Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The view of the native gauges of blood pressure – focus on atrium (hydrodynamics and rheology)

Yuri Kamnev
doi: https://doi.org/10.1101/037705
Yuri Kamnev
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

The precision of the inlet parameters depends on mechanism of response. Reflexes are satisfied with relative higher or lower but if the inlet information is presented by different parameters and the response is calculated according to some equation precision must reach the degree which does not slur over the results of calculation. At recent work the equation for controlling of circulation was suggested where the main inlet parameters are the arterial diastolic and vinous pressures and it becomes pertinent to analyze how organism can perceive these pressures with hydrodynamic accuracy. As far as the velocity pressure component of total pressure can not be detected by wall receptor of the rectilinear section of artery it was noticed that baroreceptors are located at the outer radius of the bend of central arteries and that is justified due to specific distribution of pressure. This phenomenon can be interpreted as a correction of measuring of static pressure with regard for velocity pressure component. Velocity pressure component of venous pressure is comparable with the one of arterial pressure but static components of venous and arterial pressures are incomparable and it is the fact that cannot be ignored when choosing the gauge. The possible method of measuring of pressure is based on observation that pressure-volume vector of the ventricular cycle is similar to a-loop vector of atrial cycle. Ventricular filling vector and x-trough vector show the behavior of viscous material but v-loop inserted into a-loop demonstrates typical viscoelasticity with creep. If viscous deformation of atrium at early relaxation possesses standard duration being stopped by transformation of viscous deformation into viscoelastic deformation the venous pressure can be measured in accordance with the value of viscous deformation. Measuring of pressure by viscous method implemented by atrium has the advantage comparing to measuring by baroreceptor with elastic sensor. Early relaxation of atrium which reveals coefficient of viscosity corresponds to ventricular relaxation and its coefficient of viscosity but the latter is liable to different biochemical shifts. Such shifts influences the atrial coefficient of viscosity either and the values of venous pressure measured by viscous method will be more accurate for calculations because coefficient of viscosity participates in the equation being not estimated in organism.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted January 22, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The view of the native gauges of blood pressure – focus on atrium (hydrodynamics and rheology)
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The view of the native gauges of blood pressure – focus on atrium (hydrodynamics and rheology)
Yuri Kamnev
bioRxiv 037705; doi: https://doi.org/10.1101/037705
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
The view of the native gauges of blood pressure – focus on atrium (hydrodynamics and rheology)
Yuri Kamnev
bioRxiv 037705; doi: https://doi.org/10.1101/037705

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Physiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2416)
  • Biochemistry (4774)
  • Bioengineering (3319)
  • Bioinformatics (14626)
  • Biophysics (6617)
  • Cancer Biology (5156)
  • Cell Biology (7402)
  • Clinical Trials (138)
  • Developmental Biology (4340)
  • Ecology (6858)
  • Epidemiology (2057)
  • Evolutionary Biology (9876)
  • Genetics (7328)
  • Genomics (9496)
  • Immunology (4534)
  • Microbiology (12631)
  • Molecular Biology (4919)
  • Neuroscience (28206)
  • Paleontology (198)
  • Pathology (802)
  • Pharmacology and Toxicology (1380)
  • Physiology (2012)
  • Plant Biology (4473)
  • Scientific Communication and Education (974)
  • Synthetic Biology (1295)
  • Systems Biology (3903)
  • Zoology (722)