Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Tagmentation-Based Mapping (TagMap) of Mobile DNA Genomic Insertion Sites

View ORCID ProfileDavid L. Stern
doi: https://doi.org/10.1101/037762
David L. Stern
1Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David L. Stern
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Multiple methods have been introduced over the past 30 years to identify the genomic insertion sites of transposable elements and other DNA elements that integrate into genomes. However, each of these methods suffer from limitations that can frustrate attempts to map multiple insertions in a single genome and to map insertions in genomes of high complexity that contain extensive repetitive DNA. I introduce a new method for transposon mapping that is simple to perform, can accurately map multiple insertions per genome, and generates long sequence “reads” that facilitate mapping to complex genomes. The method, called TagMap, for Tagmentation-based Mapping, relies on a modified Tn5 tagmentation protocol with a single tagmentation adaptor followed by PCR using primers specific to the tranposable element and the adaptor sequence. Several minor modifications to normal tagmentation reagents and protocols allow easy and rapid preparation of TagMap libraries. Short read sequencing starting from the adaptor sequence generates oriented reads that flank and are oriented toward the transposable element insertion site. The convergent orientation of adjacent reads at the insertion site allows straightforward prediction of the precise insertion site(s). A Linux shell script is provided to identify insertion sites from fastq files.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 31, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Tagmentation-Based Mapping (TagMap) of Mobile DNA Genomic Insertion Sites
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Tagmentation-Based Mapping (TagMap) of Mobile DNA Genomic Insertion Sites
David L. Stern
bioRxiv 037762; doi: https://doi.org/10.1101/037762
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Tagmentation-Based Mapping (TagMap) of Mobile DNA Genomic Insertion Sites
David L. Stern
bioRxiv 037762; doi: https://doi.org/10.1101/037762

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Molecular Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3479)
  • Biochemistry (7318)
  • Bioengineering (5296)
  • Bioinformatics (20196)
  • Biophysics (9976)
  • Cancer Biology (7701)
  • Cell Biology (11249)
  • Clinical Trials (138)
  • Developmental Biology (6417)
  • Ecology (9915)
  • Epidemiology (2065)
  • Evolutionary Biology (13276)
  • Genetics (9352)
  • Genomics (12551)
  • Immunology (7673)
  • Microbiology (18937)
  • Molecular Biology (7417)
  • Neuroscience (40887)
  • Paleontology (298)
  • Pathology (1226)
  • Pharmacology and Toxicology (2125)
  • Physiology (3140)
  • Plant Biology (6837)
  • Scientific Communication and Education (1270)
  • Synthetic Biology (1891)
  • Systems Biology (5296)
  • Zoology (1084)