 instruments	(https://soundcloud.com/davide-cittaro/random-locus-2	

blues)	 and	 signals	 from	different	 genomic	 regions	 can	 be	merged	 (https://soundcloud.com/davide-3	

cittaro/non-homologous-end-joining).	4	

	5	

	6	

Materials	and	Methods	7	

	8	

Sonification	of	ENCODE	ChIP-seq	data	9	

Raw	data	 for	 various	modifications	were	 downloaded	 from	 (GSE26320).	 Read	 tags	were	 aligned	 to	10	

human	genome	(hg19)	using	bwa	aligner	(23).	Alignments	were	converted	to	bigwig	tracks	(24)	after	11	

filtering	for	duplicates	and	quality	score	higher	than	15.	12	

In	order	to	define	regions	to	be	converted	to	music	scores,	we	selected	intervals	around	RefSeq	gene	13	

definition,	from	1kb	upstream	of	TSS	to	2kb	downstream	of	TES.	ChIP-seq	signal	were	firstly	converted	14	

to	MIDI	using	custom	scripts	(https://bitbucket.org/dawe/enconcert)	according	to	parameters	defined	15	

in	Table	2.		MIDI	tracks	belonging	to	the	same	region	from	the	same	sample	were	merged	into	a	single	16	

MIDI	file,	converted	to	WAV	format	using	timidity	software	(http://timidity.sourceforge.net),	with	the	17	

exception	of	tracks	presented	as	supplementary	information	which	have	been	processed	with	Apple	18	

GarageBand	software.	19	

	20	

Comparison	of	WAV	tracks	21	

In	 order	 to	 compare	 four	 samples	 for	 each	 converted	 genomic	 region,	 we	 extracted	 MFCC	 using	22	

python_speech_features	library	(https://github.com/jameslyons/python_speech_features).	Selected	23	

components	were	then	clustered	using	Gaussian	Mixture	Models,	implemented	in	scikit-learn	python	24	

library	0.15.2	 (http://scikit-learn.org).	Distance	between	 two	 tracks	were	evaluated	using	Hausdorff	25	

distance	(H)	between	GMM	clusters.	Briefly,	we	first	calculate	all	pairwise	distances	between	GMM	26	

clusters	using	Bhattacharyya	distance	(B)	for	multivariate	normal	distributions	as	27	

	28	

& = 1
8 +, − +. /'0. +, − +. + 12 345

'
6, 6.

	29	
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	1	

where	2	

	3	

' = 6, + 6.
2 	4	

	5	

	then,	as	GMM	are	not	ordered,	we	take	the	Hausdorff	distance	(H)	as	the	maximum	between	the	row-6	

wise	and	column-wise	minimum	of	the	pairwise	distances	between	two	GMM	sets.	ROC	analysis	on	7	

music	distances	was	performed	over	the	value	of	D,	defined	as	8	

	9	

7 = 345 1 + 8 − 345	 1 + : 	10	

	11	

where	12	

	13	

: = ; <562>, <562@ + ; A;B<>,A;B<@
2 	14	

	15	

is	the	average	of	distances	between	replicates	and	16	

	17	

8 = ; <562>, A;B<> + ; <562>, A;B<@ + ; <562@, A;B<> + ; <562@, A;B<@
4 	18	

	19	

is	the	average	of	pairwise	distances	among	different	cell	lines.	20	

	21	

Assessment	of	differentially	expressed	genes	22	

RNA-seq	 tags	were	 aligned	 to	 reference	 genome	using	 STAR	 aligner	 (25).	 Read	 counts	 over	RefSeq	23	

intervals	were	extracted	using	bedtools.	Discrete	counts	were	normalized	with	TMM	(26),	differential	24	

gene	 expression	was	 evaluated	 using	 the	 voom	 function	 implemented	 in	 limma	 (27)	with	 a	 simple	25	

contrast	between	two	cell	lines.	Genes	were	considered	differentially	expressed	under	a	p-value	lower	26	

than	0.01	and	absolute	logarithm	Fold	Change	higher	than	1.	27	

	28	
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Cluster	analysis	1	

Cluster	analysis	was	performed	on	replicate	1	of	K562	dataset.	We	calculated	all	pairwise	Hausdorff	2	

distances	 among	 genomic	 loci	 as	 defined	 above.	 Data	 were	 clustered	 using	 the	 Ward	 method.	3	

Enrichment	analysis	was	performed	using	Enrichr	 (28).	Word	clouds	were	created	with	world_cloud	4	

python	package	(https://github.com/amueller/word_cloud)	using	text	description	of	ontologies	having	5	

positive	Enrichr	combined	score.	Differential	expression	among	clusters	was	evaluated	using	Mann-6	

Whitney	U-test.	7	

	8	
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Figure	Legends	1	

Figure	1:	Graphical	representation	o	the	approach	used	to	transform	quantitative	signals	to	music.	ChIP-2	

seq	values	(H3K4me3	in	the	example)	are	binned	in	fixed-size	intervals	over	the	genome.	Each	interval	3	

corresponds	to	a	1/8	note.	Average	values	of	log-transform	of	read	counts	in	each	genomic	bin	(red	4	

lines)	are	matched	into	predefined	number	of	semitones	(chromatic	scale).	Notes	may	be	mapped	to	a	5	

specified	 scale	 (major	 and	minor	 scales	 are	exemplified	 in	 the	 figure).	 Consecutive	equal	 notes	 are	6	

merged	in	single	note	with	double	duration.	Values	falling	in	the	first	bin	are	considered	rests.	7	

	8	

Figure	2:	Evaluation	of	different	combination	of	parameters	in	predicting	differential	gene	expression	9	

on	 a	 gold-standard	 subset	 of	 500	 genes.	 Each	 square	 corresponds	 to	 a	 number	 of	Mel-Frequency	10	

Cepstral	Coefficients	(MFCC)	used	to	summarize	signal	and	a	number	of	centers	for	Gaussian	Mixture	11	

Model	(GMM).	Colors	are	given	by	the	corresponding	Area	Under	the	Curve	(AUC)	12	

Figure	3:	Hierarchical	clustering	of	genomic	regions	identifies	8	main	clusters	(left).	Each	cluster	broadly	13	

corresponds	to	specific	biological	properties	according	to	Gene	Ontology	enriched	terms	(middle).	Level	14	

of	expression	of	genes	included	in	each	cluster	show	specific	distributions	(right).	15	

	16	
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	 Cluster	2	 Cluster	3	 Cluster	4	 Cluster	5	 Cluster	6	 Cluster	7	 Cluster	8	

Cluster	1	 2.635e-23	 3.548e-18	 8.127e-37	 8.627e-125	 2.859e-83	 3.231e-71	 3.169e-63	

Cluster	2	 	 1.068e-01	 2.008e-01	 4.005e-01	 2.801e-01	 7.907e-02	 9.467e-02	

Cluster	3	 	 	 2.880e-01	 2.225e-02	 1.399e-01	 3.910e-01	 3.745e-01	

Cluster	4	 	 	 	 4.159e-02	 3.025e-01	 2.614e-01	 2.821e-01	

Cluster	5	 	 	 	 	 5.098e-04	 3.898e-09	 7.586e-07	

Cluster	6	 	 	 	 	 	 1.259e-02	 2.866e-02	

Cluster	7	 	 	 	 	 	 	 4.545e-01	

Table	1	p-values	of	Mann-Whitney	U-test	for	differences	in	distribution	of	expression	between	clusters.	Tests	showing	significant	difference	1	
(p	≤	0.05)	are	presented	in	bold	face.	2	

	 	3	
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	1	
Antibody	 Scale	 Octave	 Key	 Tick	Size	 Bin	Size	

H3K27me3	 minor	 4	 B	 600	 400	

H3K27ac	 minor	 3	 B	 900	 600	

H3K9ac	 minor	 3	 B	 1200	 800	

H3K36me3	 minor	 4	 B	 300	 200	

H3K4me1	 minor	 3	 B	 1200	 800	

H3K4me2	 minor	 3	 B	 300	 200	

H3K4me3	 minor	 3	 B	 300	 200	

H3K9me3	 minor	 4	 B	 300	 200	

Pol2	 minor	 4	 B	 600	 400	

Table	2	–	Parameters	used	to	convert	different	ChIP-seq	signals	into	corresponding	musical	trakcs	2	

	3	
	4	
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